Location Systems. Petteri Nurmi
|
|
- Juuso Siitonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Location Systems Petteri Nurmi
2 Questions Which dimensions can be used to characterize location systems? Which criteria can be used to evaluate location systems? What is proximity sensing and what kind of sensor technologies can be used with it? What is a pseudorange? What are Keplerian elements and what is an ephemeris? Which error sources affect GPS accuracy? How GSM positioning works? What is dead reckoning?
3 Location Systems System that provides measurements that can be used to determine the position of an entity Possible dimensions for characterizing location systems: Location representation Scale Location system type Measurement Error sources
4 Location Systems - Representation and Scale Location representation Absolute: coordinates specified according to some reference system Relative: distance and orientation from a specific reference point Symbolic: semantic name, e.g., name of a room or street address Scale Worldwide: works everywhere in the world Local: works in a specific area / region Outdoors or indoors: works only indoors or outdoors
5 Location Systems - Location System Type Active or passive Determines whether client transmits anything or not Client-based Client is responsible for estimating its own position without assistance from network infrastructure Network-based Network infrastructure is responsible for estimating the location of the client Network-assisted Client and network infrastructure both participate in determining the location
6 Location Systems - Location System Type Active or passive Determines whether client transmits anything or not Client-based Client is responsible for estimating its own position without assistance from network infrastructure Network-based Network infrastructure is responsible for estimating the location of the client Network-assisted Client and network infrastructure both participate in determining the location
7 Location Systems - Measurement Refers to the signal and type of measurement that is used for position estimation Types of signal: radio, infrared, ultrasound Measurement types ID: Identifier of a radio beacon RSS: Received signal strength of a radio beacon Time: Time of flight or time difference or arrival Angle: Orientation between transmitter and receiver
8 Location Systems - Evaluation Criteria Accuracy: difference between estimate location and true location Kilometer, meter or centimeter level accuracy Consistency: how often a reported position accuracy can be obtained Typically reported in terms of percentiles For example, 95-percentile of 12cm means that system error is within 12cm 95% of times Latency Time period between a position request and delivery of position fix
9 Accuracy and Consistency Consistency often represented using a table that contains accuracy at selected percentiles The i th percentile is the i th value when performance measures are sorted Common percentiles: median (50), and highorder percentiles (95, 99, 100) 100-percentile = worst case error Alternative is to use CDF plots Percentiles on the x-axis, error on the y-axis
10 Accuracy and Consistency Example Ground truth Estimates Error (meters) percentile: percentile:
11 Location Systems - Evaluation Criteria Overhead Signaling overhead: additional burden on communication infrastructure Computation overhead: burden on client/infrastructure resulting from necessary calculations Power overhead: how much power is required from the terminal Roll-out and operating cost Roll-out costs refer to expenditure required to make the system operational Operating costs refer to expenditure required to maintain the system operational
12 Location Systems Error Sources As discussed during previous lecture, measurements provided by location systems are inaccurate Noise in measurements causes errors in distance / angle values Geometry of reference points amplifies effects of noise Errors in coordinates of reference points can cause further errors Dilution of Precision (DoP) characterizes how range and geometry affect position estimates
13 Error Sources Geometry Reference point geometry has a strong influence on positioning accuracy When reference points orthogonal, the size of the region of uncertainty smallest As reference points move closer to each other, size of the region of uncertainty increases
14 Error Sources Clock Errors Clocks have two main components Oscillator: creates a consistent frequency Counter: translates frequency cycle s of oscillator into a common time unit Oscillators inaccurate and susceptible to variations (i.e., instable) è need for clock synchronization Time offset: difference in time between two clocks Clock drift: error in absolute time over a period of time Clock models used to reduce effect of clock errors
