L9: Rayleigh testi. Laskuharjoitus
|
|
- Heikki Järvinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 L9: Rayleigh testi Laskuharjoitus Data on tiedoston H7binput.dat 1. sarake: t = t i Ajan hetket ovat t = t 1, t 2,..., t n, missä n n = 528 Laske ja plottaa välillä f min = 1/P max ja f max = 1/P min z(f j ) = {[ cos 2πf j (t i t 0 )] 2 + [ sin 2πf j (t i t 0 )] 2 }/n, missä f j testattu frekvenssi, P min = 1.5, P max = 90.0 ja t 0 = 0 Testattavien frekvenssien f j välinen etäisyys on f step = f 0 /OFAC, missä f 0 = 1/ T, T = t n t 1 ja OFAC = 10 Välille f min ja f max sopii testattavia f j frekvenssejä M = INT[(f max f min )/f step] kappaletta, missä INT poistaa argumentin desimaaliosan (Esim: INT[12.34] = 12). Testattavat frekvenssit ovat f j = f min + j f step, missä j = 0, 1, 2, 3,..., M Vihje: Luennon 6. ohjelmissa Psub2.py ja Osub2.m on laskettu z(f j ) yhdelle frekvenssin arvolle Ohjelman rakenne 1. Lue t 2. Kiinnitä pmin= 1.5, pmax= 90, ofac= Laske fmin, fmax, fstep ja M 4. Luo M=M testattavaa frekvenssiä vektoriin f= f j 5. Luo tyhjä periodogrammi z=0.0*f= z(f j )) 6. Tee f looppi, joka laskee arvot z(f j ) arvoille f j ja tallentaa tuloksen vektoriin z 7. Plottaa z versus f 8. Tunnista ja merkitse korkein piikki zbest= z(f best ) kohdassa fbest= f best 9. Kirjoita kuvaan n = 528 ja P best = 1/f best = 2.85 tiedot
2 L9: Etsintä vektorista python valinta indeksien avulla import numpy ; a=numpy.arange(3) eli a on [0 1 2] i=(a==max(a)) ; print(i) tulostaa [False False True] ja print(a[i]) tulostaa [2] j=(a==max(a)).nonzero() ; print(j) tulostaa indeksin arvon (array([2]),) ja print(a[j]) tulostaa myös [2] k=((a>0) & (a<2)) ; print(k) tulostaa [False True False] Harjoituksen korkein piikki esim: j=(z==max(z)).nonzero() fbest=f[j] ; zbest=z[j] octave valinta indeksin avulla a=[0,1,2]; j=((a>0) & (a<2)); disp(j) tulostaa ja disp(a(j)) antaa 1 j=find((a>0) & (a<2)); disp(j) tulostaa 2 ja disp(a(j)) antaa myös 1 Harjoituksen korkein piikki esimerkiksi j=find(z==max(z)) fbest=f(j); zbest=z(j)
3 Tehospektri Tehospektri (engl. Power spectrum: Scargle 1982, ApJ 263, 853: Eq. 10) Aikasarja: n = Havaintoa t i = t 1, t 2,..., t n = Havaintoajat y i = y(t i) = y 1, y 2,..., y n = Havainnot m y = [ y i]/n = Havaintojen keskiarvo y i = y i m y Ongelma: Onko aikasarjassa y i periodisuutta? Tehospektrin arvo testattavalla frekvensillä f on z(f ) = { n y i cos [2πf (ti τ)]}2 2 n {cos [2πf (ti + { n y i sin [2πf (ti τ)]}2 τ)]}2 2 n, {sin [2πf (ti τ)]}2 missä τ toteuttaa [ ] [ ] 1 tan (4πf τ) = sin (4πf t i) cos (4πf t i) Paras periodi P best = 1/f best, missä z max = z(f best) = periodogrammin korkein piikki Luonnollinen ensimmäinen reaktio: Onpas karmea risuaita
4 Testattavat frekvenssit Laskuharjoituksessa testattava periodiväli on P min = 1 ja P max = 10 Testattava frekvenssiväli on f min = 1/P max = 0.1 ja f max = 1/P min = 1. Kahden riippumattoman testattavan frekvenssin etäisyys on f 0 = 1/ T, missä T = t n t 1 eli havaintovälin koko pituus Jokaisella testattavalla f toteutuu T(f ± f 0) = f T ± T/ T = f T ± 1 Kun f muuttuu f 0 verran, tehdään kierros enemmän tai vähemmän koko T aikana Koko data sotkettu z(f ) ja z(f ± f 0) ovat toisistaan riippumattomat Testattavien frekvenssien välisen etäisyyden pitää olla tiheämpi Saadaan tarkka f best Valitaan askel (engl. step) f step = f 0/OFAC, missä OFAC = 10 (engl. Overfilling Factor) Testattavia frekvenssien määrä testattavalla frekvenssivälillä M = INT[(f max f min)/f step], missä INT poistaa argumentin desimaaliosan (Esim: INT[123.45] = 123). Tehospektri z(f j) lasketaan kaikille testattavien frekvenssien arvoille f j = f min + j f step, missä j = 0, 1, 2, 3,..., M
