Kognitiivinen mallintaminen 1

Koko: px
Aloita esitys sivulta:

Download "Kognitiivinen mallintaminen 1"

Transkriptio

1 Kognitiivinen mallintaminen 1 syksy 2009, 1 ja 2 periodi luennot ti:13-15 Tero Hakala ( tero@haka.la) Lisäksi vierailijoita (Otto Lappi, Esko Lehtonen, ehkä muitakin) laskarit ti:15-17 Henri Kauhanen (henri.kauhanen@helsinki.fi) Laskarit alkaa 22.9 Suorittaminen tentillä (2. periodin lopussa) (muutos aiemmin kerrottuun infoon..) Lisäksi min 40% Laskaritehtävistä. Laskareista saa myös lisäpisteitä välikoe/tenttipisteisiin.

2 Kurssin sisältöä Kurssin sisältö jakautuu pääpiirteittäin kahteen osaan: 1.periodi: Symbolinen mallintaminen Symbolisysteemit, hakuavaruudet, ongelmanratkaisu, Turingin koneet, laskennan teoria. 2. periodi: Neuraalimallintaminen Neuroverkot, perseptronit, etc. + dynaamiset systeemit, vahvistusoppiminen ja jotain yleisiä mallinnuskäsitteitä.

3 Materiaalit, kirjallisuus yms. Luentokalvot, laskarit tulevatwebiin. Luentoja täydentäviä artikkeleita laitetaan webiin tarpeen mukaan Oheiskirjallisuutta(ei pakollista) symbolimallinnuksenosuus: Russell & Norvig, Artificial intelligence: a modern approach 2nd ed. Neuroverkot: R.Rojas: Neural Networks A Systematic Introduction.

4 Alustavaa aikataulua 8.9 Aloitusluento, mallinnusparadigmat 15.9 Hakuavaruudet, Ongelmanratkaisu 22.9 Logiikka, päättely, ontologiat... (Otto Lappi) Sovellus: Rajoitelaskenta käsitteellisen muutoksen mallintamisessa... Kognitiiviset arkkitehtuurit, ACT-R... (Esko Lehtonen) Sovellus: ACT-R ja säiteteoria autolla ajamisen mallintamisessa... (Otto Lappi) Dynaamiset systeemit... Sovellus: Soluautomaatit, Game of Life, neuroverkkojen dynamiikka... Laskennan teoria, Turingin kone... Vahvistusoppiminen... Neuroverkkoluennot (2. periodissa)

5 Malleja tieteissä analogiamalli malliorganismi malliesimerkki (prototyyppi) metamalli matemaattinen malli pienoismalli simulaatiomalli

6 Mallien käyttö Representaatio kohteen ominaisuuksista, prosesseista.. Helpottaa käsitteellistämään monimutkaisia ilmiöitä Mallillavoidaansimuloidakohdetta, kun suorat empiiriset kokeet olisivat epäkäytännöllisiä. Parhaimmillaan voidaan ennustaa ilmiöitä ja keksiä uusia empiirisiä koeasetelmia

7 Kuvaileva ja selittävä malli Kuvaileva malli on kohteensa idealisaatio Anatominen malli aivoista perustuu aivojen tunnettuihin ominaisuuksiin Skaalautuva malli aurinkokunnasta perustuu tunnettuihin planeettojen kokoihin, kiertoratoihin ja nopeuksiin. Selittävää mallia käytetään tilanteissa, joissa kohdetta ei voi suoraan havainnoida. Kaasun molekyylimalli perustuu idealisaatioihin ja yleistyksiin molekyylien ei-havaittavista ominaisuuksista: painosta, muodosta ja nopeudesta. Kognitiivisessa psykologiassa esim. Baddeleyn työmuistin malli perustuu hypoteeseihin muistijärjestelmän komponenteista(visuo-spatiaalinenlehtiö, keskusyksikkö, etc.), niidenominaisuuksistajavuorovaikutuksista.

8 Abstraktio ja idealisaatio A good model should be simple but not too simple Abstraktion ja idealisaation avulla mallista tulee käytännöllinen ja siinä esiintyvät säännönmukaisuudet tulevat esiin. Abstraktio: kohteen ominaisuuksien huomiotta jättäminen Idealisaatio: ominaisuuksien yksinkertaistaminen ja "siistiminen Mallin tulee toisaalta olla riittävän täydellinen, että kohteen olennaisetominaisuudettulisivatkuvattuariittävällä(halutulla) tarkkuudella. Abstrakti, ideaalinen realistinen

9 Malli ja teoria näkemys havainnot taustateoria matemaattinen rakenne malli ilmiö

10 Kognitiivinen mallintaminen Millaiset ihmisen (tai eläinten) kognition ominaisuudet soveltuvat mallinnettaviksi? Mitä kognitiivisilla malleilla voidaan saavuuttaa?