15 Error Sources Clock Errors: Example Signals propagate (approximately) with the speed of light c = m/s è small errors in time can cause HUGE errors Example: Delay of 1ms causes a distance error of meters Normal clock errors in the magnitude of 10-6 or smaller For long distances and accurate position estimation, clock accuracy essential è GPS uses high precision atomic clocks Errors in the magnitude of
16 Error Sources Atmospheric Effects Source: wiki/refractive_index Source: /wiki/ionosphere Propagation follows speed of light only in a vacuum Refractive index: speed of light in a particular medium Refraction: change in direction of a wave, occurs when a wave enters from one medium to another Ionosphere Electronically charged outer layer of the Earth s atmosphere, ionic intensity varies according to time of day and solar radiation Refraction in ionosphere can cause errors of tens of meters Troposphere: lowest part of the atmosphere Refraction in troposphere can cause errors in distance estimates that are up to 250cm in magnitude Satellite positioning systems use models of atmospheric refraction to reduce the influence of atmospheric effects
17 Error Sources Multipath Propagation Source: wiki/multipath_propaga tion Propagation phenomenon caused by signal reaching receiver along various paths Reflection: when wavelength of signal much shorter than size of obstacles, signals reflect Diffraction: bending of a signal as it hits on irregularities of an obstacle Scattering: signal multiplied at obstacles whose size is less or the same magnitude as the signal s wavelength Reflection Diffraction Scattering
18 Location Systems Proximity Sensing First indoor positioning systems were based on proximity, i.e., closeness of a reference point Essentially a variation of trilateration where only a single reference point can be observed Uncertainty determined by the range of the transmitters The higher the positioning accuracy requirement, the higher the cost for infrastructure Limitations in terms of Range Latency Receiving angle
19 Location Systems ActiveBadge Source: s/index.html One of the first indoor location tracking systems Introduced by Olivetti Research Laboratory (Cambridge, UK) in 1992 Badge transmits IR signal every seconds Receivers that detected the signal store information about badge location in a central database Location of receivers known, position of client can be estimated from badge observations Designed to operate up to 6m away from a sensor However, infrared generally weak and are only slightly reflected and scattered è line-of-sight usually needed
20 Location Systems Wireless Indoor Positioning System Variant of ActiveBadge, position estimated on the terminal instead of the network infrastructure Transmitters installed in the infrastructure When badge receives signal from transmitter, it sends information using WLAN to a central server
21 Proximity Sensing Other Techniques Radio Frequency Identification (RFID) Radio signals that are exchanged between a reader and tags (or transponders) Active tags: use own power supply Passive tags: draw energy from signals emitted by reader Essentially a proximity sensing technique Bluetooth Wireless technology for transmitting data over short distances Proximity sensing or trilateration can be used for position estimation Main issue latency due to Bluetooth scanning and difficulty in obtaining suitable transmitters
22 Proximity Sensing Beacon Scan Request Instead of requiring dedicated badges, recently several systems that identify mobile devices Overall principle same as in Active Badge Devices detected from beacon broadcast messages, which are performed while scanning for devices Position estimated as the location within infrastructure where scan observed ibeacon: Bluetooth Low Energy (BLE) WalkBase: WiFi
23 ibeacon
24 Walkbase
25 Estimating Distances Recall (from previous lecture) that trilateration can be used to estimate position with distance measurements Two reference points required Four main methods (3 time, 1 signal-based): Time of arrival: travel time from transmitter to receiver requires synchronization between them Time difference of arrival: difference in arrival times between multiple receivers Requires synchronization between receivers Round-trip time: time from transmitter to receiver and back (or vice versa) Signal strength: Propagation modeling based on signal decay
26 Source: esearch/dtg/research/wiki /BatSystem/BatPhotos Location Systems Ultrasound I: ActiveBat Ultrasonic location tracking system Receivers dispersed in environment Tags emit short ultrasound pulses Position estimated using trilateration Receivers use radio frequency to cue for badges When badge receivers cue, it emits an ultrasound pulse Receiver uses time difference between sending the cue and receiving the ultrasound pulse to estimate distance Acoustic signals travel significantly slower than radio signals è delay from the polling signal negligible
27 Location Systems Ultrasound II: Cricket Source: ojects/cricket/ Beacons affixed to the environment emit RF message together with ultrasound pulse Ultrasound pulse used to estimate distance from beacons RF messages contain information about beacon positions Trilateration can be used to estimate the position of the client given a set of beacon observations Ultrasound does not penetrate obstacles è lineof-sight required Trilateration è at least three beacons need to be observed
28 Location Systems Ultrasound III: Relate Source: Source: ac.uk/software/ Peer-to-peer ultrasound positioning sensing system that provides relative position information Estimates distance and angle between devices Non-linear regression used to estimate relative 2D positions of objects Ad hoc radio communications used to exchange information between objects Provides also time synchronization Enables refining estimates of objects
29 Location Systems: Ultra-wide band Low-energy, high-bandwidth, short-range Wide-band = uses large portion of radio spectrum (> 500 MHz) In positioning, between 3.1 and 10.6 GHz (regulated) Very high accuracy, but short range implies high installation costs Positioning can be based either on distance (trilateration) or angular direction (triangulation) Distance: time of arrival (TOA), time difference of arrival (TDOA), round trip time (RRT), propagation modeling
30 Ubisense (Ultrawide Band UWB)
31 Satellite Positioning Trilateration-based positioning approach Reference points are satellites on a specific orbit Distances from satellites measured using one way time-offlight measurements Position of a satellite specified by its orbit Regular and repeating path around the Earth Orbit plane: orbit position with respect to equatorial plane Orbit shape: circle or ellipse specifying how the satellites moves around the earth Orbit altitude: height from surface of Earth, determines period needed to circulate Earth Orbit specified by six parameters known as Keplerian elements
32 Satellite Positioning Keplerian Elements Source: /wiki/keplerian_elem ents Shape of orbit specified by Eccentricity: the flattening of a circle needed to transform it into an ellipse Semi-major axis: diameter/size of the ellipse See Lecture I Orientation of orbital plane specified by: Inclination: tilt of the reference plane Right ascension of ascending node: point where the satellite crosses equatorial plane Position of the satellite specified by: Argument of perigree: orientation in which an ellipse is flattened compared to a circle True anomaly: angle between perigree (2 in image) and satellite s position
33 Global Positioning System (GPS) Some History Satellite navigation system Initiated in the 1970s Fully operational in 1995 Initially designed for the needs of tactical bombers: Accurate 3D position worldwide Passive receivers (to not reveal position to enemy)
34 Global Positioning System (GPS) Position Estimation Positioning based on trilateration 24+ satellites orbiting the earth (currently 31) Satellites broadcast messages that contain Orbital position of the satellite System time of the satellite Receivers on earth listen for the broadcasts and estimate their distance from the satellites Messages weak è GPS does not work indoors Position can be solved from (at least three) range equations:
35 Global Positioning System (GPS) Position Estimation Range estimates valid only if satellite and clock receivers synchronized In practice not the case Solution: consider receiver clock offset as an unknown variable Estimates called pseudoranges (biased range) Include a term for other error sources
36 Global Positioning System (GPS) Error Sources With pseudoranges, position estimation requires at least 4 satellites GPS errors consist of two components Pseudorange error Less than 10 meters with modern receivers Dilution of precision GDOP: Geometric Dilution of Precision; overall accuracy PDOP: Positional Dilution of Precision; 3D position HDOP: Horizontal Dilution of Precision; latitude and longitude VDOP: Vertical Dilution of Precision; altitude TDOP: Temporal Dilution of Precision; clock offset
37 Global Positioning System (GPS) How to calculate DOP values? Differentiate the pseudorange equations with respect to the unknown variables Define Q = (A T A) -1 GDOP = trace(q) TDOP = (Q 44 ) PDOP = (Q 11 + Q 22 + Q 33 ) HDOP = (Q 11 + Q 22 ) VDOP = (Q 33 )
38 Global Positioning System (GPS) It can be shown that the differentiated pseudorange matrix is given by Where
39 Global Positioning System (GPS) Consider the following measurements: Substituting the values gives:
40 Global Positioning System (GPS) The DoP matrix is then given by: From which we can calculate the DoP values: GDOP = trace(q) = 17.6 TDOP = (Q 44 ) = 9.3 PDOP = (Q 11 + Q 22 + Q 33 ) = 14.9 HDOP = (Q 11 + Q 22 ) = 3.7 VDOP = (Q 33 ) =
41 Global Positioning System - Dual Frequency Ranging GPS navigation messages transmitted along two carrier frequencies L1 (154 f 0 ) and L2 (120 f 0 ) f 0 equals the fundamental frequency of the satellite s clocks (10.23 MHz) Dual-frequency ranging considers messages transmitted on both carrier frequencies Allows differentiating for estimating effect of ionospheric refraction è improvements in accuracy (UERE) Access restricted to military use
42 Global Positioning System Differential GPS (D-GPS) Navigation messages from satellites observed at a reference station located at a known position Orbital information can be used to estimate the true distance between the reference station and satellite This can be compared against estimated distance given by the navigation messages Difference in distances specifies effect of atmospheric, ephemeric and clock errors Reference stations transmit correction parameters that receivers can use for adjusting range estimates
43 Global Positioning System: Signal (Re-)Acquisition Two types of satellite information: Ephemeris: precise orbital position Almanac: coarse-grained information that is used to acquire satellite fix Cold start: no information about satellite locations ( 1 minute) Warm start: almanac and last position If position changed, can cause outliers Hot start: ephemeris data available
44 GSM Global System for Mobile Communications Worldwide cellular telephone standard First deployed in 1992 Network divided to base stations and cells Each cell linked with one base station Each base station serves multiple cells Cells grouped into clusters, clusters have unique LAI (location area identifier) Client knows cell ID, Network knows LAI
45 GSM Positioning Positioning can be performed either on the client side (handset-based) or on the network-side Handset-based techniques typically more accurate, but require installing software on the client Fingerprinting or beacon-based positioning Network-based techniques can be used to position all handsets without modifications to them Cell identifier positioning, timing advance, TDOA, Network-assisted: estimation on the client, but network infrastructure used to help Assisted GPS
46 GSM Positioning Components Location Measurement Unit (LMU) Responsible for performing timing (or angle) measurements from a client Essential for infrastructure-based positioning Service Mobile Location Center (SMLC) Controls positioning process, including LMUs, and calculates position fixes Cell Broadcast Center (CBC) Broadcasts positioning assistance data to terminals, used in E-OTD positioning
47 GSM Cell Identifier Positioning Simplest technique is to use proximity sensing Client knows cell ID è coordinates of the corresponding GSM tower can be used as estimate When cell tower locations not known, they can be estimated from empirical measurements E.g., average of the locations where the RSS is strongest Problem GSM cell size varies and can be up to 30km Around 150 meters in dense urban areas, meters in other urban areas and up to several kilometers in rural areas Accuracy depends on GSM cell density
48 GSM Timing Advance (TA) TA characterizes the time that is needed for a signal to reach the base station from a mobile client Network parameter that controls adjustments needed to prevent collisions between users Divided into 64 steps, each step representing an advance of one bit period, or approximately 553.5m TA value together with cell identifier can be used to estimate locations TA value determines a circular region within which the client is positioned
49 GSM E-OTD Enhanced Observed Time Difference Handset measures arrival times or differences in arrival times between base station pairs Trilateration or multilateration can then be used to estimate position of the client Time synchronization needed for estimation GSM standard does not cover this è separate location measurement units (LMUs) used to measure time offsets and achieve a posteriori synchronization Details out of scope for the course Also defined for UMTS
