1. Yleistä asiaa tietoliikenneyhteyden toiminnasta.

Koko: px
Aloita esitys sivulta:

Download "1. Yleistä asiaa tietoliikenneyhteyden toiminnasta."

Transkriptio

1 TTSE Tietoliikenteen perusteet Metropolia/A. Koivumäki Aiheita viikolla 5. Yleistä asiaa tietoliikenneyhteyden toiminnasta.. Samaa asiaa englanniksi.. Binäärimatematiikan kertausta.. Kirjan lukuun.. Traffi Engineering liittyvää selitystä ja esimerkkejä.. Yleistä asiaa tietoliikenneyhteyden toiminnasta. [ Allaolevan tekstin olen kirjoittanut aikoinaan (Stadian aikana) osaksi yleistä johdantoa tietoliikenteen ammattiaineiden Digitaalinen siirtotekniikka -kurssille. Se soveltuu hyvin myös tähän Johdatus tietoliikenteeseen -kurssiin. Tekstissä mainitaan asioita, joihin tässä kurssissa ei juurikaan syvennytä, mutta on hyvä olla tietoinen jo tässä vaiheessa siitä, minkänimisiä asioita biteille tapahtuu, kun niitä käyttäen siirrellään informaatiota kaapeleita pitkin tai radioteitse paikasta toiseen. ] Oletetaan, että on viesti, joka sisältää informaatiota. Tuo informaatio halutaan siirtää tietoliikennejärjestelmän läpi toiseen paikkaan. Mitä kaikkea tuolle viestille ja sen sisältämälle informaatiolle pitää tehdä tuossa matkalla?. Viesti pitää muuttaa sähköiseen muotoon. Ääni muuttuu sähköksi mikrofonilla, kuvainformaatio kameralla (still- tai video-) jne.. Kaikki ihmiseen ja olevaiseen maailmaan liittyvä informaatio on alunperin laadultaan analogista. Tuo analoginen viesti pitää ensin muuttaa biteiksi. Tätä toimenpidettä kutsutaan lähdekoodaukseksi (soure oding). Esimerkki: Kun halutaan tallettaa ääntä digitaalisesti CD-standardin mukaisessa formaatissa, sähköisen äänisignaalin jännite (tai muu sähköinen suure, joka kuvaa äänen hetkellisen voimakkuuden vaihtelua) pitää mitata 00 kertaa sekunnissa ja jokainen mittaustulos pitää muuttaa 6-bittiseksi binääriluvuksi. Tämä pitää tehdä kahdelle äänikanavalle (oikea ja vasen). Tämän lähdekoodauksen tuloksena on siis x 00 x 6 = 00 bittiä dataa sekunnissa. Jos on kyse monofonisesta äänestä, on bittimäärä sama, mutta molempien kanavien bitit ovat samat.. Lähdekoodauksen tuloksena voisi sanoa olevan "raakabittejä". Digitaalisessa tiedonsiirrossa tuota bittijonoa voidaan vielä koodata eri tavoin. Aina niin ei tarvitse tehdä, mutta lähes aina haluttuun tulokseen pääseminen vaatii ainakin jotain lisäkoodausta. Bittejä voidaan jatkokoodata kolmella tavalla: a) Kompressio- eli tiivistyskoodaus, joskus käytetään termiä entropiakoodaus. Tämän tuloksena sama tai melkein sama informaatio pystytään esittämään vähemmillä biteillä Erityisesti tiedonsiirrossa tämä tietysti tarkoittaa sitä, että alkuperäinen (tai lähes alkuperäinen) informaatio pystytään siirtämään hitaammalla siirtonopeudella. Tai sitä, että käytettävissä olevalla siirtonopeudella voidaan siirtää enemmän informaatiota. Tiivistyskoodausta on kahdentyyppistä: Häviötöntä (kaikki informaatio säilyy) ja häviöllistä (osa informaatiosta katoaa). b) Salauskoodaus (enryption). Termi selittänee itsensä. Salauskoodauksessa bittien määrä aina lisääntyy. ) Virheenilmaisu/korjauskoodus. Tuo / tarkoittaa sitä, että joskus pyrkimyksenä on, että vastaanottaja vain havaitsee siirtovirheen olemassaolon, ja pyytää tällöin lähettäjää lähettämään tietynkokoisen bittijoukon uudestaan. Virheenkorjauskoodauksessa pystytään (virheiden ilmaisun lisäksi) myös korjaamaan virheellisiä bittejä oikeiksi, kunhan niitä ei ole liikaa. Myös virheenilmaisu/korjauskoodauksessa bittien määrä aina lisääntyy. Ainakin periaatteessa tiivistyskoodaus ja salauskoodaus voivat olla kummassa tahansa järjestyksessä, mutta virheenilmaisu/korjauskoodauksen täytyy olla viimeisenä. (Miksi?). Bittijonosta pitää tehdä sellainen sähköinen signaali, joka pystyy etenemään käytettävässä fyysisessä tietoliikennekanavassa (kuparikaapeli, optinen kaapeli, radioyhteys). Tällöin on kaksi mahdollisuutta. a) Bittijonosta muodostetaan suoraan sähköinen signaali. Yksinkertainen esimerkki: bittiarvoa 0 vastaa tietty jännite (esim. 0 V) ja bittiarvoa vastaa joku muu jännite (esim. 5 V). Tämä toimenpide on linjakoodaus eli johtokoodaus (line oding), ja nyt puhutaan kantataajuisesta (base band) siirrosta. Tätä linjakoodattua signaalia ei voi lähettää radioteitse, vaan kaapelissa. Tällaista signaalia (vaihtojännitettä) nimitetään usein digitaaliseksi signaaliksi, mutta siinä asiassa on saivartelun varaa. b) Bittijonolla (tarkemmin sanoen siitä muodostetulla sähköisellä kantataajuisella signaalilla) moduloidaan kantoaaltoa. Näin on pakko tehdä aina, kun bitit siirretään radioteitse. Myös kaapelisiirrossa saatetaan käyttää modulaatiota (esim. DVB-C). Tässä tuloksena on analoginen signaali. Radiotaajuuksilla digitaalinen siirto siis on