11 Mitä kognitiotiede tutkii? tiedostamaton päättely induktio havaitseminen mielikuvat nativismi & empirismi ajattelu TIETO oppiminen uskomuksen muodostaminen muisti ongelmanratkaisu. päättely, päätöksenteko käsitteet kieli sääntöjärjestelmät & säännön seuraaminen

12 Kognitiivisen mallintamisen paradigmat Symbolinen mallintaminen: perustuu semanttisten objektien (symbolien) algoritmiseen manipulaatioon Konnektionistinen/neuraalinen mallintaminen: perustuu yksinkertaisten, hermosolun kaltaisten laskennallisten yksikköjen muodostamiin verkkoihin Dynaamiset systeemit pohjautuvat yksinkertaisiin sääntöihin, joilla määritellään systeemin käyttäytyminen ajassa

13 Kognitiivisen mallintamisen paradigmat Symbolinen laskenta [logiikka] Universaalit Turingin koneet VonNeumann arkkitehtuurit Syntaktiset rakenteet Symbolisysteemit, tiedonkäsittely Neuraalilaskenta [neurotieteet] Boolean-verkot & loogiset neuronit Hebbian verkot Dynaamiset systeemit [fysiikka, geometria] Nestedynamiikka, kaaos Ekologia & populaatiogenetiikka Solun fysiologia & morphogenesis Soluautomaatit, itseorganisoituvuus, geneettiset algoritmit Kognitiotiede & neurotiede? Perseptronit Kybernetiikka: informaatio, takaisinkytkentä & kontrolli

14 symbolinen / analoginen Top Down / Bottom up

15 symbolinen/konnektionistinen Tiedon erilainen esitystapa Läpinäkyvyys

16 Symbolimallit: Tieto Tieto on koodattu representaatiohin Tiedon käsitettä ei käytetä samoin kuin vaikkapa (arki)psykologiassa tai filosofiassa (tosi ja perusteltu uskomus) Propositionaaliset asenteet a uskoo että P Representaatiot representaatiot sisältävät informaatiota organismin ympäristöstä representaatiot ovat tietoedustuksia, ne edustavat lukuja, propositioita jne. tiedonkäsittelyoperaatiot on määritelty näiden tieto-objektien avulla

17 Symbolisysteemin hypoteesi Newell ja Simon antoivat formaalin muodon kognitiotieteen komputationaaliselle mallille: symbolisysteemin hypoteesin (symbol system hypothesis). "A physical symbol system has the necessary and sufficient means of general intelligent action." (Newell & Simon 1976: Computer Science as Empirical Inquiry: Symbols and search. Idea symbolisysteemistä syntyi jo aiemmin.) Mitä tarkoitetaan symbolisysteemillä?

18 Symbolisysteemi "A physical symbol system consists of a set of entities, called symbols, which are physical patterns that can occur as components of another type of entity called an expression (or symbol structure). [...] Besides these structures, the system contains also a collection of processes that operate on expression to produce other expressions: process of creation, modification, reproduction and destruction. A physical symbol system is a machine that produces through time an evolving collection of symbol structures." (Newell& Simon 1976) symbolit ja symbolirakenteet prosessit jotka operoivat symbolirakenteilla: prosessit voivat luoda, muuttaa, kopioida ja poistaa symboleja ja symbolirakenteita.

19 Symbolisysteemi Newell Physical symbol systems: Fysikaaliset symbolisysteemit ovat universaalikoneita (Turingin koneen mielessä). Symbolirakenteet voivat olla representaatioita ympäristöstä, tai sitten ne voivat edustaa prosesseja joita symbolisysteemi tulkitsee ja suorittaa (designate objects, interpret processes). Toimiakseen käytännössä symbolisysteemin tulisi myös omaksua tietoa ympäristöstä ja tuottaa toimintoja jotka vaikuttavat ympäristöön.

20 Monitoteutuvuusperiaate Symbolien monitoteutuvuusperiaate: symbolilla voi olla erilaisia fysikaalisia toteutuksia. Näin aivot olisivat orgaaninen symbolisysteemin toteutus. Symbolisysteemin määritelmä on laaja, esimerkiksi tietokoneet (von Neumannin kone) ja Turingin kone ovat fysikaalisia symbolisysteemejä.