50 GSM U-TDoA Uplink Time Difference of Arrival Network infrastructure based multilateration approach Base station and additional LMUs measure differences in the time when a handset transmission is received At least three LMUs needed to estimate the position Network can only measure transmission time when mobile device is in busy state Cell handover or active transmission (call, SMS, data) Network generates a pseudo-handover signal which triggers the client into busy mode
51 Assisted GPS Solution that facilitates obtaining a satellite fix Designed for mobile phones that have integrated GPS receiver Assisting server collects satellite data and provides information about satellites to client Client can find satellites more rapidly Network can also provide correction data to improve position estimation accuracy
52 Estimating Angular Directions Recall (from previous lecture) that triangulation can be used to estimate position with angular measurements Two reference points required Two main methods for estimating angles of arrival Beamforming: fixed number of beams used to scan plane, angle corresponds to beam with highest power Multiarray systems: multiple receivers organized into an array and used to estimate angle Two main signal sources: Acoustic: ultrasound, speech, or other audible sounds Radio signal: delays in observed signal patterns
53 Estimating Angular Directions: Multiarray Systems P 0 a T x P 1 Based on variations of time difference of arrival Basic equation: TDOA = cos(a) (P 1 P 0 ) / c a is the angle the source makes to the plane connecting two receivers P 1 and P 0 are the locations of two receivers c is propagation speed Relative time delay can be estimated from (discrete) Fourier transform of the delayed signal Classical methods: least squares, Bartlett, Subspace methods: Multiple Signal Classification (MUSIC) Performance depends on SNR (signal-to-noise ratio) Highly varying computational complexity between different approaches
54 Example: Quuppa HAIP (High Accuracy Indoor Positioning) Triangulation based on single reference point (2D) Ceiling of indoor space mounted with locators Angular direction of tags estimated within the locator If the location and height of the locator, and an approximate height of the tag are known, 2D position can be estimated 3D position requires two observable locators Submeter accuracy: typically 0.5 1m Depends on density and configuration of locators Works best in open ceiling areas
55 Quuppa
56 Dead (or deduced) Reckoning Source: org/wiki/dead_rec koning Estimate position using extrapolation from last known position Also referred to as inertial navigation Requires information about Direction of motion E.g., compass or gyroscope Velocity of motion or distance travelled since last known position E.g., accelerometers or odometers Errors in motion measurements amplify over time è accuracy drifts and decreases over time
57 Dead Reckoning Let (x 0,y 0 ) denote the current position of the target New position (x 1,y 1 ) given by x 1 = x 0 + L cos α, y 1 = y 0 + L sin α Where L is the distance traveled If distance is not known, but velocity is, we have L = vδt y 1 y 0 x 0 x
58 Pedestrian Dead Reckoning (PDR) PDR special case of dead reckoning targeted at pedestrians Displacement (i.e., elapsed distance) estimated by analysing walking patterns of the user Distance: d = i=1 n l i n = number of steps l i = length of step i Accordingly, requires mechanisms for (i) counting steps and (ii) estimating their length Direction of motion estimated through multisensor fusion Accelerometer, gyroscope, and magnetomer Discussed in detail during the (separate) course Mobile Sensing (see: Widely studied in specialized domains using wearable sensors at fixed orientations
59 Other Location Systems Source: washington.edu/wiki/ PLP FM Radio FM signals are radio waves è propagation models or fingerprinting can be used to provide location Pressure floors Load sensors embedded within floor tiles PowerLine positioning Specialized modules emit signals along powerlines which tags carried by users sense Airbus positioning Determines room transitions and gross movement by sensing differential air pressure in a home Camera tracking
60 Summary Location systems can be characterized according to different dimensions Location representation, scale, type, measurement type, error sources Location systems can be evaluated according to various criteria Accuracy and consistency Latency and overhead Roll-out and operation cost
61 Summary Numerous different error sources possible Clock errors Geometry errors Noise in measurements Errors in reference point information Atmospheric effects Multipath effects (reflection, diffraction and scattering) Proximity sensing: infrared, RFID, Bluetooth Ultrasound Speed of sound slower than speed of radio waves (light) è RF based synchronization for pulses