2 itse asiassa analogista siirtoa! Tarkemmin: Informaatio on digitaalisessa muodossa, mutta siirrossa käytettävä signaali on analogista sähköä. 5. Kun signaali vastaanotetaan tietoliikennekanavan toisessa päässä, sille on tehtävä äskenkuvatut toimenpiteet käänteisesti käänteisessä järjestyksessä -> demodulaatio, dekoodaus. Edelläkuvailtujen toimenpiteiden lisäksi kohdissa ja/tai syntyvälle bittijonolla tehdään digitaalisessa tiedonsiirtojärjestelmässä muitakin toimenpiteitä. Bittejä järjestellään uuteen järjestykseen, lomitellaan, niitä ryhmitellään paketeiksi ja kehyksiksi, eri lähteistä peräisin olevia bittijonoja yhdistetään, multipleksataan jne.. Introdution to Communiation Systems [ Tällä otsikolla varustettu teksti on viimeisellä sivulla. Se on peräisin Matlab-ohjelmiston Communiations Toolbox -lisäosan käsikirjasta. Siinä on samoja asioita kuin yllä, osaksi hieman eri tavalla esitettynä. ]. Binäärimatematiikan kertausta. [ Nämä asiat näkyvät olleen Digitaalitekniikan matematiikka -kurssin aiheina, joten kyseessä on pikakertaus. Vaikka asiat ovatkin näin tuoreessa muistissa, on hyvä pikaisesti muistella niitä, koska digitaalisessa tietoliikenteessä käsitellään bittejä tavoilla, joiden yhteydessä lukujärjestelmät ja yksinkertaiset binäärilukujen väliset matemaattiset toimenpiteet ovat tärkeitä. Tätä ei käsitellä luennolla. Tehtävien vastaukset tämä tiedoston lopussa.] Hieman binäärilukumatematiikkaa Digitaalisessa tietoliikennejärjestelmässä käsitellään tietysti aika paljon bittejä. Sekä yksittäisiin bitteihin että monibittisiiin binäärilukuihin että isompiinkin bittijoukkoihin kohdistetaan järjestelmän eri kohdissa erilaisia matemaattisia toimenpiteitä. Näissä tehtävissä kerrataan hieman tuota matematiikkaa. Lukujärjestelmät, harjoituksia:. Muunna seuraavat kymmenjärjestelmän luvut binääriluvuiksi ja heksadesimaaliluvuiksi:,,, 5, 8, 8,, 65, 8, 59, 09, Muunna seuraavat binääriluvut kymmenjärjestelmän luvuiksi ja heksadesimaaliluvuiksi: 0,, 000,.. Muunna seuraavat heksadesimaaliluvut kymmenjärjestelmän luvuiksi ja binääriluvuiksi: B, A, FE, 00F, FFFFF. Exlusive or Exlusive or (XOR) on digitaalisessa tiedonsiirrossa erittäin yleinen binäärilukuoperaatio. Muun muassa virheenkorjauskoodauksessa bittijonolle tehdään jatkuvasti lukemattomia XOR-operaatioita. Tässä yksinkertainen esimerkki. Virheenkorjauskoodauksen yksi laji, lohkokoodaus tarkoittaa sitä, että lähetettäväksi tarkoitetusta bittijonosta otetaan aina kerrallaan tietty määrä bittejä (esim. bittiä) käsittelyyn, ja noihin bitteihin kohdistetaan matemaattisia operaatioita, jonka tuloksena on tietty määrä (esim. ) uusia bittejä. Nuo uudet bitit laitetaan alkuperäisten bittien perään (tai jollakin muulla tavalla lisätään aluperäisten bittien mukaan), ja sitten tuo isompi bittimäärä (siis nyt 7 bittiä) lähetetään vastaanottajalle. Jos noista seitsemästä bitistä yksi saapuu perille virheellisenä, vastaanottimessa oleva dekooderi huomaa virheen olemassaolon, ja lisäksi pystyy määrittelemään, mikä biteistä on virheellinen. Silloin tietysti virhe voidaan korjata. Sitä, miten edelläkuvattu (7,)-Hamming-lohkokoodaus (ja muut virheenkorjauskoodausmenetelmät) käytännössä toteutetaan, käsitellään muissa kursseissa myöhemmin. Nyt riittää tällainen kuvaus:

3 Jos mainittu -bittinen datasana on d d dd (missä siis jokainen d:llä merkitty on joko 0 tai ), niin 7-bittisen koodisanan d d dd muodostamisessa vaadittavat pariteettitarkistusbitit saadaan yhtälöillä = d = d = d Tuossa käytetty plus-merkki on yleisesti käytetty exlusive or -operaation symboli. Nuo pariteettibittien lausekkeet ovat modulo yhteenlaskuina laskettavia bittien summia. Mitä tarkoittaa "modulo " -yhteenlasku? Se tarkoittaa sitä, että lasketaan bittejä yhteen mutta tuloksesta otetaan huomioon vain viimeinen numero. Esimerkki bittien summaamisesta: 0 = 0. "Normaalina" binäärisenä yhteenlaskuna tulisi tietysti = 00, ja tuosta tuloksesta modulo- -summassa otetaan tulokseksi viimeinen numero. (Kymmenjärjestelmässä "modulo 0" -tyyppisesti laskettuna yhteenlaskun tulos = (eli summasta otetaan viimeinen numero). Sitten varsinainen tehtävä.. Täydennä tämä (7,) Hamming-lohkokoodin täydellisesti määrittelevä taulukko: Datasana dd dd 0000 Huom! Kannattaa älytä, että modulo- -summa a b e L saa arvon 0, jos summassa on mukana parillinen määrä ykkösiä ja arvon, jos mukana on pariton määrä ykkösiä.. Tietoliikenteen määrään liittyvää asiaa. Kirjan luvussa.. Traffi Engineering käsitellään tämän kurssin kannalta tarpeettomankin laajasti asioita, jotka liittyvät siihen, miten tietoliikenneverkko mitoitetaan, jotta se kykenee välittämään käyttäjiltä tulevan liikenteen menemättä tukkoon. Seuraavassa aivan perusasiat tästä aiheesta. Tietoliikenteen määrän yksikkö on Erlang. Se määritellään esimerkiksi näin:

4 Jos verkon käyttäjä varaa itselleen yhden yhteyden ajaksi, joka on p % tietystä ajasta T, niin tuona T:n pituisena aikana käyttäjän generoiman liikenteen määrä on p/00 Erlangia. (Huom! Tässä sana "määrä" ei ollenkaan liity esim. siihen, miten paljon ja millä nopeudella verkossa liikkuu bittejä. Liikenteen määrä määräytyy tässä yksinomaan sen perusteella, kuinka suuren osan ajasta joku ylipäänsä on verkon kautta yhteydessä jonnekin.) Esimerkki: Jos joku soittaa puhelimella niin paljon, että puhelut kestävät keskimäärin kuusi minuuttia tunnissa, niin hän generoi puhelinverkkoon liikennettä 0. Erlangia eli 00 millierlangia eli 00 merl. Toinen esimerkki: Jos verkossa on N käyttäjää, ja jokainen varaa yhteyden keskimäärin p % ajasta, niin verkon liikenteen kokonaismäärä on Np/00 Erl. Yleensä verkko mitoitetaan niin, että arvioidaan, mikä on generoitu liikennemäärä keskimäärin käyttäjää kohden ns. kiiretunnin (busy hour) aikana, ja mitoitetaan sitten verkon kapasiteetti niin, että kiiretunnin aikana eston todennäköisyys on tietty, yleensä aika pieni luku (esim %). Esto tarkoittaa tilannetta, jossa käyttäjä ei onnistu muodostamaan yhteyttä, koska verkon kaikki kapasiteetti on käytössä. Kiiretunti puolestaan on se tunti vuodesta, jolloin keskimääräinen liikenne käyttäjää kohden on suurin. Verkon mitoittaminen on todennäköisyyslaskennan soveltamista. Sitä ja siihen liittyviä yhtälöitä on selvitetty kirjassa. Kirjassa on myös taulukko (Table.), jota käyttäen kapasiteettilaskelmia voi tehdä. Verkkoja suunnittelevilla ja ylläpitävillä tahoilla on tietysti käytössään tietokoneohjelmistot, joilla mitoitus tehdään. Kun kuitenkin netistä löytyy laskureita, joita käyttäen näitä laskelmia voi tehdä, käytetään niitä hyväksi. Osoitteesta löytyy yksi Erlang-laskuri. Sitä käyttäen voi ratkaista helposti esim. tällaisen ongelman: a) GSM-tukiasemalla on käytössä yksi radiokanava, jolloin se pystyy välittämään 7 yhtäaikaista puhelua. Jos tukiaseman kuuluvuusalueella on 50 puhelimenkäyttäjää, ja he puhuvat puhelimessa keskimäärin minuuttia tunnissa, niin millä todennäköisyydellä puhelun ottaminen tämän tukiaseman kautta epäonnistuu? Vastaus: Aika tarkkaan %. b) Entä jos tukiaseman alueella jostain syystä onkin 00 puhelimenkäyttäjää, ja he soittelevat keskimäärin minuuttia tunnissa? Vastaus: Silloin puhelun ottaminen epäonnistuu 0 % todennäköisyydellä. Miten nuo tulokset on saatu? a)-kohdassa liikenteen määrän voi laskea joko nettilaskurilla tai sitten ihan päässälaskuna: Kukin puhelimenkäyttäjä puhuu keskimäärin 5 % ajasta ja käyttäjiä on 50, joten liikenteen kokonaismäärä on 50 5/00 Erl =.5 Erl. Saman tuloksen saa käyttämällä nettilaskurisivulla otsikon "The Calulate with more features" alla olevista neljästä laskurista vasemmalla ylhäällä olevaa. Siinä kohtaan "Arrival Rate - l (# arrivals / unit time)" tulee käyttäjien määrä (50) ja kohtaan "Servie Rate - u (# servies / unit time)" tulee luku, joka kertoo, montako keskimääräistä puheluaikaa ( min) mahtuu tuntiin, eli 0. Sitten painetaan "Calulate"-nappulaa ja saadaan tulos.5 Erl. Sen jälkeen tämä saatu Erlang-määrä laitetaan oikealla alhaalla olevan laskurin kohtaan "Erlangs - rho " ja kohtaan "Capaity/ Num of Lines" laitetaan käytettävissä olevien yhteyksien määrä (7). Painetaan "Calulate Servie Grade", saadaan vastaus 9.98e-0, eli , joka siis on eston todennäköisyys. Samalla tavalla saadaan b-kohdan vastaus. Lisää esimerkkejä laskuharjoituksissa.

5 Lukujärjestelmät, harjoituksia: Vastauksia. 0-järj. Binääri Heksa F Binääri 0-järj. Heksa F 00 9 F9 55 FF. Heksa 0-järj. Binääri B 0 A 6 00 FE F FFFFF 08575

6 Exlusive or -tehtävä (virheenkorjauskoodaus) Datasana dd dd Koodibitit siis tulevat näin: = d = d = d Esimerkiksi jos data on 0, niin koodibitit tulevat: = 0 = (Summassa kolme ykköstä, eli pariton määrä.) = 0 = 0 = 0 = 0 (Summassa kaksi ykköstä, eli parillinen määrä.) (Summassa kaksi ykköstä, eli parillinen määrä.)