21 Ongelman formaali esitys Ongelmalla on potentiaalisesti ääretön joukko syötteitä. (tapauksia) Ongelman ratkaisu on algoritmi, joka liittää jokaiseen syötteeseen sen oikean vastauksen. Syötteiden ja vastausten on oltava äärellisesti esitettäviä. Laskentalaitteesta riippumaton esitys

22 Laskennallinen ongelma Laskennallinen ongelma on mikä tahansa kuvaus: π: Σ * Γ * millä tahansa *,Γ *, jossa * on aakkoston (äärellisten) merkkijonojen joukko. Jokainen syötejoukon merkkijono siis kuvautuu jollekin tulosjoukon merkkijonolle. Päätösongelma on kuvaus π: Σ * {0,1}

23 Esim: aritmeettinenongelma symbolimanipulaationa Ratkaisualgoritmi yhdistää syötteen symboleihin uuden symbolin jonkin säännön mukaan 34 -> > 5 Monitoteutuvuus: symboleilla voi olla muitakin toteutuksia. Ongelma on ratkaistavissa annettuja sääntöjä seuraamalla. Laskukoneen (tai koululaisen) ei tarvitse sinänsä ymmärtää matematiikkaa voidakseen seurata numeraalien manipulointiin liittyviä sääntöjä. Χδ ςφ βγ Χς > β δ φ > γ

24 Neuraalimallinnus: tausta biologiassa Hermokudos on erikoistunut informaation kuljettamiseen ja muokkaamiseen. Ihmisen aivoissa on noin neuronia, joista jokainen on yhteydessä jopa tuhansien muiden hermosolujen kanssa. Informaation kuljetus perustuu sähköisiin ja kemiallisiin signaaleihin.

25 Tausta biologiassa Yksittäinen hermosolu ei käsittele kovinkaan paljon informaatiota. Psykologiset toiminnot perustuvat suurten hermosolumäärien toimintaan. Esimerkiksi oppimisen ajatellaan tapahtuvan rakentamalla ja muuttelemalla neuroneiden välisiä yhteyksiä.

26 Neuraalinen mallintaminen: historia Neuraalimallinnus syntyi 1900-luvun puolivälissä, innoittajinaan psykologiassa muistin assosiaatioteoria ja biologiassa hermosolujen tutkimuksen kehittyminen Aristoteles: muisti koostuu elementeistä, jotka linkittyvät toisiinsa Brittiläiset empiristit (Berkeley, Locke, Hume): tieto on viimekädessä johdettu havainnoista ja ajattelu on havaintojen kautta saatujen kokemusten yhdistelyä. assosiationismi Aivot ovat ainoastaan assosiaatioiden tallettamiseen ja hakuun tarkoitettu koneisto.

27 Neuraalinen mallintaminen: historia Assosiationismi, aivotutkimuksen kehitys ja edelleen matematiikan ja tietojenkäsittelytieteen kehitys mahdollistivat neuraaliverkkojen formaalin tarkastelun. Donald Hebb (1949) The Organization of Behavior esitti, että oppiminen perustuu neuronien välisten synaptisten yhteyksien muutokseen.

28 Neuraalinen mallintaminen: historia Hebbin laki: kun yksiköt A ja B aktivoidaan yhtä aikaa, niiden välinen linkki vahvistuu Neurons that fire together, wire together" Linkkien vahvuus voidaan ilmaista numeerisesti. Ajatus neuraaliverkon oppimisalgoritmista otettiin assosiatiivisista malleista.

29 Formaali neuroni Formaali neuroni on yhteydessä toisiin neuroneihin. Kun solu aktivoituu, se lähettää signaalin, joka kulkee linkin (aksonin) välityksellä muihin soluihin. Oppiminen: kun signaali kulkee neuronista toiseen, linkin painoarvoa kasvatetaan.

30 Neuraalimallinnus keinotekoinen hermoverkko, neuroverkko: malli, joka kuvaa aivojen ja hermosolujen tiedonkäsittelyominaisuuksia neuraalilaskenta: laskenta, jonka perustana on hermosoluverkkoa muistuttava neuraalinen organisaatio.

31 Keinotekoisten neuroverkkojen vahvuuksia Neuraalimallinnus soveltuu hyvin luokitteluun ja hahmontunnistukseen, tiedonhakuun, yksinkertaisten eliöiden mallinnukseen,.. Neuroverkot pystyvät erottelemaan kohinaisesta eli häiriöisestä aineistosta olennaisia piirteitä. Keinotekoiset neuroverkot ovat oppivia järjestelmiä. ohjattu oppiminen ohjaamaton oppiminen

32 Neuraalinen mallintaminen Nykytutkimuksessa neuroverkon yhteys biologisten hermosolujen toimintaan lähes kadonnut. Neuraalimallinnusta käytetään mm. tekoälytutkimuksessa ja robotiikassa mutta myös taloustieteessä, kielitieteessä ja fysiikassa jne. Esimerkiksi näillä sovellusaloilla tarkoituksena ei ole mallintaa biologisen organismin kognitiivisia ominaisuuksia.

33 Neuraalinen mallintaminen Neuraalimallinnusta pidetään kuitenkin vaihtoehtona symboliselle mallintamiselle kognitiivisten prosessien kuvaustapana. Toinen vaihtoehto on pitää neuraalimallinnusta symbolisten prosessien toteutustasona (implementation level).