62 Summary GPS Satellite positioning system providing 3D position and time worldwide GPS error consists of errors in pseudorange estimates and geometry errors (DOP) GSM positioning Cell Identifier positioning and Timing Advance E-OTD and U-TDoA Assisted GPS Dead reckoning Position extrapolation from previous estimates
63 Literature Küpper, A., Location-Based Services : Fundamentals and Operation, Wiley, 2005 Varshavsky, A. & Patel, S., Krumm, J. (Ed.), Location in Ubiquitous Computing Ubiquitous Computing Fundamentals, Chapman and Hall/CRC, 2010, Langley, R. B., Dilution of Precision, GPS World, 1999, 10, Want, R., The Active Badge Location System, ACM Transactions on Information Systems, 1992, Ward, A.; Jones, A. & Hopper, A., A new location technique for the active office IEEE Personal Communications, 1997, 4, Priyantha, N. B.; Chakraborty, A. & Balakrishnan, H., The Cricket location-support system, Proceedings of the International Conference on Mobile Computing and Networking (Mobicom), 2000, Hazas, M.; Kray, C.; Gellersen, H.; Agbota, H.; Kortuem, G. & Krohn, A., A relative positioning system for co-located mobile device, Proceedings of the 3rd international conference on Mobile systems, applications, and services (MobiSys), ACM, 2005,
64 Literature GPS and GSM Dixon, T. H., An Introduction to the Global Positioning System and Some Geological Applications, Reviews of Geophysics, 1991, 29, Enge, P. K., The Global Positioning System: Signals, Measurements, and Performance, International Journal of Wireless Information Networks, 1994, 1, Enge, P. & Misra, P., Special Issue on Global Positioning System, Proceedings of the IEEE, 1999, 87, 3-15 Getting, I. A., Perspective/Navigation - The Global Positioning System, IEEE Spectrum, 1993, 30, McNeff, J. G., The Global Positioning System, IEEE Transactions on Microwave Theory and Techniques, 2002, 50, Drane, C.; Macnaughtan, M. & Scott, C., Positioning GSM telephones, Communications Magazine, IEEE, 1998, 36, 46-54, 59 Silventoinen, M. I. & Rantalainen, T., Mobile station emergency locating in GSM Proceedings of the IEEE International Conference on Personal Wireless Communications, IEEE, 1996,
Location Systems Petteri Nurmi
Location Systems Petteri Nurmi 26.1.2012 1 Questions Which dimensions can be used to characterize location systems? Which criteria can be used to evaluate location systems? What is proximity sensing and
Location Systems. Petteri Nurmi
Location Systems Petteri Nurmi 20.3.2014 1 Questions Which dimensions can be used to characterize location systems? Which criteria can be used to evaluate location systems? What is proximity sensing and
Indoor Localization II Location Systems. Petteri Nurmi Autumn 2015
Indoor Localization II Location Systems Petteri Nurmi Autumn 2015 6.11.2015 1 Learning Objectives What are the main dimensions for categorizing location systems? Which are main error sources for indoor
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
Positioning Algorithms. Petteri Nurmi
Positioning Algorithms Petteri Nurmi 19.1.2012 1 Questions How triangulation works and where it is still used? How trilateration works? How can distances be measured? How multilateration differs from trilateration?
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.
T287/M03/2017 Liite 1 / Appendix 1 Sivu / Page 1(5) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD. Tunnus Code Laboratorio Laboratory Osoite Address www www T287
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus
AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva
Indoor Localization I Introduction and Positioning Algorithms Petteri Nurmi
Indoor Localization I Introduction and Positioning Algorithms Petteri Nurmi 29.10.2015 1 About the course Advanced course: networking and services subprogramme (also well suited for algorithms, data analytics,
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY GRANT4COM OY
T290/M05/2018 Liite 1 / Appendix 1 Sivu / Page 1(7) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY GRANT4COM OY Tunnus Code Laboratorio Laboratory Osoite Address www www T290 Grant4Com Oy
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY
T298/M05/2019 Liite 1 / Appendix 1 Sivu / Page 1(8) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY ETTEPLAN EMBEDDED FINLAND OY, TESTILABORATORIO ETTEPLAN EMBEDDED FINLAND OY, TEST LABORATORY
Positioning Algorithms. Petteri Nurmi
Positioning Algorithms Petteri Nurmi 19.1.2012 1 Questions What are the main positioning algorithms and how they work? Which two main factors influence positioning errors? What is dilution of precision?
