Metallien plastinen deformaatio on dislokaatioiden liikettä
Särmädislokaatio 2
Ruuvidislokaatio 3
Dislokaatioiden ominaisuuksia Eivät ala/lopu tyhjästä, vaan: muodostavat ympyröitä alkavat/loppuvat raerajoille, toisiin dislokaatioihin, tms. Särmädislokaatiot ovat rajoittuneet tietylle liukutasolle (aiheuttamansa siirtymän suunnassa) Ruuvidislokaatiot voivat liikkua liukutasoilla aiheuttamaansa siirtymään nähden kohtisuorassa
Mistä lujuus syntyy Mikä vastustaa dislokaatioiden liikettä? 5
Dislokaatioiden liikevastus Sisäinen vastus Jaksottainen voima Riippuu atomien välisestä etäisyydestä - Mitä suurempi atomitasojen välinen etäisyys, sitä pienempi voima tarvitaan dislokaation siirtämiseen - Mitä pienempi atomien välinen etäisyys tasossa sitä pienempi voima tarvitaan dislokaation siirtämiseen Peierls -jännitys tiivispakkauksellisilla tasoilla Peierls-jännitys on mitättömän pieni
Lujuus Jos Peierls-jännitys on mitättömän pieni, miksi metalleilla on lujuutta? Miksi murtolujuus on suurempi kuin myötölujuus? Miksi metallit lujittuvat muokkauksessa?
Dislokaation jännitystila
Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta Poistovoima Vetovoima
Vuorovaikutus hilan kanssa Vastaavasti dislokaatiot reagoivat muihin jännityskenttiin hilassa: Seosatomit Erkaumat jne. 10
Ristikkäisillä atomitasoilla liukuvat dislokaatiot aiheuttavat siirtymiä toisiinsa Siirtymät vaikeuttavat dislokaatioiden liikettä 11
Mistä dislokaatiot tulevat Frank-Reedin dislokaatiogeneraattori
Dislokaatioiden syntyminen
Dislokaatioiden syntyminen Kuormitus synnyttää dislokaatioita Frank-reedin dislokaatiolähde Muita (tuntemattomia) mekanismeja Plastisen deformaation aikana dislokaatioiden määrä kasvaa 14
Lujuus Lujuus riippuu dislokaatioiden liikevastuksesta Lujittuminen tapahtuu dislokaatioiden liikettä vaikeuttamalla toisia dislokaatioita jännityskenttiä hilaan - seosatomeja - vieraan faasin erkaumia - jne. 15
Muokkauslujittuminen Plastinen deformaatio aiheuttaa dislokaatioiden määrän kasvun Dislokaatiot häiritsevät enenevässä määrin toistensa liikettä Dislokaatioiden liike vaikeutuu Lujuus kasvaa plastisen deformaation vaikutuksesta Materiaali muokkauslujittuu
Dislokaatioita
Kaksostuminen Voimakkaassa deformaatiossa voi tapahtua kaksostumista (twinning), jossa kiteen suunta kääntyy kiteen sisään syntyy pieni-energinen kulmamuutos (dislokaatioiden välittämä) Mahdollistaa deformaation, jota dislokaatiot eivät voi välittää
Kaksonen
Kaksoset Vaihtoehtoinen deformaatiomekanismi Kiteeseen muodostuu pienienergisiä pienen kulman rajoja
Diffuusio
Vakanssit Pistemäisiä hilavirheitä Mahdollistavat diffuusion 22
Diffuusio Vakanssit liikkuvat metallihilassa satunnaisesti liike lämpötilan aktivoimaa mitä korkeampi lämpötila, sitä suurempi liikenopeus (ja sitä enemmän vakansseja) Huoneenlämpötilassa diffuusio erittäin hidasta 24