34 Yhteenveto Symbolimallinnuksessatietoa esitetään formaalisti symboleilla. Symboleiden manipulaatiosäännöt määrittelevät mallin toiminnan. Sopii käytännössä tilanteisiin, jossa asiat voidaan esittää eksaktisti. (Esim. Shakkipelin asetelma) Neuraalimallinuksessatieto on koodattu neuroneiden välisiin painokertoimiin. Yksittäisen neuronin/yhteyden merkitystä ei yleensä voi täsmällisesti määrittää, vaan on tarkasteltava verkkoa aina kokonaisuudessaan. Sopii käytännössä tilanteisiin, jossa asiat ovat epämääräisiä ja esitys yksikäsitteisillä symboleilla on hankalaa. Esim. näkeminen ja hahmontunnistus.

Esitietoja? Kognitiivinen mallintaminen I. "Mallit" tieteessä. Kognitiivinen mallintaminen. Kognitiivinen mallintaminen I, kevät 2008 1/18/08

Esitietoja? Kognitiivinen mallintaminen I. Mallit tieteessä. Kognitiivinen mallintaminen. Kognitiivinen mallintaminen I, kevät 2008 1/18/08 Esitietoja? Kognitiivinen mallintaminen I http://koete.identigo.com/ Logiikka filosofia, matematiikka, muu Matematiikka lineaarialgebra, diskreetti matematiikka Tietojenkäsittelytiede laskennan teoria,

Lisätiedot

"Mallit" tieteessä Kuvaileva ja selittävä malli

Mallit tieteessä Kuvaileva ja selittävä malli Kognitiivinen mallintaminen Kognitiivinen mallintaminen I http://www.helsinki.fi/~huhmarni/cog241/ Johdanto Mallintaminen tieteellisenä metodina Kognitiotieteen mallinnusparadigmat konnektionistinen symbolinen

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

KOHTI TIETOISIA ROBOTTEJA

KOHTI TIETOISIA ROBOTTEJA SESKOn kevätseminaari 2017 KOHTI TIETOISIA ROBOTTEJA Dr. Pentti O A Haikonen Adjunct Professor Department of Philosophy University of Illinois at Springfield pentti.haikonen@pp.inet.fi ESITYKSEN PÄÄAIHEET

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R

Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R Kognitiivinen mallintaminen 1 Kognitiiviset arkkitehtuurit ACT-R Kognitiiviset arkkitehtuurit Mielen(tai jonkin älykkään toimijan) mahdollisimman yleisiä piirteitä ja rakenteellista organisaatiota kuvaava

Lisätiedot

Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat

Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat Luento 2. Kieli merkitys ja logiikka 2: Helpot ja monimutkaiset Helpot ja monimutkaiset ongelmat Tehtävä: etsi säkillinen rahaa talosta, jossa on monta huonetta. Ratkaisu: täydellinen haku käy huoneet

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2004 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa, opettajan suuntautumisvaihtoehdossa

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)

Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.) Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 26.2. Nelli Salminen nelli.salminen@helsinki.fi D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista

Lisätiedot

Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi

Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi Luovuus ja assosiationismi Kieli merkitys ja logiikka 4: Luovuus, assosiationismi Käsittelemme ensin assosiationismin kokonaan, sen jälkeen siirrymme kombinatoriseen luovuuteen ja konstituenttimalleihin

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi

Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi Symbolinen mallintaminen: tausta Kognitiivinen mallintaminen I Symbolinen mallintaminen 1 Tausta Symbolisysteemin hypoteesi von Neumannin arkkitehtuuri LOT Esimerkki kognitiivisesta mallista: produktiosysteemit

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita

Lisätiedot

TEKOÄLY JA TIETOISET KONEET

TEKOÄLY JA TIETOISET KONEET ITU:n Kansainvälinen Telepäivä 17.5.2018 TEKOÄLY JA TIETOISET KONEET Pentti O A Haikonen, TkT JOHTAAKO TEKOÄLY KONETIETOISUUDEN SYNTYYN? TULEEKO INTERNET TIETOISEKSI? ALUSSA OLI ENIAC SÄHKÖAIVOT Ensimmäiset

Lisätiedot

Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?

Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? 2 Tieto on koodattu aikaisempaa yleisemmin digitaaliseen muotoon,

Lisätiedot

Rajoittamattomat kieliopit (Unrestricted Grammars)

Rajoittamattomat kieliopit (Unrestricted Grammars) Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli

Lisätiedot

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 24.11. Nelli Salminen nelli.salminen@tkk.fi Tällä kerralla ohjelmassa vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko oppimissääntöjen

Lisätiedot

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto) Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät

Lisätiedot

PSYK 225 Kognitiivisen psykologian nykysuuntauksia. Jussi Saarinen

PSYK 225 Kognitiivisen psykologian nykysuuntauksia. Jussi Saarinen Luento 1 18.1.2019 PSYK 225 Kognitiivisen psykologian nykysuuntauksia Jussi Saarinen Perjantaisin ko 10-12 18.1.2019 Haartman-instituutti, sali 2 25.1.2019 Haartman-instituutti, sali 2 1.2.2019 Haartman-instituutti,