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY
T297/A01/2016 Liite 1 / Appendix 1 Sivu / Page 1(7) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY NOKIA SOLUTIONS AND NETWORKS OY, TYPE APPROVAL Tunnus Code Laboratorio Laboratory Osoite
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL
Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
Mobile Sensing V Motion Analysis. Spring 2015 Petteri Nurmi
Mobile Sensing V Motion Analysis Spring 2015 Petteri Nurmi 31.3.2015 1 Learning Objectives Understand the basic motion related forces, their relationships, and how they can be sensed Why the accelerometer
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
HITSAUKSEN TUOTTAVUUSRATKAISUT
Kemppi ARC YOU GET WHAT YOU MEASURE OR BE CAREFUL WHAT YOU WISH FOR HITSAUKSEN TUOTTAVUUSRATKAISUT Puolitetaan hitsauskustannukset seminaari 9.4.2008 Mikko Veikkolainen, Ratkaisuliiketoimintapäällikkö
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
S Sähkön jakelu ja markkinat S Electricity Distribution and Markets
S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km
Metsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
Kvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
Vaisala s New Global L ightning Lightning Dataset GLD360
Vaisala s New Global Lightning Dataset GLD360 Vaisala Global Lightning Dataset GLD360 Page 2 / Oct09 / Holle-SW Hydro / Vaisala Schedule GLD360 Validation Applications Demonstration Page 3 / Oct09 / Holle-SW
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Travel Getting Around
- Location Olen eksyksissä. Not knowing where you are Voisitko näyttää kartalta missä sen on? Asking for a specific location on a map Mistä täällä on? Asking for a specific...wc?...pankki / rahanvaihtopiste?...hotelli?...huoltoasema?...sairaala?...apteekki?...tavaratalo?...ruokakauppa?...bussipysäkki?
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
Särmäystyökalut kuvasto Press brake tools catalogue
Finnish sheet metal machinery know-how since 1978 Särmäystyökalut kuvasto Press brake tools catalogue www.aliko.fi ALIKO bending chart Required capacity in kn (T) in relation to V-opening. V R A S = plates
Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a
, Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations
KMTK lentoestetyöpaja - Osa 2
KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...
Digitally signed by Hans Vadbäck DN: cn=hans Vadbäck, o, ou=fcg Suunnittelu ja Tekniikka Oy, email=hans.vadback@fcg.fi, c=fi Date: 2016.12.20 15:45:35 +02'00' Jakob Kjellman Digitally signed by Jakob Kjellman
Kvanttilaskenta - 2. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Lämmitysjärjestelmät
METSTA Rakennusten energiatehokkuusstandardit uudistuvat seminaari 26.4.2017 Lämmitysjärjestelmät Jarek Kurnitski HEAT GAINS BUILDING PROPERTIES CLIMATIC CONDITIONS INDOOR ENVIRONMENT REQUIREMENTS EN 16789-1
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY
T298/A01/2016 Liite 1 / Appendix 1 Sivu / Page 1(7) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY ESPOTEL OY, TESTILABORATORIO ESPOTEL OY, TEST LABORATORY Tunnus Code Laboratorio Laboratory
ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.
ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel Kalle Lehto, Aalto-yliopisto 5.5.2011 Otaniemi ReFuel a three year research project (2009-2011) goal utilize the
WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY
T298/M03/2018 Liite 1 / Appendix 1 Sivu / Page 1(6) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY ESPOTEL OY, TESTILABORATORIO ESPOTEL OY, TEST LABORATORY Tunnus Code Laboratorio Laboratory
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY
T298/M02/2017 Liite 1 / Appendix 1 Sivu / Page 1(6) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY ESPOTEL OY, TESTILABORATORIO ESPOTEL OY, TEST LABORATORY Tunnus Code Laboratorio Laboratory
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
TM ETRS-TM35FIN-ETRS89 WTG
VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please
Alternatives to the DFT
Alternatives to the DFT Doru Balcan Carnegie Mellon University joint work with Aliaksei Sandryhaila, Jonathan Gross, and Markus Püschel - appeared in IEEE ICASSP 08 - Introduction Discrete time signal
( ,5 1 1,5 2 km
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km
WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum
Microsoft Lync 2010 Attendee
VYVI MEETING Lync Attendee 2010 Instruction 1 (15) Microsoft Lync 2010 Attendee Online meeting VYVI MEETING Lync Attendee 2010 Instruction 2 (15) Index 1 Microsoft LYNC 2010 Attendee... 3 2 Acquiring Lync
TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo
TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,
Review Petteri Nurmi
Review Petteri Nurmi 21.2.2012 1 Overview of the Course I: Measuring and estimating location information II: Analysing and understanding location data Representing location, location systems, positioning
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum
WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing. 13.10.2010 Jan Nyman, jan.nyman@posintra.fi
WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing 13.10.2010 Jan Nyman, jan.nyman@posintra.fi Background info STOK: development center for technology related to building automation
I. Principles of Pointer Year Analysis
I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.
,0 Yes ,0 120, ,8
SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered
GNSS-vastaanottimet. Havaintosuureet
GNSS-vastaanottimet vastanottimien tyyppejä antennit signaalin havaitseminen Havaintosuureet Nyt: C/A-koodi L1 L1-kantoaalto L1 Doppler L2 kantoaalto L2 Doppler P-koodi L1 P-koodi L2 Tulevaisuudessa: C/A-koodi
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä https://ec.europa.eu/futurium/en/ public-procurement Julkiset hankinnat liittyvät moneen Konsortio Lähtökohdat ja tavoitteet Every
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
Exercise 1. (session: )
EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety
7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija 1 Asemoitumisen kuvaus Hakemukset parantuneet viime vuodesta, mutta paneeli toivoi edelleen asemoitumisen
FPGA-piirien käyttökohteet nyt ja tulevaisuudessa Tomi Norolampi
FPGA-piirien käyttökohteet nyt ja tulevaisuudessa Tomi Norolampi ESITYKSEN SISÄLTÖ Flexibilis Oy lyhyesti FPGA FPGA-teknologian nykytilanne ja tulevaisuus Kaupallinen näkökulma Uudelleenkonfiguroinnin
Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
Newtonin painovoimateoria Knight Ch. 13 Saturnuksen renkaat koostuvat lukemattomista pölyhiukkasista ja jääkappaleista, suurimmat rantapallon kokoisia. Lisäksi Saturnusta kiertää ainakin 60 kuuta. Niiden
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Esityksen sisältö: 1. EU:n energiapolitiikka on se, joka ei toimi 2. Mihin perustuu väite, etteivät
Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.
..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän
AFCEA 3.11.2009 PVTO2010 Taistelija / S4
AFCEA 3.11.2009 PVTO2010 Taistelija / S4 -Jukka Lotvonen -Vice President, Government Solutions -NetHawk Oyj NetHawk Government Solutions PRIVILEGED Your Wireless Forces NetHawk in Brief - Complete solutions
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Indoor Positioning: Technologies and Use Cases in Retail Context
Indoor Positioning: Technologies and Use Cases in Retail Context Annukka Karppinen School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo
Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)
Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:
S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen
Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014
Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014 Jarmo Partanen, professori, Lappeenrannan yliopisto jarmo.partanen@lut.fi +358 40 5066 564 Electricity Market, targets Competitive
Group 2 - Dentego PTH Korvake. Peer Testing Report
Group 2 - Dentego PTH Korvake Peer Testing Report Revisions Version Date Author Description 1.0 Henrik Klinkmann First version Table of Contents Contents Revisions... 2 Table of Contents... 2 Testing...
Land-Use Model for the Helsinki Metropolitan Area
Land-Use Model for the Helsinki Metropolitan Area Paavo Moilanen Introduction & Background Metropolitan Area Council asked 2005: What is good land use for the transport systems plan? At first a literature
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
Ensimmäinen välikoe. Kurssin voi suorittaa tentillä tai kahdella välikokeella
Ensimmäinen välikoe Kurssin voi suorittaa tentillä tai kahdella välikokeella Tentissä hyväksytyn arvosanan raja on 15/30 pistettä Vastaavasti molemmista välikokeista on saatava vähintään 15/30 pistettä