5 Testattavat frekvenssit Tunnista yksittäisten pallojen liikkeet Punaiset datan alussa Siirtyvät hitaimmin, kun f muuttuu Siniset datan keskellä Siirtyvät nopeammin, kun f muuttuu Vihreät datan lopussa Siirtyvät nopeimmin, kun f muuttuu KAIKKI sotkettu, kun f muuttunut arvoon f + f 0 Alun ja lopun pallot takaisin lähes omille paikoilleen arvolla f + f 0 Usein z(f ) piikkejä arvoilla arvoilla f = f ± f 0 P = 5.85, f = f +0.0 f 0 = f +0.2 f 0 = f +0.4 f 0 = f +0.6 f 0 = f +0.8 f 0 = f +1.0 f 0 =
6 Testattavat frekvenssit Suurennos laskuharjoituksen tehospektristä f j = monikerta f 0 = vihreät pallot f j = monikerta f step = punaiset pallot Huippu kohdassa fbest = sininen ruksi Riittävän lyhyt testattavien frekvensssien f j askel f step antaa tarkan arvon pbest=1/fbest Matka f yksiköissä huipulta perustasoon noin kahden vihreän pallon väli f
7 Laskuharjoitus: Tehospektrin ohjelmointi Ennen looppia: t= t i ja y= y i luettu, ydot= y i = y i m y ja f= f j luotu Luo tyhjä periodiogrammi z=0*f For loopissa: f= f j frekvenssi muuttuu f j muuttuu t i ja y i ei muutu f j muuttuu τ muuttuu z(f j ) muuttuu 1. Valitse testattava f j = f(j) 2. Laske tau (loopissa x=4*pi*f*t) τ = 1 [ n atan sin (4πf ] jt i ) 4πf n j cos (4πf jt i ) 3. Laske osoittajat ( x=2*pi*f*(t-tau)) z 1 (f j ) = { y i cos [2πf j(t i τ)]} 2 z 2 (f j ) = { y i sin [2πf j(t i τ)]} 2 4. Laske nimittäjät ( x=2*pi*f*(t-tau)) z 3 (f j ) = 2 {cos [2πf j (t i τ)]} 2 z 4 (f j ) = 2 {sin [2πf j (t i τ)]} 2 5. Laske z(j)= z(f j ) = z 1(f j ) z 3 (f j ) + z 2(f j ) z 4 (f j ) 6. Palaa kohtaan 1. ja valitse seuraava testattava frekvenssi f j For looppi loppuu kohtaan Muita tapoja: koko kaava kerralla, s.o. 3., 4. ja 5. samalla rivillä Muita tapoja: for korvattu while
8 Ohjelmointi 7. Plottaa z(f j ) 8. Tunnista korkein piikki z max = z(f j = f best ) 9. Anna pyydetty informaatio n = 100 ja P = 1.91 Harjoitustyön kuvassa on pyydetty plottaamaan myös havainnot kuvan yläosaan python ja octave voivat antaa eri tuloksen, esim. P = 1.91 ja P = 1.92 Kuvassa havaittu yöllä eli P 1 ikkuna Tehospektrin P varmasti oikea, jos sinikäyrä on oikea malli havainnoille Vihje: Laskuharjoituksessa H6b laskettiin aiemmin τ, z 1 (f j ) ja z 2 (f j ) arvot yhden testattavan frekvenssin f tapaukselle n = 100, P =
L9: Rayleigh testi. Laskuharjoitus
L9: Rayleigh testi Laskuharjoitus Data on tiedoston Rayleighdata.dat 1. sarake: t = t i Ajan hetket ovat t = t 1, t 2,..., t n, missä n = n = 528 Laske ja plottaa välillä f min = 1/P max ja f max = 1/P
linux: koneelta toiselle
L8: linux linux: arkistointi tar liittää useampia tiedostoja yhteen samaan arkistoon (engl. archive) Esimerkki 1 tar cvf arkisto.tar *.DAT luo arkiston arkisto.tar, joka sisältää kaikki.dat loppuiset tiedostot
Pienimmän Neliösumman Sovitus (PNS)
