ELEC-E8419 Sähkönsiirtojärjestelmät 1 Luento: Jännitteen säätö Kurssi syksyllä 015 Periodit I-II, 5 opintopistettä Liisa Haarla 1
Luennon ydinasiat Jännitteensäädön ja loistehon välinen yhteys Jännitteensäädössä käytetyt laitteet Miksi jännitettä säädetään? Mukava tietää: Suomen rinnakkaisreaktorikapasiteetti, sallitut jännitteen vaihtelualueet, johtoarvoja Sähköverkot 1: luvut 5.5, 5.6, 7.5, 7.7, 8.1, 8.4
Miksi jännitettä säädetään? Koska johtojen loisteho riippuu voimakkaasti johdon läpi kulkevasta tehosta, vaihtelisi verkon jännite voimakkaasti siirto- ja kytkentätilanteiden mukaan, ellei loistehoa kompensoitaisi Liian suuri jännite: ongelmia eristyskoordinaatiossa Liian pieni jännite: johtojen siirtokapasiteetti pienenee ja käyttövarmuus voi vaarantua, voi tulla jännitestabiiliusongelmia 3
Jännitteen säätö Jännite on paikallinen suure ja se vaihtelee verkon eri osissa Jännitteen säädön tavoitteet ovat: yli- ja alijännitteiden välttäminen käyttövarmuuden ylläpito sähkön laadun ylläpito häviöiden minimointi, taloudellinen sähkön siirto Jännitettä säädetään Suomessa: sarja- ja rinnakkaiskondensaattoreilla tahtikoneilla rinnakkaisreaktoreilla muuntajien käämikytkimillä 4
Johdon reaktansseissa kuluva loisteho I 1 Q 1 I 1 X Q I I 10 I 0 B/ B/ Q = 1 X cosδ (1 cosδ ) X Q 1 = X 1 1 X cosδ (1 cosδ ) X Huomaa, että tässä kuvassa on eri suunta loisteholle 5 Q kuin luennon 3 yhtälöissä
Johdon kapasitansseissa tuotettu loisteho Q 1 X Q Q 10 Q 0 B/ B/ Q = 10 B 1 Q = 0 B Jos 1 ~, niin Q 10 + Q0 B 6
Johdon loistehotase Johdon loistehotase tarkoittaa johdon muusta verkosta ottamaa loistehoa. Johdon reaktansseissa kuluttamasta loistehosta vähennetään johdon kapasitansseissa tuottama loisteho. Luonnollisella teholla johdon loistehotase on nolla. Q 1 X + Q = X 1 + (1 cosδ ) X B 1 X The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. B1 B cosδ 7
100 km pitkän -Finch-johdon loistehotase x = 0,33 Ω/km, b = 3,6410-6 S/km -Finch -johdon loistehotase 500 Johdon kuluttama loiste Mvar 400 300 00 100 0-100 0 500 1000 1500 */X(1-cosd) Loistehotase -**B Pätöteho / MW 8
Johtojen varausloistehoja (Q c ), luonnollisia tehoja (P L ) ja termisiä kapasiteetteja (S th ) Jännite Johdin Q c /kvar/km P L /MW S th /MVA 110 kv Hawk 38 3 110 110 kv -Hawk 50 43 0 0 kv Condor 140 11 90 0 kv -Hawk 190 170 440 400 kv -Finch 570 55 1385 400 kv 3-Finch 660 600 050 9
Loistehoa kuluttavat ja tuottavat laitteet Loistehoa tuottavat: ylimagnetoidut tahtikoneet, rinnakkais- ja sarjakondensaattorit, SVC (Static Var Compensator), aliluonnollisella teholla käyvät johdot, vaihtosähkökaapelit Loistehoa kuluttavat alimagnetoidut tahtikoneet, rinnakkaisreaktorit, SVC, muuntajat, epätahtikoneet, tyristorisillat verkkokommutoivat tasasähköyhteydet), valokaariuunit, yliluonnollisella teholla käyvät johdot Loistehoa tuottavat laitteet nostavat jännitettä Loistehoa kuluttavat laitteet laskevat jännitettä 10
11 Johdon pätö- ja loistehohäviöt Loistehon siirtäminen johdoilla kasvattaa sekä pätö- että loistehohäviöitä Huomataan, että sekä loistehon pienentäminen että jännitteen pitäminen korkealla pienentävät pätö- ja loistehohäviöitä Loistehoa ei kannata siirtää X Q P X I Q R Q P R I P Q P Q P Q P S S I I I häviöt häviöt * * * * 3 3 3 3 j 3 j 3 3 + = = + = = + = + = = =
Käyttövarmuus, häviöiden optimointi Mitä enemmän verkossa siirretään tehoa, sitä enemmän loistehoa kuluu ja sitä enemmän tarvitaan loistehoreservejä häiriöiden jälkeen Verkon 3RI -häviöiden pienentäminen onnistuu pitämällä jännite korkealla. Näin voidaan tehdä 110 kv:n verkossa aina ja 400 kv:n verkossa silloin, kun koronaa ei esiinny Koronahäviöt riippuvat voimakkaasti jännitteestä ja kasvavat jännitteen kasvaessa Häviöiden optimoinnissa otetaan huomioon sekä virtalämpöhäviöt että koronahäviöt 1
Korona Korona: johtimien pinnassa tapahtuvia osittaispurkauksia. Koronaa esiintyy vain suurimmilla jännitteillä, Suomessa 400 kv:n ja 0 kv:n verkoissa. Koronaa esiintyy eniten kun johtimet huurtuvat. Sitä esiintyy myös sateella. Koronahäviöt voivat Suomessa enimmillään olla yhtä suuret kuin virtalämpöhäviöt (~100 MW) Koronaa on vaikea (mahdoton?) ennustaa Suomessa jännitettä voidaan alentaa. kun verkossa mitataan koronaa. Käyttövarmuuden ylläpito antaa alarajan jännitteelle 13