Lisätiedot

T DATASTA TIETOON

T DATASTA TIETOON TKK / Informaatiotekniikan laboratorio Syyslukukausi, periodi II, 2007 Erkki Oja, professori, ja Heikki Mannila, akatemiaprofessori: T-61.2010 DATASTA TIETOON TKK, Informaatiotekniikan laboratorio 1 JOHDANTO:

Lisätiedot

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko

Lisätiedot

Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004

Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004 Tuotteen oppiminen Käytettävyyden psykologia syksy 2004 Oppiminen Havainto Kognitiiviset muutokset yksilössä Oppiminen on uuden tiedon omaksumista, joka perustuu havaintoon Ärsyke Behavioristinen malli

Lisätiedot

Laskut käyvät hermoille

Laskut käyvät hermoille Laskut käyvät hermoille - Miten ja miksi aivoissa lasketaan todennäköisyyksiä Aapo Hyvärinen Matematiikan ja tilastotieteen laitos & Tietojenkäsittelytieteen laitos Helsingin Yliopisto Tieteen päivät 13.1.2011

Lisätiedot

Sisällys PSYKOLOGIA AUTTAA YMMÄRTÄMÄÄN IHMISIÄ. Psykologia tutkii ihmisen toimintaa. Psykologiassa on lukuisia osa-alueita ja sovelluskohteita

Sisällys PSYKOLOGIA AUTTAA YMMÄRTÄMÄÄN IHMISIÄ. Psykologia tutkii ihmisen toimintaa. Psykologiassa on lukuisia osa-alueita ja sovelluskohteita Sisällys I 1 PSYKOLOGIA AUTTAA YMMÄRTÄMÄÄN IHMISIÄ 10 Psykologia tutkii ihmisen toimintaa 12 Mielen tapahtumat ja käyttäytyminen muodostavat ihmisen toiminnan Psykologian suuntaukset lähestyvät ihmistä

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus 11.3.

Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Nelli Salminen nelli.salminen@helsinki.fi D433 Tällä kertaa ajan esittäminen neuroverkoissa dynaamiset systeemit esimerkkitapaus: lyhytkestoinen muisti

Lisätiedot

Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun

Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun Itseorganisoituvat hermoverkot: Viitekehys mielen ja kielen, aivokuoren ja käsitteiden tarkasteluun Timo Honkela Kognitiivisten järjestelmien tutkimusryhmä Adaptiivisen informatiikan tutkimuskeskus Tietojenkäsittelytieteen

Lisätiedot

Turingin koneen laajennuksia

Turingin koneen laajennuksia Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k

Lisätiedot

Kieli merkitys ja logiikka

Kieli merkitys ja logiikka Assosiaatiot, konstituentit Kieli merkitys ja logiikka Luento 5: Assosiaatiot, konstituentit Luento 5 125-134,, Konstituentit 104-107, Turingin kone Huom! Lukua 5.2, Assosiationismin teoriaa, ja siihen

Lisätiedot

Kertausta 1. kurssikokeeseen

Kertausta 1. kurssikokeeseen Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET

Lisätiedot

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi

Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi Matematiikan olemus Juha Oikkonen juha.oikkonen@helsinki.fi 1 Eri näkökulmia A Matematiikka välineenä B Matematiikka formaalina järjestelmänä C Matematiikka kulttuurina Matemaattinen ajattelu ja matematiikan

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 1.12. Nelli Salminen nelli.salminen@tkk.fi Tänään ohjelmassa autoassosiaatio, Hopfieldin verkko attraktorin käsite ajan esittäminen hermoverkoissa esimerkkitapaus:

Lisätiedot

Kieli merkitys ja logiikka

Kieli merkitys ja logiikka Luento 10 Kieli merkitys ja logiikka Predikaattilogiikka Kielen oppimisen ongelma Ärsykkeen heikkous Luento 10: Kielen oppimisen ongelma Merge Merge Kombinatorinen luovuus: symboleita yhdistelemällä voidaan

Lisätiedot

Psykologia tieteenä. tieteiden jaottelu: TIETEET. EMPIIRISET TIETEET tieteellisyys on havaintojen (kr. empeiria) tekemistä ja niiden koettelua

Psykologia tieteenä. tieteiden jaottelu: TIETEET. EMPIIRISET TIETEET tieteellisyys on havaintojen (kr. empeiria) tekemistä ja niiden koettelua Psykologia tieteenä tieteiden jaottelu: FORMAALIT TIETEET tieteellisyys on tietyn muodon (kr. forma) seuraamista (esim. logiikan säännöt) matematiikka logiikka TIETEET LUONNON- TIETEET fysiikka kemia biologia