Pienimmän Neliösumman Sovitus (PNS) n = Havaintojen määrä (Kuvan n = 4 punaista palloa) x i = Havaintojen ajat/paikat/... (i = 1,..., n) y i = y(x i) = Havaintojen arvot (i = 1,..., n) σ i = Havaintojen
linux linux: käyttäjän oikeudet + lisää ja - poistaa oikeuksia
L6: linux linux linux: käyttäjän oikeudet Käyttäjällä, username, on käyttöoikeus rajattuun levytilaan du -h /home/username/ tulostaa käytetyn levytilan. Yhteenvedon antaa du -h /home/jetsu/ - -summarize
Pienimmän Neliösumman Sovitus (PNS)
Pienimmän Neliösumman Sovitus (PNS) n = Havaintojen määrä x i = Havaintojen ajat/paikat/... (i = 1,..., n) y i = y(x i) = Havaintojen arvot (i = 1,..., n) σ i = Havaintojen tarkkuus (i = 1,..., n) w i
linux linux: käyttäjän oikeudet + lisää ja - poistaa oikeuksia
L6: linux linux linux: käyttäjän oikeudet Käyttäjällä, username, on käyttöoikeus rajattuun levytilaan du -h /home/username/ tulostaa käytetyn levytilan. Yhteenvedon antaa du -h /home/jetsu/ - -summarize
linux: arkistointi jjj
L8: linux linux: arkistointi tar liittää useampia tiedostoja yhteen samaan arkistoon (engl. archive) Esimerkki 1 tar cvf arkisto.tar *.DAT luo arkiston arkisto.tar, joka sisältää kaikki.dat loppuiset tiedostot
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
linux: Prosessit kill PID lopettaa prosessin PID, jos siihen on oikeudet Ctrl + c lopettaa aktiivisen prosessin L7: linux
L7: linux linux: Prosessit linux: Prosessit Jokainen komento käynnistää vähintään yhden prosessin Jokaiselle prosessilla tunniste PID, jolla prosessiin voidaan viitata. Jokaisella prosesilla on prioriteetti
Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.
Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo
Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005
Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...
linux: Prosessit kill PID lopettaa prosessin PID, jos siihen on oikeudet Ctrl + c lopettaa aktiivisen prosessin L7: linux
L7: linux linux: Prosessit linux: Prosessit Jokainen komento käynnistää vähintään yhden prosessin Jokaiselle prosessilla tunniste PID, jolla prosessiin voidaan viitata. Jokaisella prosesilla on prioriteetti
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan
linux: Ympäristömuuttujat
L5: linux linux: Ympäristömuuttujat linux: Ympäristömuuttujat linux komentotulkkki toimii asetettujen ympäristömuuttujien mukaan env kertoo asetetut ympäristömuuttujat Yksi tulostuvista riveistä on tyypillisesti
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 28.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 28.9.2015 1 / 16 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2011 1 / 39 Kertausta: tiedoston avaaminen Kun ohjelma haluaa lukea tai kirjoittaa tekstitiedostoon, on ohjelmalle
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print
8. Yhtälöiden ratkaisuja Newtonilla, animaatioita
8. Yhtälöiden ratkaisuja Newtonilla, animaatioita Käsitellään puhtaana Maple-työnä ja myös Maple-Matlab-yhteistyönä. restart with plots : N d /evalf K f D f Nsymb d / K f D f lprint Nsymb +(*cos()-sin()-1)/(*sin())
= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N
t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää
Työ tehdään itsenäisesti yhden hengen ryhmissä. Ideoita voi vaihtaa koodia ei.
Harjoitustyö 1 Harjoitustyö Tehtävä: ohjelmoi lötköjen kansoittamaa alkulimaa simuloiva olioperustainen ohjelma Java-kielellä. Lötköt säilötään linkitetyille listalle ja tekstitiedostoon. Työ tehdään itsenäisesti
Rautaisannos. Simo K. Kivelä 30.8.2011
Yhteenlasku Rautaisannos 30.8.011 Yhteenlasku sin x + cos x Yhteenlasku sin x + cos x = 1 sin x + cos x = 1 x R Yhteenlasku sin x + cos x = 1 x C Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Python-ohjelmointi Harjoitus 2
Python-ohjelmointi Harjoitus 2 TAVOITTEET Kerrataan tulostuskomento ja lukumuotoisen muuttujan muuttaminen merkkijonoksi. Opitaan jakojäännös eli modulus, vertailuoperaattorit, ehtorakenne jos, input-komento
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 16.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 16.3.2009 1 / 40 Kertausta: tiedostosta lukeminen Aluksi käsiteltävä tiedosto pitää avata: tiedostomuuttuja = open("teksti.txt","r")
Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p
LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 RATKAISUT 1. a) 3,50 b) 56 c) 43300 km d) 15 e) 21.08 f) 23.9. kukin oikea vastaus a-kohdassa pelkkä 3,50 ilman yksikköä kelpuutetaan, samoin c-kohdassa pelkkä
Tieteellinen laskenta I (Scientific Computing I)
Tieteellinen laskenta I (Scientific Computing I) koodi: 53398, laajuus: 5 op Johdanto Johdanto (kuva:@work.chron.com) Klikkaa tätä www merkkiä Pääset siinä mainitun aiheen www-sivulle Kurssin kotisivu
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Kokeellista matematiikkaa SAGE:lla
Kokeellista matematiikkaa SAGE:lla Tutkin GeoGebralla 1 luonnollisen luvun jakamista tekijöihin 2. GeoGebran funktio Alkutekijät jakaa luvun tekijöihin ja tuottaa alkutekijät listana. GeoGebrassa lista
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CS-A1111 4.10.2017 CS-A1111 Ohjelmoinnin peruskurssi Y1 4.10.2017 1 / 23 Mahdollisuus antaa luentopalautetta Luennon aikana voit kirjoittaa kommentteja ja kysymyksiä sivulle
Harjoitus 5 (viikko 48)
Moni tämän harjoituksen tehtävistä liittyy joko suoraan tai epäsuorasti kurssin toiseen harjoitustyöhön. Harjoitustyö edistyy sitä paremmin, mitä enemmän tehtäviä ratkaiset. Mikäli tehtävissä on jotain
Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla
Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla ALKUHARJOITUS Kynän ja paperin avulla peilaaminen koordinaatistossa a) Peilaa pisteen (0,0) suhteen koordinaatistossa sijaitseva - neliö, jonka
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Ohjausjärjestelmien jatkokurssi. Visual Basic vinkkejä ohjelmointiin
Ohjausjärjestelmien jatkokurssi Visual Basic vinkkejä ohjelmointiin http://www.techsoft.fi/oskillaattoripiirit.htm http://www.mol.fi/paikat/job.do?lang=fi&jobid=7852109&index=240&anchor=7852109 Yksiköt
Java-kielen perusteita
Java-kielen perusteita Toistorakenne (while, do-while, for) 1 While- lause while-lauseen rakenne on seuraava: while (ehtolauseke) lause Kun ehtolausekkeen arvo on totta, lause suoritetaan. Lause suoritetaan
Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä
Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.
Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 31.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 31.1.2011 1 / 41 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast
Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python
Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python 31. tammikuuta 2009 Ohjelmointi Perusteet Pythonin alkeet Esittely Esimerkkejä Muuttujat Peruskäsitteitä Käsittely
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 7.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 7.2.2011 1 / 39 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
1 Johdanto 2. 2 Työkansion asettaminen 3. 3 Aineistojen lukeminen 3 3.1 DAT-tiedosto... 3 3.2 SPSS-tiedosto... 3 3.3 Excel... 3
Sisältö 1 Johdanto 2 2 Työkansion asettaminen 3 3 Aineistojen lukeminen 3 3.1 DAT-tiedosto........................... 3 3.2 SPSS-tiedosto........................... 3 3.3 Excel................................