7

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

Tehtävä 2: Tietoliikenneprotokolla

Tehtävä 2: Tietoliikenneprotokolla Tehtävä 2: Tietoliikenneprotokolla Johdanto Tarkastellaan tilannetta, jossa tietokone A lähettää datapaketteja tietokoneelle tiedonsiirtovirheille alttiin kanavan kautta. Datapaketit ovat biteistä eli

Lisätiedot

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 Luento 6: Tiedon esittäminen tietokoneessa, osa 1 Tekijät: Antti Virtanen, Timo Lehtonen, Matti Kujala, Kirsti Ala-Mutka, Petri M. Gerdt et al. Luennon

Lisätiedot

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe C = Aseta Aseta i i = n i > i i i Ei i < i i i Ei i i = Ei i i = i i -- On On On C in > < = CI CO C out -- = + (-) (-) = + = C + Digitaalitekniikan matematiikka

Lisätiedot

Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Virheen havaitseminen ja korjaus

Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Virheen havaitseminen ja korjaus Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Digitaalitekniikan matematiikka Luku 13 Sivu 2 (10) Johdanto Tässä luvussa esitetään virheen havaitsevien ja korjaavien koodaustapojen perusteet ja käyttösovelluksia

Lisätiedot

Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina.

Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina. TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki 1 Kirjan lukuun 3 liittyvää lisäselitystä ja esimerkkejä Kirjan luvussa 3 (Signals Carried over the Network) luodaan katsaus siihen, minkälaisia

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Lukujärjestelmät. Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen Fe

Lukujärjestelmät. Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen Fe Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen.9.2 Fe Lukujärjestelmät Kymmen- eli desimaalijärjestelmä: kantaluku perinteisesti käytetty ja tuttu numerot,,

Lisätiedot

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoimaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

Kappale 20: Kantaluvut

Kappale 20: Kantaluvut Kappale 20: Kantaluvut 20 Johdanto: Kantaluvut... 328 Kantalukujen syöttäminen ja muuntaminen... 329 Matemaattiset toiminnot Hex- ja Bin-luvuilla... 330 Bittien vertaileminen ja manipulointi... 331 Huom!

Lisätiedot

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) k 10 2 10 2 s 10 10 8 10 16 10 2 10 2 s 2 8 8 2 2 16 16 2 Digitaalitekniikan matematiikka Luku 10 Sivu 2 (14) Johdanto Tässä luvussa perustellaan, miksi

Lisätiedot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen

Lisätiedot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen

Lisätiedot

Ohjelmoijan binaarialgebra ja heksaluvut

Ohjelmoijan binaarialgebra ja heksaluvut Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoinaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

esimerkkejä erilaisista lohkokoodeista

esimerkkejä erilaisista lohkokoodeista 6.2.1 Lohkokoodit tehdään bittiryhmälle bittiryhmään lisätään sovitun algoritmin mukaan ylimääräisiä bittejä [k informaatiobittiä => n koodibittiä, joista n-k lisäbittiä], käytetään yleensä merkintää (n,k)-koodi

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:

Lisätiedot

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15)

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) A = a = i i w i Digitaalitekniikan matematiikka Luku 12 Sivu 2 (15) Johdanto Tässä luvussa esitetään kymmenjärjestelmän lukujen eli BCD-lukujen esitystapoja

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Digitaalitekniikan matematiikka Luku 1 Sivu 2 (19) Johdanto Tässä luvussa esitellään tiedon lajeja ja tiedolle tehtävää käsittelyä käsitellään tiedon

Lisätiedot

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin

Lisätiedot

Digitaalitekniikan matematiikka Harjoitustehtäviä

Digitaalitekniikan matematiikka Harjoitustehtäviä arjoitustehtäviä Sivu 6 6.3.2 e arjoitustehtäviä uku 3 ytkentäfunktiot ja perusporttipiirit 3. äytäväkytkin on järjestelmä jossa käytävän kummassakin päässä on kytkin ja käytävän keskellä lamppu. amppu

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

Harjoitustehtäväkierros 1

Harjoitustehtäväkierros 1 T-06.50 kurssihenkilökunta deadline Tiistai 20.0.2009 2:5 Johdanto Tämä tehtäväkierros käsittelee pääasiassa toisen luennon sisältöä. Harjoituksia saa tehdä yksin tai yhdessä. Yhdessä tekeminen on suositeltavaa,

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2016 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto Yleistä Esitiedot: (kurssi

Lisätiedot

ANSI/IEEE Std

ANSI/IEEE Std Digitaalitekniikan matematiikka Luku 9 Sivu 1 (26) Lukujärjestelmät ja lukujen esittäminen ANSI/IEEE Std 754-2008 0 1 0 1 1 0 0 0 B = Σ B i 2 i Digitaalitekniikan matematiikka Luku 9 Sivu 2 (26) Johdanto

Lisätiedot

Laskuharjoitus 4 ( ): Tehtävien vastauksia

Laskuharjoitus 4 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.

Lisätiedot

Verkkosuunnittelu: Suunnittelutyön osa-alueet: Peittoaluesuunnittelu Kapasiteettisuunnittelu Taajuussuunnittelu Parametrisuunnittelu

Verkkosuunnittelu: Suunnittelutyön osa-alueet: Peittoaluesuunnittelu Kapasiteettisuunnittelu Taajuussuunnittelu Parametrisuunnittelu 1 Verkkosuunnittelu: Suunnittelutyön osa-alueet: Peittoaluesuunnittelu Kapasiteettisuunnittelu Taajuussuunnittelu Parametrisuunnittelu Erityyppiset etenemisympäristöt: maaseutu (metsä, pelto, vuoristo,

Lisätiedot

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen

Lisätiedot

S Laskuharjoitus 2: Ratkaisuhahmotelmia

S Laskuharjoitus 2: Ratkaisuhahmotelmia S-38.118 Laskuharjoitus 2: Ratkaisuhahmotelmia Mika Ilvesmäki lynx@tct.hut.fi 1st December 2000 Abstract Tässä dokumentissä esitellään enemmän tai vähemmän taydellisesti ratkaisuja syksyn 2000 teletekniikan

Lisätiedot

Digitaalilaitteen signaalit

Digitaalilaitteen signaalit Digitaalitekniikan matematiikka Luku 3 Sivu 3 (9) Digitaalilaitteen signaalit Digitaalilaitteeseen tai -piiriin tulee ja siitä lähtee digitaalisia signaaleita yksittäisen signaalin arvo on kunakin hetkenä

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.3 Lineaarisen koodin dekoodaus Oletetaan, että lähetettäessä kanavaan sana c saadaan sana r = c + e, missä e on häiriön aiheuttama

Lisätiedot

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/4+^2 3 4+ 2 Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +^2 3 + 4 2 Kopioi

Lisätiedot

Algebralliset menetelmät virheenkorjauskoodin tunnistamisessa

Algebralliset menetelmät virheenkorjauskoodin tunnistamisessa Algebralliset menetelmät virheenkorjauskoodin tunnistamisessa Jyrki Lahtonen, Anni Hakanen, Taneli Lehtilä, Toni Hotanen, Teemu Pirttimäki, Antti Peltola Turun yliopisto MATINE-tutkimusseminaari, 16.11.2017

Lisätiedot

Yhden bitin tiedot. Binaariluvun arvon laskeminen. Koodin bittimäärä ja vaihtoehdot ? 1

Yhden bitin tiedot. Binaariluvun arvon laskeminen. Koodin bittimäärä ja vaihtoehdot ? 1 Luku Digitaalitekniikan matematiikka Täsmätehtävät.9. Fe Digitaalitekniikan matematiikka Täsmätehtävät.9. Fe Opetuskerta Sivu Luku Opetuskerta Sivu Yhden bitin tiedot Luettele esimerkkejä yhden bitin tiedoista.

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

S 38.1105 Tietoliikennetekniikan perusteet. Luento 2 25.1.2006 Informaatioteorian alkeita Tiedonsiirron perusteet

S 38.1105 Tietoliikennetekniikan perusteet. Luento 2 25.1.2006 Informaatioteorian alkeita Tiedonsiirron perusteet S 38.1105 Tietoliikennetekniikan perusteet Luento 2 25.1.2006 Informaatioteorian alkeita Tiedonsiirron perusteet Luennon aiheet Analogisesta digitaaliseksi signaaliksi Signaalin siirtoa helpottavat / siirron

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu

S-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu S-38.1105 Tietoliikennetekniikan perusteet Jukka Manner Teknillinen korkeakoulu Luento 3 Signaalin siirtäminen Tiedonsiirron perusteita Jukka Manner Teknillinen korkeakoulu Luennon ohjelma Termejä, konsepteja

Lisätiedot

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 Johdanto Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 2 / 31 7.1. Muunnokset

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

Digitaalitekniikan matematiikka Luku 8 Sivu 1 (23) Kombinaatiopiirielimet MUX X/Y 2 EN