Koronan huomioon ottaminen Kun johdoilla on koronaa, voidaan p-sijaiskytkentään Lisätä johtokonduktanssin rinnalle toinen konduktanssi X R G korona G B B G G korona 14
Loistehon kompensoinnin periaatteet Suomen kantaverkossa 400 kv:n verkko: tyhjäkäyvien johtojen tuottama loisteho pitää voida kuluttaa. Reaktoreita on verkossa suunnilleen yksi / 100 km johtoa. Mahdollisen suurhäiriön jälkeen verkkoa koottaessa tarvitaan kaikki reaktorit, etteivät johtojen jännitteet nousisi liikaa Nopeita loistehoreservejä pitää olla verkon häiriöiden jälkitilanteisiin, jotta verkko selviää niistä romahtamatta 400 kv:n verkkoon kytketyt generaattorit eivät normaalitilanteessa ota eivätkä anna loistehoa verkkoon. Tahtigeneraattoreiden loistehoa pidetään häiriöreservinä 15
Loistehon kompensoinnin periaatteet Suomen kantaverkossa 0 kv:n ja 110 kv:n verkot Loistehon kompensointilaitteita on sen verran, että asiakkaiden liittymispisteiden jännitteet voidaan pitää sallituilla alueilla. Näihin verkkoihin kytketyt tahtigeneraattorit voivat tuottaa tai kuluttaa enintään puolet loistehon tuotantokyvystään. Loput ovat häiriöreserviä. 16
Rinnakkaisreaktorit ja tahtikoneet Suomessa on rinnakkaisreaktoreiden loisteho yhteensä noin 3000 Mvar Tahtigeneraattoreiden PQ-diagrammi antaa rajat loistehon tuotannolle ja kulutukselle Normaalisti generaattorit säätävät jännitettä Joissakin tapauksissa generaattorit ovat normaalisti vakioloistehosäädöllä, mutta alkavat säätää jännitettä, kun jännite ylittää tai alittaa asetellut rajat 17
Reaktorit Suomessa reaktorit ovat 400/1110/1 kv:n muuntajien tertiäärissä. 3-käämimuuntajan reaktanssi 400 ja 0 kv:n välillä on pieni, jotta loisteho kulkee 400 kilovoltista tertiääriiin. Pieni reaktanssi saadaan aikaan käämijärjestyksellä: pylvään lähellä 110 kv, sitten 400 kv ja uloimpana 1 kv. Elovaara, Haarla, Sähköverkot, sivu 148) 18
Loisteho ja käyttövarmuus Jos iso generaattori irtoaa verkosta, korvaava teho tuotetaan muualla (pyörivä reservi) ja verkon kautta kulkeva pätötehon määrä voi kasvaa. Tämä kasvattaa loistehon kulutusta ja alentaa jännitettä Jos johto laukeaa irti verkosta, jäljelle jäävät johdot siirtävät lauenneenkin johdon tehon ja loistehon kulutus kasvaa Verkon käyttövarmuus vikojen suhteen edellyttää että loistehoreservejä on riittävästi vikoja varten 19
Sarjakondensaattorit Pitkillä siirtojohdoilla on suuret reaktanssit ja sen takia niillä kulma- ja jännitestabiilius määräävät niiden siirtokapasiteetin alle termisen kapasiteetin Sarjakompensoimalla pitkiä johtoja voidaan lisätä siirtokapasiteettia Kompensointiaste on tavallisesti 30 70 % johdon reaktanssista Koska sarjakondensaattori on johdon potentiaalissa, sijoitetaan sarjakondensaattorit tukieristimien päällä sijaitseville lavoille 0
Sarjakondensaattorin rakenne 7 1. Ohituskatkaisija. Paristoerotin 3. Kondensaattori 4. Ylijännitesuoja, MOV (Metallic Oxide Varistor 5. Vaimennuspiiri 6. Kipinäväli 7. Katkaisija 1
Tahtigeneraattorin PQ-diagrammi generaattorin stabiiliusraja δ P turpiinin tehoraja ϕ alimagnetointiraja staattorivirran maksimi roottorin lämpenemisen asettama raja (vakiomagnetointiraja) Q
Tahtigeneraattori jännitteensäätäjänä Generaattori voi pitää jännitteen vakiona niin kauna kuin sen antama tai ottama loisteho riittää Kun generaattorin loistehorajat tulevat vastaan, ei generaattori voi enää säätää jännitettä Jännitestabiiliustarkasteluissa on tärkeä ottaa huomioon, paljonko generaattoreista saadaan loistehoa. Kun generaattorin loistehoraja tulee vastaan, yhtälöt eivät ole lineaarisia ja stabiilius on vaarassa Suomessa suurin osa 400 kv:n verkkoon liitettyjen generaattoreiden loistehosta varataan häiriöiden varalle 3
Sallitut jännitteen vaihtelualueet Normaalitilan jännitteet: 400 kv: minimi: 380 kv, maksimi 40 kv 0 kv: minimi: 15 kv, maksimi 45 kv 110 kv: minimi: 105 kv, maksimi 13 kv Poikkeustilanteiden jännitteet: 400 kv: minimi: 370 kv, maksimi 380 kv 0 kv: minimi: 05 kv, maksimi 15 kv 110 kv: minimi: 100 kv, maksimi 105 kv 4