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CS-A1111 10.10.2018 CS-A1111 Ohjelmoinnin peruskurssi Y1 10.10.2018 1 / 20 Oppimistavoitteet: tämän luennon jälkeen Tiedät, miten ohjelman toimintaa voi tutkia ja ohjelmassa
S-114.3812 Laskennallinen Neurotiede
S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte
2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
Tietoliikenteen harjoitustyö, ohjeistus
Tietoliikenteen harjoitustyö, ohjeistus Timo Karvi 21.1.2016 Timo Karvi () Tietoliikenteen harjoitustyö, ohjeistus 21.1.2016 1 / 7 Sisältö Yleiskuvaus Dokumentointiohjeet Viikkoaikataulu Loppuraportointi
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2009 1 / 43 Funktiot Tähän asti esitetyt ohjelmat ovat oleet hyvin lyhyitä. Todellisessa elämässä tarvitaan kuitenkin
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2 Harjoitustehtävät 11-13 lasketaan alkuviikon harjoituksissa, 15-17 loppuviikon harjoituksissa. Kotitehtävä 14 palautetaan MyCourses-sivulle
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Ohje Viestit Kansalainen
Ohje Viestit Kansalainen 1.0.7.0 Sisällysluettelo Viestit... 3 Viestin tilat... 4 Viestin lukeminen ja viestiin vastaaminen... 5 Viestissä huomioitavaa... 8 Luonnokset... 8 Ryhmäviestit... 9 2 Viestit
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Mat Lineaarinen ohjelmointi
Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys
SAS-ohjelmiston perusteet 2010
SAS-ohjelmiston perusteet 2010 Luentorunko/päiväkirja Ari Virtanen 11.1.10 päivitetään luentojen edetessä Ilmoitusasioita Opintojakso suoritustapana on aktiivinen osallistuminen harjoituksiin ja harjoitustehtävien
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 3.3.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.3.2010 1 / 44 Kertausta: tiedoston avaaminen Kun ohjelma haluaa lukea tai kirjoittaa tekstitiedostoon, on ohjelmalle
Tieteellinen laskenta 2 Törmäykset
Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2011 1 / 37 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti
12. Javan toistorakenteet 12.1
12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Harjoitus 2 (viikko 45)
Mikäli tehtävissä on jotain epäselvää, laita sähköpostia vastuuopettajalle (jorma.laurikkala@uta.fi). Muista lisätä static-määre operaatioidesi otsikoihin, jotta ohjelmasi kääntyvät. Muista noudattaa hyvän
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 4.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 4.3.2009 1 / 35 Tiedostot Tiedostojen käsittelyä tarvitaan esimerkiksi seuraavissa tilanteissa: Ohjelman käsittelemiä
Sisältö. 2. Taulukot. Yleistä. Yleistä
Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 1.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 1.2.2010 1 / 47 Sijoituksen arvokehitys, koodi def main(): print "Ohjelma laskee sijoituksen arvon kehittymisen."
4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)
Matlab-tietokoneharjoitus
Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,
Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.
2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
Sisältö. 22. Taulukot. Yleistä. Yleistä
Sisältö 22. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.1 22.2 Yleistä
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
linux: Ympäristömuuttujat
L5: linux linux: Ympäristömuuttujat linux: Ympäristömuuttujat linux komentotulkkki toimii asetettujen ympäristömuuttujien mukaan env kertoo asetetut ympäristömuuttujat Yksi tulostuvista riveistä on tyypillisesti
Ohjelmointi 2 / 2008 Välikoe / Pöytätestaa seuraava ohjelma.
Välikoe / 20.3 Vastaa neljään (4) tehtävään. Jos vastaat 5:een, 4 huonointa arvostellaan. Kunkin tehtävän vastaus eri konseptille. 1. Pöytätesti Pöytätestaa seuraava ohjelma. Tutki ohjelman toimintaa pöytätestillä
Luokka Murtoluku uudelleen. Kirjoitetaan luokka Murtoluku uudelleen niin, että murtolukujen sieventäminen on mahdollista.
1 Luokka Murtoluku uudelleen Kirjoitetaan luokka Murtoluku uudelleen niin, että murtolukujen sieventäminen on mahdollista. Sievennettäessä tarvitaan osoittajan ja nimittäjän suurin yhteinen tekijä (syt).
L2: linux linux: Komentotulkki
(kuva:@www.glasbergen.com) Tavoite: Kaikki oppivat linux:n perusteet Perusteet jo tutut Luennoille ja laskuharjoituksiin osallistuminen vapaaehtoista Monia linux alkeisoppaita www linux: Komentotulkki
811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan
Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.
Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat
Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen
Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)
R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
Harjoitus 6 -- Ratkaisut
Harjoitus 6 -- Ratkaisut 1 Ei kommenttia. 2 Haetaan data tiedostosta. SetDirectory"homeofysjmattas" SetDirectory "c:documents and settingsmattasdesktopteachingatk2harjoitukseth06" netnfstuhome4ofysjmattas
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 22.3.2010 T-106.1208 Ohjelmoinnin perusteet Y 22.3.2010 1 / 49 Lista luokan kenttänä Luokan kenttä voi olla myös esimerkiksi lista, sanakirja tai oliomuuttuja.
Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0.
T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset, ti 7.2.200, 8:30-0:00 Tiedon haku, Versio.0. Muutetaan tehtävässä annettu taulukko sellaiseen muotoon, joka paremmin sopii ensimmäisten mittojen