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

Teoreettisen viitekehyksen rakentaminen

Teoreettisen viitekehyksen rakentaminen Teoreettisen viitekehyksen rakentaminen Eeva Willberg Pro seminaari ja kandidaatin opinnäytetyö 26.1.09 Tutkimuksen teoreettinen viitekehys Tarkoittaa tutkimusilmiöön keskeisesti liittyvän tutkimuksen

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Johdatus monimuuttujamenetelmiin Luennot 30.10.13.12.-18 Tiistaina klo 12-14 (30.10., BF119-1) Keskiviikkoisin klo 10-12 (MA101,

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 16.1.2017-3.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ

Lisätiedot

Sähkö- ja tietoliikennetekniikan osasto Korvaavuusluettelo S-114 Laskennallinen tekniikka

Sähkö- ja tietoliikennetekniikan osasto Korvaavuusluettelo S-114 Laskennallinen tekniikka Sähkö- ja tietoliikennetekniikan osasto Korvaavuusluettelo S-114 tekniikka Uusin kurssi Edellinen kurssi Edellinen kurssi Edellinen kurssi S-114.1100 tiede 5 S-114.1310 Mallintamisen ja informaatioteorian

Lisätiedot

Täydentäviä muistiinpanoja laskennan rajoista

Täydentäviä muistiinpanoja laskennan rajoista Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen

Lisätiedot

Algoritmin määritelmä [Sipser luku 3.3]

Algoritmin määritelmä [Sipser luku 3.3] Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:

Lisätiedot

Computing Curricula 2001 -raportin vertailu kolmeen suomalaiseen koulutusohjelmaan

Computing Curricula 2001 -raportin vertailu kolmeen suomalaiseen koulutusohjelmaan Computing Curricula 2001 -raportin vertailu kolmeen suomalaiseen koulutusohjelmaan CC1991:n ja CC2001:n vertailu Tutkintovaatimukset (degree requirements) Kahden ensimmäisen vuoden opinnot Ohjelmistotekniikan

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

Tarvitseeko informaatioteknologia matematiikkaa?

Tarvitseeko informaatioteknologia matematiikkaa? Tarvitseeko informaatioteknologia matematiikkaa? Oulun yliopisto Matemaattisten tieteiden laitos 1 Kyllä kai IT matematiikkaa tarvitsee!? IT ja muu korkea teknologia on nimenomaan matemaattista teknologiaa.

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op FT Ari Viinikainen Tietokoneen rakenne Keskusyksikkö, CPU Keskusmuisti Aritmeettislooginen yksikkö I/O-laitteet Kontrolliyksikkö Tyypillinen Von Neumann

Lisätiedot

JUHTA ja VAHTI juhlatilaisuus, Tietojärjestelmien tulevaisuudesta tekoälyn kehityksen näkökulmasta. Timo Honkela.

JUHTA ja VAHTI juhlatilaisuus, Tietojärjestelmien tulevaisuudesta tekoälyn kehityksen näkökulmasta. Timo Honkela. JUHTA ja VAHTI juhlatilaisuus, 2017 Tietojärjestelmien tulevaisuudesta tekoälyn kehityksen näkökulmasta Timo Honkela timo.honkela@helsinki.fi 31. lokakuuta 2017 Ihmisestä ja ihmisyhteisöistä Kuva:/skylgroup.com/communities--socities/

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Etiikan mahdollisuudesta tieteenä. Henrik Rydenfelt Helsingin yliopisto

Etiikan mahdollisuudesta tieteenä. Henrik Rydenfelt Helsingin yliopisto Etiikan mahdollisuudesta tieteenä Henrik Rydenfelt Helsingin yliopisto Etiikka tieteenä? Filosofit ja ei-filosofit eivät pidä etiikkaa tieteenä Tiede tutkii sitä, miten asiat ovat, ei miten asioiden tulisi

Lisätiedot

Edistyksen päivät, Helsinki. Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla.

Edistyksen päivät, Helsinki. Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla. Edistyksen päivät, Helsinki Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla Timo Honkela timo.honkela@helsinki.fi 5.10.2017 Taustaa: Rauhankone-konsepti

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 18.1.2016-6.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 1: 4.9.2014-17.10.2012 (7 VIIKKOA+KOE) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 Hestenes (1992): The great game of science is modelling the real world, and each scientific theory lays down a system of rules for

Lisätiedot

Kieli merkitys ja logiikka

Kieli merkitys ja logiikka Luento 8 Kieli merkitys ja logiikka Luento 8: Merkitys ja logiikka Luku 10: Luennon 7 kertaus: propositiologiikka predikaattilogiikka Kvanttorit ja looginen muoto Määritelmät, analyyttisyys ja synteettisyys

Lisätiedot

Muita vaativuusluokkia

Muita vaativuusluokkia Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):

Lisätiedot

LUENTO 0. Tervetuloa! Käyttöjärjestelmät II 2 ov Teemu Kerola. Helsingin yliopisto Tietojenkäsittelytieteen laitos

LUENTO 0. Tervetuloa! Käyttöjärjestelmät II 2 ov Teemu Kerola. Helsingin yliopisto Tietojenkäsittelytieteen laitos LUENTO 0 Tervetuloa! 582405 Käyttöjärjestelmät II 2 ov Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos 1 Tavoitteitamme Ymmärtää KJ:n perusrakenteet ja toteutusperiaatteet Tuntea yleisperiaatteiden

Lisätiedot

Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op)

Lakkautetut vastavat opintojaksot: Mat Matematiikan peruskurssi P2-IV (5 op) Mat Sovellettu todennäköisyyslaskenta B (5 op) KORVAVUUSLISTA 31.10.2005/RR 1 KURSSIT, jotka luennoidaan 2005-2006 : Lakkautetut vastavat opintojaksot: Mat-1.1010 Matematiikan peruskurssi L 1 (10 op) Mat-1.401 Mat-1.1020 Matematiikan peruskurssi L

Lisätiedot

Laajennettu tiedonkäsitys ja tiedon erilaiset muodot

Laajennettu tiedonkäsitys ja tiedon erilaiset muodot Laajennettu tiedonkäsitys ja tiedon erilaiset muodot Totuudesta väitellään Perinteinen käsitys Tutkimuksella tavoitellaan a. On kuitenkin erilaisia käsityksiä. Klassinen tiedon määritelmä esitetään Platonin

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

The OWL-S are not what they seem

The OWL-S are not what they seem The OWL-S are not what they seem...vai ovatko? Verkkopalveluiden koostamisen ontologia OWL-S Seminaariesitelmä 15.4.2013 Emilia Hjelm Internet on hankala Nykyinternet on dokumenttien verkko Asiat, joita

Lisätiedot

582206 Laskennan mallit

582206 Laskennan mallit 582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Verkko-oppiminen: Teoriasta malleihin ja hyviin käytäntöihin. Marleena Ahonen. TieVie-koulutus Jyväskylän lähiseminaari

Verkko-oppiminen: Teoriasta malleihin ja hyviin käytäntöihin. Marleena Ahonen. TieVie-koulutus Jyväskylän lähiseminaari Verkko-oppiminen: Teoriasta malleihin ja hyviin käytäntöihin Marleena Ahonen TieVie-koulutus Jyväskylän lähiseminaari Virtuaaliyliopistohankkeen taustaa: - Tavoitteena koota verkko-oppimisen alueen ajankohtaista

Lisätiedot

Vaihtelu virkistää taidon oppimisessa - Kisakallion taitokongressin antia. Kuntotestauspäivät 19.3.2016 Sami Kalaja

Vaihtelu virkistää taidon oppimisessa - Kisakallion taitokongressin antia. Kuntotestauspäivät 19.3.2016 Sami Kalaja Vaihtelu virkistää taidon oppimisessa - Kisakallion taitokongressin antia Kuntotestauspäivät 19.3.2016 Sami Kalaja Non-lineaarinen pedagogiikka / Keith Davids Urheilija, tehtävä ja ympäristö ovat jatkuvassa

Lisätiedot

Matematiikka yhteinen MAY1 MAY1 Luvut ja lukujonot Otava

Matematiikka yhteinen MAY1 MAY1 Luvut ja lukujonot Otava Kurssin lyhenne Kurssin nimi Oppikirja ja kustantaja Biologia Sekä digiversio että paperiversio kirjasta käy, kunhan se on uuden opetussuunnitelman (LOPS2016) versio. BI1 Elämä ja evoluutio Bios 1 Elämä

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

Aika empiirisenä käsitteenä. FT Matias Slavov Filosofian yliopistonopettaja Jyväskylän yliopisto

Aika empiirisenä käsitteenä. FT Matias Slavov Filosofian yliopistonopettaja Jyväskylän yliopisto Aika empiirisenä käsitteenä FT Matias Slavov Filosofian yliopistonopettaja Jyväskylän yliopisto Luonnonfilosofian seuran kokous 7.3.2017 Esitelmän kysymys ja tavoite: Pääkysymys: Onko aika empiirinen käsite?