Digitaalitekniikan matematiikka Luku 8 Sivu 1 (23) Kombinaatiopiirielimet MUX X/Y 2 EN Digitaalitekniikan matematiikka Luku 8 Sivu ().9. Fe DX G = G EN X/Y Digitaalitekniikan matematiikka Luku 8 Sivu ().9. Fe Johdanto Tässä luvussa esitetään keskeisiä kombinaatiopiirielimiä ne ovat perusporttipiirejä

Lisätiedot

Laskuharjoitus 5. Mitkä ovat kuvan 1 kanavien kapasiteetit? Kuva 1: Kaksi kanavaa. p/(1 p) ) bittiä lähetystä kohti. Voidaan

Laskuharjoitus 5. Mitkä ovat kuvan 1 kanavien kapasiteetit? Kuva 1: Kaksi kanavaa. p/(1 p) ) bittiä lähetystä kohti. Voidaan Informaatioteoria ELEC-C7 5 Laskuharjoitus 5 Tehtävä 5.3 Mitkä ovat kuvan kanavien kapasiteetit?.3.7 a b Kuva : Kaksi kanavaa b Binäärisessä Z-kanavassa virhe tapahtuu todennäköisyydellä p ja virhe todennäköisyydellä.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: JA-EI-portti A B. TAI-EI-portti A B = 1

Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: JA-EI-portti A B. TAI-EI-portti A B = 1 Digitaalitekniikan matematiikka Luku 6 Sivu () Kombinaatiopiirit.9. Fe J-EI- (NND) ja TI-EI- (NOR) -portit Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: NND? B B & B B = & B + B + B

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

Wilman pikaopas huoltajille

Wilman pikaopas huoltajille Wilman pikaopas huoltajille Vehmaan kunnan Vinkkilän koulussa on käytössä sähköinen reissuvihko Wilma, joka helpottaa tiedonvaihtoa kodin ja koulun välillä. Wilman kautta huoltajat seuraavat ja selvittävät

Lisätiedot

ELEC-C5210 Satunnaisprosessit tietoliikenteessä

ELEC-C5210 Satunnaisprosessit tietoliikenteessä ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/ Kevät 2017 E. Ollila

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet.

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet. 5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen

Lisätiedot

Radioamatöörikurssi 2016

Radioamatöörikurssi 2016 Radioamatöörikurssi 2016 Modulaatiot Radioiden toiminta 8.11.2016 Tatu Peltola, OH2EAT 1 / 18 Modulaatiot Erilaisia tapoja lähettää tietoa radioaalloilla Esim. puhetta ei yleensä laiteta antenniin sellaisenaan

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

Liikenneteoriaa (vasta-alkajille)

Liikenneteoriaa (vasta-alkajille) Liikenneteoriaa (vasta-alkajille) samuli.aalto@hut.fi liikteor.ppt S-38.8 - Teletekniikan perusteet - Syksy 000 Sisältö Liikenneteorian tehtävä Verkot ja välitysperiaatteet Puhelinliikenteen mallinnus

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Kansionäkymä listasta suuriin kuvakkeisiin

Kansionäkymä listasta suuriin kuvakkeisiin Sirpa Leinonen Kansionäkymä listasta suuriin kuvakkeisiin Riippuen koneen Windows versiosta hieman eroja miten näkymä valitaan 1. Tiedosto 2. Näytä välilehdellä valinta kansio näkymlle Suurimmat tai suuret

Lisätiedot

2.2 Muunnosten käyttöön tutustumista

2.2 Muunnosten käyttöön tutustumista 2.2 Muunnosten käyttöön tutustumista Tunnin rakenne: - Esimerkki (min) - Tehtävä -, jokerit tarvittaessa (2 min) - Loppukoonti ja ryhmäarviointi ( min) Tunnin tavoitteet: - Analysoidaan ja pohditaan valmiiksi

Lisätiedot

Tiedon esitysmuodot. Luento 6 (verkkoluento 6) Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto

Tiedon esitysmuodot. Luento 6 (verkkoluento 6) Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto Luento 6 (verkkoluento 6) Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto Ohjelman esitysmuoto Rakenteellinen tieto 1 Tiedon tyypit Kommunikointi

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Yhden bitin tiedot. Digitaalitekniikan matematiikka Luku 1 Täsmätehtävä Tehtävä 1. Luettele esimerkkejä yhden bitin tiedoista.

Yhden bitin tiedot. Digitaalitekniikan matematiikka Luku 1 Täsmätehtävä Tehtävä 1. Luettele esimerkkejä yhden bitin tiedoista. Digitaalitekniikan matematiikka Luku Täsmätehtävä Tehtävä Yhden bitin tiedot Luettele esimerkkejä yhden bitin tiedoista. Ovi auki - ovi kiinni Virta kulkee - virta ei kulje Lamppu palaa - lamppu ei pala

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9) 1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:

Lisätiedot

S-38.118 Teletekniikan perusteet

S-38.118 Teletekniikan perusteet S-38.118 Teletekniikan perusteet Laskuharjoitus 3 Paketoinnin hyötysuhde 1 Harjoitus 3 koostuu: Demoluento (45 min) Datan siirtäminen Internetissä yleensä Laskuesimerkki datan siirtämisestä Äänen siirtäminen

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Valokuvien matematiikkaa

Valokuvien matematiikkaa Valokuvien matematiikkaa Avainsanat: valokuva, pikseli, päättely Luokkataso: 3.-5. luokka, 6.-9. luokka, lukio, yliopisto Välineet: Kynä, tehtävämonisteet (liitteenä), mahdollisiin jatkotutkimuksiin tietokone

Lisätiedot

Digitaalinen Televisio

Digitaalinen Televisio Digitaalinen Televisio Digitaalinen Televisio 1. Lähetystekniikka ja standardit 2. MHP 3. Interaktiivinen Televisio 4. Vastaanottimet 5. Tulevaisuuden trendit Lähetystekniikka ja standardit DVB = Digital

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Johdatus ohjelmointiin C-kielellä P Ohjelmoinnin perusteet C-kielellä A Ohjelmointityö

Johdatus ohjelmointiin C-kielellä P Ohjelmoinnin perusteet C-kielellä A Ohjelmointityö KORVAAVUUDET Vanha kurssi: Uusi kurssi (korvaava) op/ov: 811192 Johdatus ohjelmointiin C-kielellä + 521276P Ohjelmoinnin perusteet C-kielellä 521141P Ohjelmoinnin alkeet 521276P Ohjelmoinnin perusteet

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

Moduli 4: Moniulotteiset taulukot & Bittioperaatiot

Moduli 4: Moniulotteiset taulukot & Bittioperaatiot C! : Moniulotteiset taulukot & Bittioperaatiot 15.3.2016 Agenda Pieni kertausharjoitus Moniulotteiset taulukot Esimerkki taulukoista Tauko (bittitehtävä) Binäärioperaatioista Esimerkki (vilkaistaan IP

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

Kauko-ohjauslaite GSM rele 2011 v 24.10.2010

Kauko-ohjauslaite GSM rele 2011 v 24.10.2010 Kauko-ohjauslaite GSM rele 2011 v 24.10.2010 Gsmreleen päätoiminnat Etälaiteiden kauko-ohjaus vanhan GSM-puhelimen avulla Laitteessa on neljä releettä ja kaksi lisäohjausta. Yhteensä kuusi ohjausta. Releiden

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

LUKUJA, DATAA KÄSITTELEVÄT FUNKTIOT JA NIIDEN KÄYTTÖ LOGIIKKAOHJAUKSESSA

LUKUJA, DATAA KÄSITTELEVÄT FUNKTIOT JA NIIDEN KÄYTTÖ LOGIIKKAOHJAUKSESSA LUKUJA, DATAA KÄSITTELEVÄT FUNKTIOT JA NIIDEN KÄYTTÖ LOGIIKKAOHJAUKSESSA Tavallisimmin lukuja käsittelevien datasanojen tyypiksi kannattaa asettaa kokonaisluku 16 bitin INT, jonka vaihtelualueeksi tulee

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM)

KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM) 1 KAISTANLEVEYDEN JA TEHON KÄYTÖN KANNALTA OPTIMAALINEN MODULAATIO TRELLISKOODATTU MODULAATIO (TCM) CPM & TCM-PERIAATTEET 2 Tehon ja kaistanleveyden säästöihin pyritään, mutta yleensä ne ovat ristiriitaisia

Lisätiedot

Käyttöopas kahden kameran väliseen tiedostojen siirtoon

Käyttöopas kahden kameran väliseen tiedostojen siirtoon Canon-digitaalikamera Käyttöopas kahden kameran väliseen tiedostojen siirtoon Sisällysluettelo Johdanto....................................... 1 Kuvien siirtäminen langattomassa yhteydessä........ 2 Kameran

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot