58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet
|
|
- Martti Kapulainen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet 1. [10 pistettä] Hakemistorakenteet. Vertaa linkitettyjen listojen, tasapainoisten hakupuiden ja hajautuksen ominaisuuksia hakemistorakenteina: Mitä operaatioita kukin rakenne tukee? Mitkä ovat operaatioiden aikavaativuudet? Mitä muita näiden rakenteiden ominaisuuksia tulee ottaa huomioon toteutettaessa hakemistoa johonkin tiettyyn tarkoitukseen? Vastaa yleisellä tasolla menemättä rakenteiden toteutuksen yksityiskohtiin. Pisteytys: Yleisesti ottaen kunkin mainitun tehtävänannossa mainitun tietorakenteen (lista, hakupuu, hajautustaulu) operaatioiden ja aikavaativuuksien esittämisestä on saanut 3 pistettä ja 1 piste on tullut kommenteista, joissa on vertailtu tietorakenteita keskenään tai annettu muuta relevanttia lisätietoa. Tehtävä on kuitenkin arvioitu kokonaisuutena. Melko vaatimatonkin selitys on riittänyt, jos perusasiat ovat kunnossa. Toisaalta pisteitä on vähennetty virheellisistä tai muuten oudoista selityksistä. 2. [10 pistettä] Taulukoiden vertailu. Syötteenä on annettu kaksi taulukkoa A ja B, joissa on mielivaltaisia kokonaislukuja mielivaltaisessa järjestyksessä. Tehtävänä on tulostaa pienin sellainen taulukon A alkio, joka ei esiinny taulukossa B. Jos kaikki taulukon A alkiot esiintyvät myös taulukossa B, palautusarvon tulee olla Nil. Olkoon n taulukoiden A ja B yhteenlaskettu alkioiden lukumäärä. (a) Esitä tehtävään ratkaisualgoritmi, jonka pahimman tapauksen aikavaativuus on O(n log n). Ratkaisu: Tehtävän voi ratkaista usealla eri tavalla käyttäen järjestämistä tai tasapainotettuja hakupuita. Eräs yksinkertainen menetelmä on seuraava: Järjestä taulukot A ja B lomitusjärjestämisellä (pahimman tapauksen aikavaativuus O(n log n)). Aseta i = 1 ja j = 1. Jos j > B. size tai A[i] < B[j], palauta A[i]. Jos A[i] = B[j], aseta i = i + 1. Muuten aseta j = j + 1. Toista niin kauan kuin taulukkoja riittää. Jos taulukko A loppuu kesken, haluttua arvoa ei ole. Tässä vaiheessa toistetaan vakioaikaista operaatiota O(n) kertaa. Kokonaisaikavaativuudeksi tulee siis O(n log n + n) = O(n log n). Pisteytys: Tehtävänannossa ei pyydetty pseudokoodia, joten täysiin pisteisiin on riittänyt melko karkea kuvaus ratkaisuperiaattesta. Yksi piste on kuitenkin vähennetty, jos jokin oleellinen asia on selitetty epämääräisesti; esim. puhutaan alkion hakemisesta taulukosta B mutta ei mitenkään selitetä, miten siinä käytetään hyväksi taulukon B järjestystä. (b) Esitä tehtävään ratkaisualgoritmi, jonka keskimääräisen tapauksen aikavaativuus (sopivilla oletuksilla) on O(n). Ratkaisu: Muodostetaan taulukon B alkioista hajautustaulu. Käydään taulukko A läpi alkio kerrallaan pitäen kirjaa pienimmästä löydetystä alkiosta. Kunkin alkion kohdalla tarkastetaan ensin, onko se hajautustaulussa. Jos ei ole, sitä verrataan pienimpään aiemmin löydettyyn ja tarvittaessa päivitetään tätä.
2 Algoritmi tekeen O(n) hajautustauluoperaatiota ja niiden lisäksi O(n) vakioaikaista operaatiota. Jos oletetaan, että käytössä on hyvä hajautusfunktio, yksittäinen hajautusoperaatio vie keskimäärin ajan O(1), jolloin kokonaisaikavaativuudeksi tulee O(n). Pisteytys: Kuten kohdassa (a), periaatteen esittäminen yleisellä tasolla riitti. Neljä pistettä on saanut ratkaisusta, jossa on oletettu taulukoiden alkioiden olevan pieniä ja sovellettu laskemisjärjestämistä tms. kohdan (a) kaltaisessa ratkaisussa. Oletus alkioiden pienuudesta ei sinänsä ole kovin kohtuuton, mutta kuitenkin selvästi rajoittavampi kuin oletus hajautusfunktion toimimisesta, mihin myös rajoitus keskimääräiselle aikavaativuudelle viittasi. 3. [10 pistettä] Binääripuut ja hakupuut. Tehtävä käsittelee binäärihakupuita, joiden ei oleteta välttämättä olevan tasapainoisia. Esitä kummassakin kohdassa ratkaisualgoritmisi yksityiskohtaisena pseudokoodina. (a) Binäärihakupuun kuhunkin sisäsolmuun x halutaan liittää arvo size[x], joka kertoo solmun x jälkeläisten lukumäärän. Esitä algoritmi, joka laskee (muuten valmiiseen) binäärihakupuuhun size-arvot. (Selvennys: tässä vaiheessa ei siis vielä ole mitenkään oleellista, että kysymyksessä on nimenomaan hakupuu.) Ratkaisu: Ongelma ratkeaa kutsumalla seuraavaa rekursiivista proseduuria argumenttina osoitin puun juureen: count-size(x) if x == Nil then return 0 else size[x] = count-size(x. left) + count-size(x. left) + 1 return size[x] Tässä siis on määritelmän mukaisesti laskettu solmu omaksi jälkeläisekseen. Arvostelussa on kuitenkin hyväksytty myös ratkaisut, joissa on laskettu aitoja jälkeläisiä. Pienistä epätarkkuuksista pseudokoodiesityksessä ei ole vähennetty pisteitä, jos tarkoitus on selvästi oikea.
3 (b) Oletetaan nyt, että binäärihakupuussa on edellisen kohdan mukaiset size-arvot. Esitä tehokas algoritmi, joka saa syötteenä positiivisen kokonaisluvun k ja palauttaa puun k:nneksi suurimman avaimen. Algoritmin pahimman tapauksen aikavaativuuden tulee olla verrannollinen puun korkeuteen. Ratkaisu: suurin(x, k) if x == Nil or k == 0 or k > size[x] then return Nil if x. right == Nil then r = 0 else r = size[x. right] if k r then return suurin(x. right, k) elseif k == r + 1 then return x. key else return suurin(x. left, k r 1) Pienistä epätarkkuuksista pseudokoodiesityksessä ei ole vähennetty pisteitä, jos tarkoitus on selvästi oikea. Yksi tai kaksi pistettä on kutenkin vähennetty pienehköistä virheistä, jotka liittyvät algoritmin toimintalogiikkaan (eikä pseudokoodin ohjelmointitekniikkaan ). 4. [10 pistettä] Yhtenäisyys ja vahva yhtenäisyys. (a) Suuntaamaton verkko G = (V, E) on esitetty vieruslistoina. Ongelmana on selvittää, onko verkko G yhtenäinen. Esitä (pseudokoodina) ratkaisualgoritmi ongelmalle ja analysoi ratkaisusi aikavaativuutta. Täysien pisteiden saamiseksi algoritmin tulee toimia ajassa O( V + E ). Ratkaisu ja pisteytys: Ongelman voi ratkaista suorittamalla leveyssuuntaisen tai syvyyssuuntaisen läpikäynnin mielivaltaisesta alkusolmusta ja tarkistamalla, saavutettiinko kaikki solmut. Täydet 5 pistettä on saanut esittämällä kyseisen algoritmin pseudokoodin suunnilleen luentomateriaalin tarkkuudella ja lyhyen perustelun aikavaativuudelle. Aikavaativuusanalyysin ei tarvinnut olla kovin yksityiskohtainen, mutta jos se oli hyvin puutteellinen, on vähennetty yksi piste. (b) Entä jos G onkin suunnattu: miten selvittäisit ajassa O( V + E ), onko verkko vahvasti yhtenäinen? Kuvaa ratkaisuperiaate sanallisesti (yksityiskohtaista pseudokoodia ei tarvitse esittää) ja perustele sen toimivuus ja aikavaativuus. Älä kuitenkaan käytä hyväksi kurssilla esitettyä vahvasti yhtenäisten komponenttien algoritmia; tarkoitus on esittää tähän rajoitetumpaan ongelmaan yksinkertaisempi algoritmi. Ratkaisu: Ongelman voi ratkaista suorittamalla valitsemalla mielivaltaisen solmun u ja suorittamalla siitä lähtien syvyyssuuntaisen (tai leveyssuuntaisen) läpikäynnin sekä verkossa G että sen transpoosiverkossa G T. Jos kumpikin läpikäynti löytää verkon kaikki solmut, verkko on vahvasti yhtenäinen; muuten ei ole. Algoritmin aikavaativuus on sama kuin syvyyssuuntaisen läpikäynnin eli O( V + E ). Perustellaan, että algori toimii oikein.
4 Verkko on vahvasti yhtenäinen, jos ja vain jos minkä tahansa kahden solmun välillä on polku kumpaankin suuntaan. Tämä on sama kuin että mistä tahansa solmusta x on polku mihin tahansa solmuun y sekä alkuperäisessä verkossa että transpoosiverkossa. Jos tämä ehto pätee, niin erityisesti solmusta u pääsee kaikkiin muihin solmuihin, ja algoritmi toteaa verkon vahvasti yhtenäiseksi. Kääntäen jos algoritmi toteaa verkon vahvasti yhtenäiseksi, niin millä tahansa solmuilla x ja y on olemassa polut u x ja u y sekä alkuperäisessä että transpoosiverkossa. Siis alkuperäisessä verkossa on polut x u, y u, u x ja u y, joten polut x y ja y x voidaan muodostaa solmun u kautta; verkko on vahvasti yhtenäinen. Pisteytys: Tehtävä oli tarkoitettu hieman haastavammaksi algoritmilaatimistehtäväksi, joten pisteiden saaminen on edellyttänyt jotain selvää ideaa siitä, miten annetun ongelman voisi ratkaista annetun aikavaativuuden puitteissa. Toimivan algoritmin esittämisestä on saanut 4 pistettä ja sen toimivuuden perustelusta yhden pisteen. Monessa ratkaisuyrityksessä mainittiin topologinen järjestäminen. Topologinen järjestys on määritelty vain syklittömissä verkoissa, ja vahvasti yhtenäisissä verkoissa on aina syklejä, joten tämä ei ainakaan sellaisenaan ole sovellettavissa. 5. [10 pistettä] Dijkstran algoritmi. Selitä lyhyesti, miten Dijkstran algoritmi löytää verkossa lyhimmät polut, ja havainnollista selitystäsi parilla kuvalla. Esitä myös Dijkstran algoritmi pseudokoodina ja analysoi sen aikavaativuus. Algoritmin oikeellisuutta ei tarvitse todistaa. Algoritmin tarvitsemien tietorakenteiden aikavaativuudet voi olettaa tunnetuksi, mutta sano kuitenkin aina selvästi, mitä tietorakennetta tai aikavaativuutta milloinkin käytät. Pisteytys: Selitys ja esimerkki 6 pistettä. Arvostelussa on kiinnitetty huomiota siihen, että teksti ja kuvat kokonaisuutena osoittavat, että algoritmin perusajatus on ymmärretty oikein. Jos selitys on perusteellinen, kevyempi esimerkki on riittänyt, ja toisin päin. Pseudokoodi 2 pistettä. Täysiin pisteisiin on vaadittu suunnilleen luentomateriaalin pseudokoodia vastaava tarkkuustaso ja mahdollisten apuproseduurien (paitsi keko-operaatioiden) avaaminen. Aikavaativuusanalyysi 2 pistettä. Tässä on vaadittu nimenomaan aikavaativuuden analysoimista eli keskeisesti sen selittämistä, miten se muodostuu tunnetuista keko-operaatioiden aikavaativuuksista. 6. [10 pistettä] Paras polku. Määritellään suuntaamattomassa painotetussa verkossa polun kustannukseksi suurin polulla olevan yksittäisen kaaren paino. Tehtävänä on löytää kahden annetun verkon solmun välille kustannukseltaan pienin polku. Verkon voi olettaa yhtenäiseksi. Esitä tehtävään tehokas ratkaisualgoritmi. Perustele täsmällisesti, että se toimii oikein, ja perustele myös sen aikavaativuus. Algoritmille ei tarvitse esittää yksityiskohtaista pseudokoodia, riittää selittää sen toimintaperiaate. Voit käyttää algoritmissa
5 ja sen aikavaativuusanalyysissa kaikkia kurssilta tunnettuja algoritmeja ja tietorakenteita ja niihin liittyviä aikavaativuuksia. Sano kuitenkin selvästi, mitä tunnettua aikavaativuutta jne. milloinkin käytät. Ratkaisu 1: Muodostetaan verkon pienin virittävä puu Primin tai Kruskalin algoritmilla. Haluttu polku on nyt annettuja solmuja yhdistävä puun kaaria pitkin kulkeva polku. Aikavaativuus on sama O( E log E ) kuin Primillä ja Kruskalilla. Oikeellisuuden toteamiseksi olkoot verkossa G = (V, E) annetut solmut s ja t, ja olkoon (V, T ) pienin virittävä puu. Olkoon P puuta pitkin kulkeva polku solmusta s solmuun t. Tehdään vastaoletus, että jokin toinen polku P on parempi kuin P. Olkoon e polun P painavin kaari. Verkossa (V, T { e }) on kaksi komponenttia, ja s ja t kuuluvat eri komponentteihin. Jokin polun P kaari e yhdistää näitä komponentteja. Koska P on parempi kuin P, polun P kaikki kaaret ovat kevyempiä kuin polun P painavin kaari e. Siis virittävän puu (V, T { e } { e }) on kevyempi kuin (V, T ); ristiriita. Ratkaisu 2: Käytetään Dijkstran algoritmia, jossa Relax-operaatiossa summa distance[u]+w(u, v) korvataan maksimilla max { distance[u], w(u, v) }. Aikavaativuus on Dijkstran O(( V + E log V )). Ratkaisun oikeellisuuden tarkastelemiseksi todetaan ensin, että kysymyksessä on lyhimmän polun löytäminen, kun polun pituuden määritelmässä vaihdetaan kaarten painojen yhteenlaskun tilalle maksimin ottaminen. Tarkastelemalla Dijkstran algoritmin oikeellisuustodistusta voidaan havaita, että kaikki sen päättelyaskelet ovat valideja myös tätä etäisyysmittaa käytettäessä. (Huomaa, että negatiiviset kaaret eivät ole ongelma, koska maksimioperaatiota käytetäessä kaaren lisääminen ei koskaan pienennä polun pituutta, toisin kuin yhteenlaskulla negatiivisen painon kanssa.) Pisteytys: Algoritmista on annettu 8 pistettä, joista yksi aikavaativuuden toteamisesta, ja oikeellisuuden perustelusta 2 pistettä. Selvästi edellä esitettyjä tehottomammista ratkaisuista (esim. Bellman-Ford) on vähennetty 2 pistettä.
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
Lisätiedot58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.
Lisätiedot58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta
Lisätiedot58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
LisätiedotAlgoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
Lisätiedot2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
LisätiedotEräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.
5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,
LisätiedotPienin virittävä puu (minimum spanning tree)
Pienin virittävä puu (minimum spanning tree) Jatkossa puu tarkoittaa vapaata puuta (ks. s. 11) eli suuntaamatonta verkkoa, joka on yhtenäinen: minkä tahansa kahden solmun välillä on polku syklitön: minkä
LisätiedotAlgoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Lisätiedot13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
LisätiedotV. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
LisätiedotHakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
LisätiedotAlgoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Lisätiedot58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja
1 Tietorakenteet (kevät 08) 1. kurssikoe, ratkaisuja Tehtävän 1 korjasi Mikko Heimonen, tehtävän 2 Jaakko Sorri ja tehtävän Tomi Jylhä-Ollila. 1. (a) Tehdään linkitetty lista kaikista sukunimistä. Kuhunkin
LisätiedotAlgoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
Lisätiedot3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.
3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta
LisätiedotAlgoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
LisätiedotAVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta
AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja
Lisätiedot4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
Lisätiedotverkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
LisätiedotAlgoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
LisätiedotTarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
LisätiedotOlkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,
Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.
LisätiedotValitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.
Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:
Lisätiedot811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
LisätiedotOikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.
Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä
LisätiedotLuku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
LisätiedotTietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
LisätiedotGraafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
LisätiedotAlgoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
LisätiedotAlgoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu
Lisätiedot10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
LisätiedotAlgoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
LisätiedotAlgoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
Lisätiedot= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
LisätiedotEsimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
LisätiedotAlgoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus
LisätiedotAlgoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
LisätiedotAlgoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
LisätiedotAlgoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja
58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät
LisätiedotAlgoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
LisätiedotFibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla.
4.2 Fibonacci-kasat Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. Pääsiallinen ero on, että paljon Decrease-Key-operaatioita sisältävät jonot nopeutuvat. Primin algoritmi pienimmälle
Lisätiedotj(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)
MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!
Lisätiedot(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:
Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan
Lisätiedotisomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
LisätiedotAlgoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Lisätiedot5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat:
5. Keko Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: Insert(S, x): lisää avaimen x prioriteettijonoon S Maximum(S):
Lisätiedot1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
LisätiedotPinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä
LisätiedotLyhin kahden solmun välinen polku
Lyhin kahden solmun välinen polku Haluamme etsiä lyhimmän polun alla olevan ruudukon kohdasta a kohtaan b vierekkäisten (toistensa sivuilla, ylä- ja alapuolella olevien) valkoisten ruutujen välinen etäisyys
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
LisätiedotAlgoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
LisätiedotLuku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015)
58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
LisätiedotTietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29
LisätiedotInduktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
LisätiedotTehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja
LisätiedotTietorakenteet, esimerkkivastauksia viikon 12 laskareihin
Tietorakenteet, esimerkkivastauksia viikon laskareiin (a) Oletetaan seuraavan kuvan mukainen verkko ja etsitään lyyimpiä polkuja solmusta Ensimmäiseksi käsitellään solmu B, jonka etäisyys on kolme Seuraavaksi
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
Lisätiedot811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
LisätiedotDatatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
LisätiedotTietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu
Lisätiedot811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
LisätiedotBinäärihaun vertailujärjestys
Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea
Lisätiedotv 8 v 9 v 5 C v 3 v 4
Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi
LisätiedotAlgoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Lisätiedotprivate TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;
Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden
Lisätiedot10. Painotetut graafit
10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä
LisätiedotKokeessa saa olla mukana A4:n kokoinen kaksipuoleinen kynällä tehty, itse kirjoitettu lunttilappu
Toinen kurssikoe Koe to 5.5 klo 9-12 salissa A111, koeaika normaalista poiketen 2h 45 min Kokeessa saa olla mukana A4:n kokoinen kaksipuoleinen kynällä tehty, itse kirjoitettu lunttilappu lunttilapun teossa
LisätiedotTietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
LisätiedotKönigsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )
Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,
Lisätiedotja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
LisätiedotVerkon virittävät puut
Verkon virittävät puut Olkoon G = (V, E) suuntaamaton yhtenäinen verkko verkon yhtenäisyydellä tarkoitamme että kaikki verkon solmut ovat saavutettavissa toisistaan, eli verkossa ei ole erillisiä osia
Lisätiedot1 Puu, Keko ja Prioriteettijono
TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun
LisätiedotAlgoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
LisätiedotTietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5
LisätiedotMiten käydä läpi puun alkiot (traversal)?
inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu
LisätiedotAlgoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Lisätiedotb) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan
Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
LisätiedotKurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä
LisätiedotAlgoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
Lisätiedot14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut
JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti
Lisätiedot