Lisätiedot

UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461

UUSI KIRJA / UUDEHKO KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461 JALASJÄRVEN LUKIO 1.-3. VUOSIKURSSI Kauppilantie 1 UUSI KIRJA / "UUDEHKO" KIRJA, KATSO TARKASTI ISBN-NUMERO, 61600 Jalasjärvi PAINOS YMS. LISÄTIEDOT Puh. 4580 460, 4580 461 Kirjoja on mahdollisuus kierrättää,

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3.11.2017 Mitä tekoäly on? Wikipedia: Tekoäly on tietokone tai tietokoneohjelma, joka kykenee älykkäiksi

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Mat Systeemien identifiointi, aihepiirit 1/4

Mat Systeemien identifiointi, aihepiirit 1/4 , aihepiirit 1/4 Dynaamisten systeemien matemaattinen mallintaminen ja analyysi Matlab (System Identification Toolbox), Simulink 1. Matemaattinen mallintaminen: Mallintamisen ja mallin määritelmät Fysikaalinen

Lisätiedot

Kurssin lyhenne Kurssin nimi Oppikirja ja kustantaja

Kurssin lyhenne Kurssin nimi Oppikirja ja kustantaja Kurssin lyhenne Kurssin nimi Oppikirja ja kustantaja Biologia Sekä digiversio että paperiversio kirjasta käy, kunhan se on uuden opetussuunnitelman (LOPS2016) versio. BI1 Elämä ja evoluutio Bios 1 Elämä

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 s16 Talousmatematiikan perusteet ORMS.1030 Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/ mla/ puh. 044 344 2757

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on

Lisätiedot

Kieli merkitys ja logiikka

Kieli merkitys ja logiikka Kielentutkimuksen eri osa-alueet Kieli merkitys ja logiikka Luento 3 Fonetiikka äänteiden (fysikaalinen) tutkimus Fonologia kielen äännejärjestelmän tutkimus Morfologia sananmuodostus, sanojen rakenne,

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

6.5.2 Kognitiotieteen koulutus

6.5.2 Kognitiotieteen koulutus 6.5.2 Kognitiotieteen koulutus www.helsinki.fi/kognitiotiede/opiskelu/index.htm Kognitiotiede on monitieteinen tieteenala joka tutkii organismien ja artefaktien älykkään käyttäytymisen taustamekanismeja,

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Kurssin sisältö pääpiirteittäin Tarvittavat pohjatiedot Avainsanat Abstraktio Esimerkkiohjelman tehtäväkuvaus Abstraktion käyttö tehtävässä Abstrakti tietotyyppi Hyötyjä ADT:n

Lisätiedot

Parametristen mallien identifiointiprosessi

Parametristen mallien identifiointiprosessi Parametristen mallien identifiointiprosessi Koesuunnittelu Identifiointikoe Epäparametriset menetelmät Datan esikäsittely Mallirakenteen valinta Parametrien estimointi Mallin validointi Mallin käyttö &

Lisätiedot

Teoria tieteessä ja arkikielessä. Teoriat ja havainnot. Teorian käsitteitk. sitteitä. Looginen positivismi ja tieteen kielen kaksitasoteoria (1)

Teoria tieteessä ja arkikielessä. Teoriat ja havainnot. Teorian käsitteitk. sitteitä. Looginen positivismi ja tieteen kielen kaksitasoteoria (1) Teoria tieteessä ja arkikielessä Teoriat ja havainnot Johdatus yhteiskuntatieteiden filosofiaan 2. Luento 18.1. Arkikielessä sanaa teoria käytetään usein synonyyminä hypoteesille (olettamukselle) tai idealisoidulle

Lisätiedot

Onko empiirinen käänne vain empirian kääntötakki?

Onko empiirinen käänne vain empirian kääntötakki? Onko empiirinen käänne vain empirian kääntötakki? Tommi Nieminen 40. Kielitieteen päivät, Tampere 2. 4.5.2013 Empiria (kielitieteessä)? lähtökohtaisesti hankala sana niin käsitteellisesti kuin käytöltään

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan yliopisto / kevät 2015 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet, Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Ohjelmien automaattisen verifioinnin reunamailla

Ohjelmien automaattisen verifioinnin reunamailla Ohjelmien automaattisen verifioinnin reunamailla Antti Siirtola Tietotekniikan laitos, Perustieteiden korkeakoulu, Aalto-yliopisto, antti.siirtola@aalto.fi Suomalainen Tiedeakatemia, Nuorten akatemiaklubi,

Lisätiedot

Luento-osuusosuus. tilasto-ohjelmistoaohjelmistoa

Luento-osuusosuus. tilasto-ohjelmistoaohjelmistoa Kurssin suorittaminen Kvantitatiiviset menetelmät Sami Fredriksson/Hanna Wass Yleisen valtio-oppi oppi Kevät 2010 Luento-osuusosuus Tentti to 4.3. klo 10-12, 12, U40 P674 Uusintamahdollisuus laitoksen

Lisätiedot

Tulevaisuuden ja kehitteillä olevat tekniikat (FET)

Tulevaisuuden ja kehitteillä olevat tekniikat (FET) Tulevaisuuden ja kehitteillä olevat tekniikat (FET) Hoitavatko robotit, mihin tietokone on kadonnut? Pekka Karp Euroopan komissio Tietoyhteiskunnan tekniikat PK - Joensuu 27/05/02 FET= Future and Emerging

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot