19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007

Samankaltaiset tiedostot
Capacity Utilization

The CCR Model and Production Correspondence

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Alternative DEA Models

Other approaches to restrict multipliers

Efficiency change over time

16. Allocation Models

Capacity utilization

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Gap-filling methods for CH 4 data

Returns to Scale Chapters

11. Models With Restricted Multipliers Assurance Region Method

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering

812336A C++ -kielen perusteet,

Information on preparing Presentation

SIMULINK S-funktiot. SIMULINK S-funktiot

RINNAKKAINEN OHJELMOINTI A,

HARJOITUS- PAKETTI A

Categorical Decision Making Units and Comparison of Efficiency between Different Systems

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

C++11 seminaari, kevät Johannes Koskinen

Group 2 - Dentego PTH Korvake. Peer Testing Report

Hankkeen toiminnot työsuunnitelman laatiminen

Statistical design. Tuomas Selander

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Valuation of Asian Quanto- Basket Options

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

LYTH-CONS CONSISTENCY TRANSMITTER

Salasanan vaihto uuteen / How to change password

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Results on the new polydrug use questions in the Finnish TDI data

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

Choose Finland-Helsinki Valitse Finland-Helsinki

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

anna minun kertoa let me tell you

Ohjelmointikielet ja -paradigmat 5op. Markus Norrena

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Curriculum. Gym card

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

MEETING PEOPLE COMMUNICATIVE QUESTIONS

MUSEOT KULTTUURIPALVELUINA

7.4 Variability management

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Rekisteröiminen - FAQ

TU-C2030 Operations Management Project. Introduction lecture November 2nd, 2016 Lotta Lundell, Rinna Toikka, Timo Seppälä

Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Expression of interest

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Land-Use Model for the Helsinki Metropolitan Area

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

1. Liikkuvat määreet

TAMPEREEN TEKNILLINEN YLIOPISTO Teollisuustalous

The Viking Battle - Part Version: Finnish

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Introduction to Mathematical Economics, ORMS1030

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

21~--~--~r--1~~--~--~~r--1~

Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies

Kvanttilaskenta - 1. tehtävät

Bounds on non-surjective cellular automata

Akateemiset fraasit Tekstiosa

TM ETRS-TM35FIN-ETRS89 WTG

BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET.

Sisällysluettelo Table of contents

DATA ENVELOPMENT ANALYSIS

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts

Heisingin kaupungin tietokeskus Helsingfors stads faktacentral City of Helsinki Urban Facts 0N THE EFFECTS 0F URBAN NATURAL AMENITIES, ARCHITECTURAL

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

HOITAJAN ROOLI TEKNOLOGIAVÄLITTEISESSÄ POTILASOHJAUKSESSA VÄITÖSKIRJATUTKIJA JENNI HUHTASALO

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories

Korkeakoulujen tietohallinto ja tutkimus: kumpi ohjaa kumpaa?

AYYE 9/ HOUSING POLICY

OP1. PreDP StudyPlan

make and make and make ThinkMath 2017

Strict singularity of a Volterra-type integral operator on H p

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

Läpimurto ms-taudin hoidossa?

Use of spatial data in the new production environment and in a data warehouse

Vertaispalaute. Vertaispalaute, /9

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

TM ETRS-TM35FIN-ETRS89 WTG

Kvanttilaskenta - 2. tehtävät

,0 Yes ,0 120, ,8

Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi Peter Michelsson Wallstreet Asset Management Oy

Lataa Legislating the blind spot - Nikolas Sellheim. Lataa

Julkaisun laji Opinnäytetyö. Sivumäärä 43

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

Transkriptio:

19. Statistical Approaches to Data Variations Tuomas Koivunen 24.10.2007

Contents 1. Production Function 2. Stochastic Frontier Regressions 3. Example: Study of Texas Schools 4. Example Continued: Simulation Experiment 5. Summary 6. Home Assignment

1. Production Function

Production Function Definition and Use with DEA Definition of production function: How outputs are got from inputs in mathematical terms Of all the feasible combinations, only those that give maximum output for a specified set of inputs constitute the production function The link between DEA and production functions is that the deviations from a production function can be regarded as stochastic variations in technical efficiency Therefore, this is presented under the chapter Data Variations in the Book

2. Stochastic Frontier Regressions

Stochastic Frontier Regressions Composed Error We use a statistical regression model to give the output as a function of inputs: y = f (x ) +ε where ε represents random errors that occur in the dependent variable y Thus, the components of x are assumed to be known without error

Stochastic Frontier Regressions Composed Error Now, the random error ε is replaced by a 2- component term (therefore composed error ): ε = υ τ υ represents the random error component which may be positive, negative or zero τ is restricted to nonnegative ranges that represent values of y which fail to to achieve the efficient frontier. It is also assumed to have statistical distributions such as exponential

Stochastic Frontier Regressions The estimates of technical efficiency The estimates of technical efficiency are obtained from: ˆ τ = µ τ σ f F *( µ τ *( µ τ / σ ) / σ ) µ τ σ 2 2 2 = τ 2 υ τ σ = 2 2 2 σ υ + σ 2 τ σ υ + σ τ where and σ σ and where f* and F* represent the standard normal density and cumulative normal distribution functions with mean µ and variance σ 2

Stochastic Frontier Regressions The estimates of technical efficiency The efficiency corresponding to specified values for the components x are then estimated from: 0 ˆ e τ 1 Which is equal to one when τ^ = 0 and becomes 0 as τ^

Stochastic Frontier Regressions Log-linear production function To see how this measure of efficiency is used, we employ the log-linear Cobb-Douglas production function y = = β β 0 0 x x β 1 1 β 1 1 x x β 2 β 2 2 2 e e ε υ τ so that ˆ = τ β 1 β 2 y = ye β 0 x 1 x 2 e υ The inefficiency is given as an output shortfall

3. Example: Study of Texas Schools

An example The Study Stochastic frontier regressions can be seen as competing with DEA but the two can also be combined as a study shows: Evaluating public schools in Texas with two inputs and one output It was found that evaluating the schools with the original form of the Cobb-Douglas production function, ln y ln β + β ln x ˆ + β ln x + = ˆ 0 1 1 2 2 gave unsatisfactionary results ε

An example The Study Satisfactory results were, however, found when using a two-stage approach: In the 1st stage, schools were evaluated with DEA. In the second stage, the Cobb-Douglas was extended to incorporate the results of the first stage in the form of dummy variables An efficient school was given the Dummy value 1 An inefficient school was given the Dummy value 0 Production function became: ln y ln β + β ln x ˆ + β ln x ˆ + δ D + δ D ln x ˆ + δ D ln x + = ˆ 0 1 1 2 2 1 1 2 2 ε

4. Example continued: Simulation Experiment

Simulation Experiment Motivation The study was followed by a simulation to examine the validity of the method with a revised set of data The Cobb-Douglas took the following form: y x x 55 = 0.75* 0.65 1 0. 2 e ε where the parameter values were known from the study: β β β 0 1 2 = = = 0.75 0.65 0.55

Simulation Experiment Procedure 1) The random term e ε is used to generate random values i. The new y values containing these random terms are generated this way 2) The input values x 1 and x 2 are generated randomly as a bias avoiding mechanism i. These are inserted in the Cobb-Douglas function to provide the truly efficient values of y 3) The values for y^ are are calculated

Simulation Experiment Procedure 4) The inputs are adjusted to new values: x ˆ x ˆ τ 1 2 1, = = τ 2 x 1 x e 2 τ e 1 τ 0 2 where τ 1 and τ 2 represent input-specific technical inefficiencies drawn at random Against the stochastic frontier assumption, inefficiencies are impounded in the inputs Nevertheless, this reproduces a situation where the outputs tend to be too low for the inputs

Simulation Experiment Procedure 5) A subset of actual observations x 1 and x 2 is chosen at random to Determine if the first stage DEA identified the efficient DMUs Examine the effects of this efficient subset on the derived statistical estimates 6) With this new set of data with random variables, the parameter values and thus the efficient frontier was estimated Both Ordinary Least Square (OLS) estimates as well as Stochastic Frontier (SF) estimates were used

Simulation Experiment Results without Dummy Variables OLS: Case A Case B Case C Case D σ ε ² = 0.04 σ ε ² = 0.0225 σ ε ² = 0.01 σ ε ² = 0.005 (1) (2) (3) (4) β 0 1,30 1,58 1,40 1,43 β 1 0,46 0,43 0,45 0,46 β 2 0,48 0,47 0,47 0,46 As can be seen, all parameter estimates are wide of the true values

An example Results without Dummy Variables SF: Case A Case B Case C Case D σ ε ² = 0.04 σ ε ² = 0.0225 σ ε ² = 0.01 σ ε ² = 0.005 (1) (2) (3) (4) β 0 1,42 1,62 1,25 1,28 β 1 0,46 0,43 0,48 0,46 β 2 0,48 0,47 0,48 0,47 σ τ 0,15 0,11 0,15 0,15 σ ν 0,15 0,13 0,08 0,04 The estimates are quite close to the OLS estimates and thus wide from the true values as well

An example Two-stage Approach Results OLS: Case A Case B Case C Case D σε² = 0.04 σε² = 0.0225 σε² = 0.01 σε² = 0.005 (1) (2) (3) (4) β0 1,07 1,47 1,28 1,34 β 1 0,49 0,43 0,46 0,47 β2 0,48 0,48 0,48 0,46 δ -1,57-2,30-1,50-1,50 δ1 0,16 0,26 0,16 0,16 δ 2 0,12 0,12 0,1 0,09 β1+dδ1 0,65 0,69 0,62 0,63 β2+dδ2 0,60 0,60 0,58 0,55 For the efficient DMUs with D=1 the estimates do not differ significantly from the true ones

An example Two-stage Approach Results SF: Case A Case B Case C Case D σ ε ² = 0.04 σ ε ² = 0.0225 σ ε ² = 0.01 σ ε ² = 0.005 (1) (2) (3) (4) β 0 1,18 1,50 0,80 1,40 β 1 0,50 0,44 0,53 0,49 β 2 0,48 0,49 0,50 0,47 δ -1,60-2,40-1,25-1,55 δ 1 0,16 0,26 0,13 0,15 δ 2 0,11 0,13 0,09 0,09 σ ν 0,13 0,09 0,05 0,04 β 1 +Dδ 1 0,66 0,70 0,66 0,64 β 2 +Dδ 2 0,59 0,62 0,59 0,56 The estimates for efficient DMUs are good as with OLS

5. Summary

Summary The Key Takeaways Production functions give the output(s) as a mathematical function of the inputs DEA can give an estimator of a production function As an approach, stochastic frontier regressions have similarities with DEA: The deviations from the production function are given as a composed error with a random part and a technical inefficiency part DEA and stochastic frontier regressions can be combined as the example of Texas public schools shows

Summary Further Reading To understand deeper the links between stochastic frontier regressions and DEA, the following literature would be useful: D.J. Aigner, C.A.K. Lovell and P. Schmidt (1977), Formulation and Estimation of Stochastic Frontier Production Models, Journal of Econometrics 6, pp. 21-37 W. Meeusen, and J. Van den Broeck (1977) Efficiency Estimation from Cobb-Douglas Functions with Composed Error, International Economic Review 18, pp. 435-444 V. Arnold, I.R. Bardhan, W.W. Cooper and S.C. Kumbhakar (1994), New Uses of DEA and Statistical regressions for Efficiency Evaluation and Estimation - With an Illustrative Application to Public Secondary Schools in Texas, Annals of Operations Research 66, pp. 255-278

6. Home Assignment

Home Assignment Finnish Speaking Students Tuottavuus Suomen yliopistoissa Tutustu raportin T. Räty, J. Kivistö, "Mitattavissa oleva tuottavuus Suomen yliopistoissa" pääpiirteisiin http://en.vatt.fi/file/vatt_publication_pdf/t124.pdf) Perehdy erityisesti luvussa 3.1 (s. 21-23) tarkasteltuihin yliopistojen "laatua" kuvastaviin indikaattoreihin. Esitä noin yhdellä sivulla oma, mahdollisesti eri muuttujiin perustuva indikaattori, ja arvioi sen etuja ja puutteita. Ottaako esittämäsi indikaattori yliopiston koon tehokkuusnäkökulmasta tarkoituksenmuksella tavalla huomioon? Kotitehtävä tehdään yksilötyönä

Home Assignment German Speaking Students Hospital Capacity Planning Please write a one-page critical evaluation on the following report and describe its essential messages to the rest of the class on the 14 th of November (or later, if you cannot attend on that date): http://www.econbiz.de/archiv/k/uk/sgesundheit/effizienza nalyse_krankenhausplanung.pdf You may collaborate