Diffuusio Atomit sekoittuvat metalleissa Koostumuserot tasoittuvat Analoginen lämmönsiirtymisen kanssa 25
Vakanssit ja jännitys Myös vakanssit aiheuttavat ympärilleen jännityskentän => jännitys vaikuttaa vakanssien liikkeeseen Vakanssit (diffuusio) voivat myös välittää atomien järjestäytymistä pienempienergiseen tilaan Korkeassa lämpötilassa kidevirheet korjaantuvat Korkeassa lämpötilassa dislokaatiot korjaantuvat Korkeassa lämpötilassa kiderakenne voi muodostua uudelleen rekristallisaatio Korkeassa lämpötilassa raekoko kasvaa 26
Metallien kiderakenne
Monirakeinen metalli Jähmettymisen yhteydessä metallit kiteytyvät atomit pinoutuvat toistensa lomaan siten, että energia minimoituu Jähmettyminen alkaa useasta kiteytymisytimestä Kiteiden suunnat satunnaisia Näin muodostuneet kiteet ( rakeet ) liittyvät toisiinsa Kiteiden väliin jää rajoja (raerajoja) joissa eri tavalla suuntautuneet kiteet liittyvät toisiinsa
Rakeet
Raerajat 30
Raerajat Atomit liittyvät toisiinsa myös raerajoilla välissä ei ole ei-kiteistä ainetta tms. Atomit eivät sovi toistensa lomaan yhtä hyvin raerajoilla korkeampi energia välttämättömiä dislokaatioita Dislokaatiot eivät voi liikkua raerajojen yli Dislokaatiot pinoutuvat/jonoutuvat raerajoille, ja aiheuttavat jännityskeskittymiä
Raekoko Raekoko vaihtelee materiaaleilla riippuen Valmistuksesta Lämpökäsittelystä jne. Tyypillisesti kymmeniä tai satoja mikrometrejä Voidaan tehdä makroskooppisia erilliskiteitä Raekoko satoja mm Voidaan tehdä hyvin hienorakeisia ( nanokiteisiä ) materiaaleja, joissa raekoko << 1 µm
Raekoko Pieni raekoko lisää lujuutta Pieni raekoko lisää sitkeyttä
Jähmeän tilan muutokset Korkeassa lämpötilassa raekoko pyrkii kasvamaan Voimakkaasti muokatussa materiaalissa voi käynnistyä uudelleenkiteytyminen ( rekristallisaatio ) Materiaalissa tapahtuvat kidemuodon muutokset (esim. lämpötilan muutoksen vaikutuksesta) voivat aiheuttaa uudelleenkiteytymisen
Monikiteisen materiaalin deformaatio Monikiteisen materiaalin deformaatio vaatii satunnaisesti orientoituneiden kiteiden deformoitumista Materiaalin tilavuus pysyy samana Tarvitaan 5 riippumatonta liukusysteemiä, jotta voidaan välittää mielivaltainen deformaatio
Metallien kidetyypit
Kiderakenne Metalliatomit pinoutuvat eri tavoin Pinoutuminen vaikuttaa lujuuteen, sitkeyteen ja muihin ominaisuuksiin
Uudelleenkiteytyminen voi tapahtua kiinteässä tilassa Eri metalleilla erilainen kidemuoto Joillain metalleilla voi olla useita stabiileja kidemuotoja (eri lämpötiloissa) Esim. teräs: - <912 C => BCC ferriitti - 912 C - 1394 C => FCC austeniitti - 1394 C - 1538 C => BCC delta-ferriitti
Tiivispakkaukselliset 43
PKK 44
PKK Pintakeskinen kuutiollinen hila (PKK) Face centered cubic (FCC) Tiivispakkauksellinen Peiers -jännitys hyvin pieni Useita ristikkäisiä tiivispakkauksellisia tasoja 5 riippumatonta, tiivispakkauksellista liukusysteemiä
Ominaisuudet Suuri muodonmuutoskyky ja sitkeys Matala lujuus Voimakas muokkauslujittuminen Esim: alumiini, kupari, nikkeli
Esim. Alumiini
TPH 48
TPH Tiivispakkauksellinen heksagonaalinen (TPH) Close packed hexagonal (CPH) Liukuminen tiivispakkauksellisissa tasoissa helppoa Liukuminen muissa tasoissa vaikeaa Vain neljä riippumatonta liukusysteemiä joilla liukuminen helppoa tarvitaan kaksostumista tai liukumista vaikeammilla tasoilla mielivaltaisen deformaation välittämiseen Esim.: koboltti, tina 49
TKK 50
TKK Tila keskinen kuutiollinen (TKK) Bace centered cubic (BCC) Ei tiivispakkauksellisia tasoja => suuri Peierls jännitys Suuri lujuus Vähäinen muokkauslujittuminen Riittävästi riippumattomia liukutasoja Esim: teräs
Teräs jännitys-venymäkäyrä
Metalliseokset
Metalliseokset Metallit liuottavat vieraita aineita (tiettyyn rajaan saakka) Korvaus- tai välisija-atomeina Faasit
Välisija-atomit Hakeutuvat hilan koloihin FCC hilassa vähemmän tyhjää tilaa, mutta isommat kolot kuin BCC - Liukoisuus suurempi Venyttävät ja vääristävät hilaa Välisija-atomit pienempiä kuin kantafaasin atomit Esim: - hiili teräksessä - boori teräksessä Liukoisuus tyypillisesti verraten pientä
Korvausatomit Korvaavat kantafaasin atomipaikan hilassa Eri kokoisina vääristävät ja venyttävät hilaa Korvausatomit samaa suuruusluokkaa kuin kantafaasin atomit Hyvin samankokoiset atomit liukenevat toisiinsa hyvin Esim: Cu - Ag
Faasit Liukoisuusalueen ulkopuolella muodostavat oman faasin Aine koostuu eri tavalla kiteytyneistä ja eri koostumuksen omaavista alueista toistensa lomassa
Pallografiittivalurauta
Rauta-hiili
Perliitti 62
Mikrorakenne
Mikrorakenne - yhteenveto Seoksen faasit ja näiden jakaantuminen morfologia kaksifaasirakenne erkaumat sulkeumat raerajafaasit Raerakenne Raekoko Suuntautuneisuus Kideorientaatio tekstuuri Hilavirheet Raerajat Dislokaatiot Vakanssit
Faasit
Faasit sulkeumia 67
Faasit - sulkeumia 68
Raerakenne
Dislokaatiot
Vakanssit 73
Mikrorakenne Dynaamiset ilmiöt Atomisidosten venyminen => Elastinen deformaatio (jännitys) Jännityksen ajama Dislokaatioiden liike => plastinen deformaatio Jännityksen ajama Vakanssien liike =>diffuusio Lämpötilan ajama Rakeenkasvu Minimienergian ajama Diffuusion välittämä Rekristallisaatio Minimienergian ajama Diffuusion välittämä 74
Diffuusion vaikutus dislokaatioihin Korkeissa lämpötiloissa diffuusio voi auttaa dislokaatioiden liikettä dislokaatioiden kiipeäminen esteiden yli 75
Metallit ovat metastabiileja
Lujittamismekanismit
Lujittaminen tapahtuu vaikeuttamalla dislokaatioiden liikettä
Lujittaminen Raekoko Liuoslujittaminen Erkautuslujittaminen Muokkauslujittuminen 79
Raekoon vaikutus Raerajat toimivat tehokkaina esteinä dislokaatioiden liikkeelle Mitä pienempi raekoko (enemmän raerajoja) sitä lujempi materiaali Pieni raekoko myös sitkistää materiaalia
Raekoko - työkalut Raekokoa voidaan pienentää: kylmämuokkauksella - Valssaus tai taonta venyttää ja pienentää rakeita haluttuun suuntaan Lämpökäsittelyllä - Aiheuttamalla lämpötilaa säätelemällä kontrolloitu rekristallisaatio tai faasimuutoksia, voidaan pienentää raekokoa Seostuksella - Erkaumat estävät raekoon kasvua korkeissa lämpötiloissa 81
Esimerkiksi ohutlevyn kylmävalssaus Metallilevy pakotetaan matalassa lämpötilassa esimerkiksi rullien välistä, jolloin se kokee voimakkaan deformaation. nousee voimakkaasti 2. Raerakenne (pienenee ja suuntautuu) muokkauksen mukaiseksi 3. Lujuus nousee muokkausasteen mukaan 27.1.2017 82
Raekokoon hallinta: Kuumavalssaus Levy pakotetaan korkeassa lämpötilassa esimerkiksi rullien väliin. 1. Metalli deformoituu voimakkaasti, mutta korkean lämpötilan seurauksena välittömästi. 2. Seurauksena, lujuuden kasvu sekä sitkeyden nousu 27.1.2017 83
27.1.2017 84
27.1.2017 85
27.1.2017 86
Esim. normalisointi
Liuoslujittaminen Liuosatomit vääristävät hilaa Vääristyneessä hilassa dislokaatioiden on vaikeampi liikkua 88
Liuoslujittaminen Liuoslujittaminen toteutetaan Seostamalla välisija-atomeja Seostamalla korvausatomeja Esim: Rauta-hiili - hiili välisija-atomina - pienet pitoisuudet nostavat lujuutta voimakkaasti Kulta-hopea-kupari 89
Kuparin ja sinkin tasapainopiirros 27.1.2017 90
Erkautuslujittaminen Erkaumat estävät tehokkaasti dislokaatioiden liikettä Kuten raerajat Jännitys erkaumien ympärillä 91
Erkaustuslujittaminen - työkalut Seostus + lämpökäsittely Seostuksella erkaumia muodostavia seosaineita Lämpökäsittelyllä saavutetaan erkaumarakenne, joka lisää lujuutta - paljon pieniä erkaumia - koherentteja erkaumia Erkautuskarkaisu 92
93
Muokkauslujittuminen Muokkaus generoi dislokaatioita Dislokaatiotiheys kasvaa Dislokaatiot takertuvat toisiinsa ja vaikeuttavat toistensa liikettä
Muokkauslujittaminen Valssatuissa levyissä Vedetyissä langoissa Taotuissa tuotteissa 95
Muokkauslujittuminen 96
Lämpökäsittely
Lämpökäsittely Metallit ovat metastabiileja Lämpötilan nosto siirtää rakennetta kohti tasapainotilaa Dislokaatiotiheys pienenee Rakeet kasvavat Liukoisuus kasvaa Kontrolloidulla jäähdytyksellä saadaan tila kauemmas tasapainotilasta 98
Lämpökäsittely - työkalut Diffuusionopeus kasvaa lämpötilan noustessa Eri faasit ovat stabiileja eri lämpötiloissa Lämpötilaa kontrolloidusti nostamalla ja laskemalla voidaan muuttaa mikrorakennetta ja siten mekaanisia ominaisuuksia 99
Pehmeäksi hehkutus Korkeassa lämpötilassa muokkauslujittumisen vaikutukset häipyvät Dislokaatiotiheys pienenee Materiaali pehmenee Sitkeys kasvaa
Normalisointi Teräksellä raekoon pienentämiseksi 101
Normalisointi 102
Erkautuskarkaisu Korkeassa lämpötilassa seosaineet liuotetaan Nopealla jäähdytyksellä seosaineet jäävät liuokseen Kontrolloitu hehkutus erkauttaa paljon pieniä erkaumia
Erkautuskarkaisu Korkeassa lämpötilassa seosaineet liuotetaan Nopealla jäähdytyksellä seosaineet jäävät liuokseen Kontrolloitu hehkutus erkauttaa paljon pieniä erkaumia