BUSINESS POWER FROM NEW AUTOMATION TECHNOLOGY (BAT) FIMECC ohjelmavalmistelu Status 1.12.2009 Olli Ventä
Etenemisprosessi, revised 2009-10 1. Aloite tutkimusohjelmasta Suomen Automaatioseuralta (SAS ry.) (marraskuu 2008) Pienryhmä: Hans Aalto, Olli Ventä, Teemu Tommila, Arto Visala, Jukka Ylijoki 2. Suunnittelukokouksia SAS:issa (joulukuu 2008 - huhtikuu 2009) 3. Valmistelun 1. workshop (7.5.2009) Keskustelu tutkimusteemoista jatkuu, teemojen jatkokehittelyä Evästykset projektivalmisteluihin 4. FIMECC/Intelligent Solutions ohjausryhmä (1.6.2009) Päätös startata automaatio-ohjelman valmistelu tähänastisten aloitteiden pohjalta aito langattomuus, tehokas suunnittelu, projektitoiminta, turvallisuus, diagnostiikasta päätöksentekoon, realtime business automation 5. Tutkimusohjelman hahmottaminen (kesä lokakuu 2009) Tapaamisia konsortion keskeisten osapuoletn kanssa 6. Tutkimusohjelman vakava valmistelu (marraskuu 2009 -) Valmisteluseminaari 1.12.2009 (Dipoli) Ohjelman pääaiheiden suunnittelu Ohjelmaan sitoutuminen Ohjelmatekstin/ien ja projektisuunnitelmien kirjoittaminen 7. Ohjelmaehdotuksen käsittely FIMECC Oy:ssä (helmikuu 2010) 8. Ohjelmaehdotuksen käsittely Tekesissä (maalis-huhtikuu 2010) 9. Ohjelma alkaa (toukokuu 2010)
Haastattelujen tilanne 12.10.2009 Haastateltu Metso Fortum Honeywell Valio Orion Neste Jacobs Pöyry Outotec ABB Käymättä Tutkimuslaitoksissa keskusteluissa VTT Helsinki University of Technology (Aalto) Tampere University of Technology Laajennetaan University of Oulu University of Jyväskylä University of Vaasa Åbo Akademi Helsinki School of Economics (Aalto) Lappeenranta University of Technology Polytechnics (AMK)?
Ohjelmamalli Industry oriented workpackages (Application Scenarios, Cases): WP1.1 Industry workpackage topic1 topic2 with joint industrial interest leading company participating company participating company subcontracts WP1.2 Industry workpackage topic1 topic2 with joint industrial interest leading company participating company participating company subcontracts System requirements Enabling technologies Research oriented workpackages: WP2.1 Research workpackage research topic1 research topic2 supporting industrial wp s Global-quality resourcing and task allocation leading research team participating research team participating research team etc. WP2.2 Research workpackage research topic1 research topic2 supporting industrial wp s Global-quality resourcing and task allocation leading research team participating research team participating research team etc.
Yritysten ja yliopistojen/tutkimuslaitosten projektiyhteistyö Yrityssovellus A Yrityssov. B Yrityssov. C YLIOPISTOT, TUTKIMUS- LAITOKSET, YRITYKSET Tutkimusaihe 3 (projekti/task3) Tutkimusaihe 2 (projekti/task 2) Tutkimusaihe 1 (projekti/task 1) (projekti/ task A) (proj./ task B) (proj./ task C) YRITYKSET Yhteinen projekti tai workpackage
Muutama hankekokonaisuus (workpackage) = BAT-ohjelma Lisäksi: Ohjelmanjohtoprojekti Technology / Business foresight projekti? Puhtaita yritysryhmäprojekteja? Puhtaita tutkimusprojekteja?
Ohjelman talouden täytyy toteutua näin! Tutkimusohjelma Tutkimusorganisaatioiden projektit Yritysten projektit Muu julkinen rahoitus (ml. omarahoitus) (15-20%) Tekesin rahoitus julkisille toimijoille (70%) Tekesin rahoitus yrityksille (tyyp. 35%) Yritysten panostus (tyyp. 65%) maksimi 60 % (raj. julk.) tai 75% (laaja julk.) Ohjelmassa mukana olevat yritykset voivat rahoittaa tutkimusorganisaatioita (ei tilityskelpoinen kustannus yritysten hankkeissa). Tutkimusorganisaatioiden työtä voidaan siirtää alihankinnaksi.
Tutkimusohjelman rahoitus
Keskimääräinen budjettimatematiikka! Yritystyön volyymi (lähtökohtana) Tutkimuslatosten työn volyymi 75%/25% malli 60%/40% malli 9
A: Industrial wireless automation
A: Industrial wireless automation Topics/Projects: Wireless automation and control architectures, hybrid wired and wireless Node communication technologies Control methods adapted to wireless conditions (limited energy and bandwidth, asynchronous communication, ) Engineering of wireless automation system tools for wireless-specific implementation, interoperability to existing tools simulators, test beds, V&V Standards Both wireless process and machine automation applications
B: Next generation application engineering Topics/Projects: THTH ry. Prindex, SEFRAM projects -> open XMLpss platform + proof-of-concepts (plant models, product models, automation models, electronic exchange, link to simulation, etc.) Fiatech/iRING, OPC Unified Architecture VTT SIMANTICS platform Activate towards international standardization, etc. benefit of international work, proactively affect and adopt winning standards close to major tool vendors Efficient design automation reuse, model solutions, model libraries, design patterns, design generators knowledge-based engineering, semantic techniques Simulation-based engineering
BAT framework for simulation supported E&O&M Business and collective intelligence through defacto standards Simulation Open source platforms Engineering SOA OPC UA Semantic models and rules Business process integration Collective technologies Defacto standards Operation and maintenance
C: Modelling and simulation Major challenges for industrial modelling and simulation (according to Tekes-MASI study by VTT) Seamless support for simulation in different levels of details, as appropriate to each design life-cycle stage Support for multi-domain or multi-physics simulation in spite of diverse, individual simulators in each domain or engineering discipline Component based simulation, i.e., model algorithms can be developed, added, removed and changed run time as part of the larger model. Seamless exchange of model and simulation results data between different modules in the simulation process. Model configuration has to be neutral, not simulation tool specific. M&S management: high level component modelling, meshing, model topology editing, simulation management and runtime adaptive tools. Need for distributed simulation model configuration and usage including version and access control. Simulation data visualization using modern graphics technologies (2-D, 3-D, augmented reality). Better links from simulators to different engineering applications. Only this way simulation can find its way to the everyday engineering. Support for validation and verification of simulation models should be a built-in feature in a modelling and simulation framework. Uncertainty estimation. Standards
D: Automation and open source a proper feasibility study vendor, subcontractor, integrator, end-user point-of-views open source offering (present, future), organizations/standards open source business models, earning models, contract models, laws (EPL, GPL etc.) open source SWOT: strengths, weaknesses, opportunities/competitive edges, and threats expected roles of open source in automation, scenarios respective projects planning within the program
E: Operational state management between automation system and production management (MES layer!) a stable, standardized definition needed production line wide factory wide global enterprise wide logistics? functions overall monitoring on-line optimization exceptional state management performance management and forecasts knowledge and experience remote operations
F: Critical automation Between emergency procedures and normal operation Look at nuclear, aviation, medical, etc., automation but downscale to manufacturing application-specific rules, standards, tools, platforms but similar methods and techniques defence-in-depth, redundancies, diagnostics V&V, licensing, good and proven practices normal automation vs. safety automation recovery procedures, return-to safe mode
G: Control room New HMI concepts and techniques Human-in-the-loop Intelligent alarms system Cf. FIMECC/UXUS!
H: Algorithms and industry from data to knowledge from laboratory pilots to professional engineering large scale MPC (model predictive control) rubust (auto)tuning system-dynamic models