Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Samankaltaiset tiedostot
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Lineaarinen yhtälöryhmä

2.5. Matriisin avaruudet ja tunnusluvut

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-C1340 Lineaarialgebra ja

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

Gaussin ja Jordanin eliminointimenetelmä

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

802118P Lineaarialgebra I (4 op)

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Vektoreiden virittämä aliavaruus

MS-A0004/A0006 Matriisilaskenta

5 Lineaariset yhtälöryhmät

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Käänteismatriisin ominaisuuksia

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Insinöörimatematiikka D

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

1 Matriisit ja lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

MS-C1340 Lineaarialgebra ja

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

Insinöörimatematiikka D

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Lineaarikuvauksen R n R m matriisi

Insinöörimatematiikka D

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Insinöörimatematiikka D

ominaisvektorit. Nyt 2 3 6

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

Lineaarialgebra ja matriisilaskenta I

Lineaariset yhtälöryhmät ja matriisit

Lineaariset kongruenssiyhtälöryhmät

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

7 Vapaus. 7.1 Vapauden määritelmä

Avaruuden R n aliavaruus

Matematiikka B2 - Avoin yliopisto

Insinöörimatematiikka D

Ominaisarvot ja ominaisvektorit 140 / 170

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Ominaisarvo ja ominaisvektori

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

10 Matriisit ja yhtälöryhmät

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra (muut ko)

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Ominaisarvo ja ominaisvektori

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

802320A LINEAARIALGEBRA OSA III

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 2015

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Demo 1: Simplex-menetelmä

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Ennakkotehtävän ratkaisu

Matematiikka B2 - TUDI

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Lineaarialgebra ja matriisilaskenta I

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Ratkaisuehdotukset LH 3 / alkuvko 45

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Insinöörimatematiikka D

Insinöörimatematiikka D

Insinöörimatematiikka D

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Lineaarialgebra ja matriisilaskenta I

Talousmatematiikan perusteet: Luento 9

Lineaarialgebra ja matriisilaskenta I

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Johdatus tekoälyn taustalla olevaan matematiikkaan

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

JAKSO 2 KANTA JA KOORDINAATIT

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Transkriptio:

2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2 = 5. Matriisimuodossa ( ) tämä( kirjoitetaan ) Ax ( ) = b, missä 2 x A =, x = ja b =, eli x 2 5 ( ) ( ) ( ) 2 x =. 5 x 2 / 32 N. Hyvönen, c R. Kangaslampi 2. 2 / 32 N. Hyvönen, c R. Kangaslampi 2. 2. 2. Tulkinta : kumpikin yhtälöparin yhtälö kuvaa suoraa tasossa R 2, ja mahdollinen ratkaisu x = (x, x 2 ) on suorien leikkauspiste. Tulkinta 2: matriisi A määrittelee kuvauksen (= funktion) R 2 R 2, x Ax. Halutaan löytää piste x R 2, jolle Ax = (, 5). Yleisesti: Lineaarinen yhtälöryhmä Ax = b, missä annettuina ovat A = (a ij ) R m n ja b = (b,..., b m ) R m, ja halutaan ratkaista x = (x,..., x n ) R n : a x + a 2 x 2 +... + a n x n = b a 2 x + a 22 x 2 +... + a 2n x n = b 2. a m x + a m2 x 2 +... + a mn x n = b m. 3 / 32 N. Hyvönen, c R. Kangaslampi 2. 4 / 32 N. Hyvönen, c R. Kangaslampi 2.

2. Tulkinta : kukin rivi a k x +... + a kn x n = b k ( k m) on yhtälö hypertasolle avaruudessa R n. (Suora, kun n = 2; taso, kun n = 3.) Mahdollinen ratkaisu x R n on kaikille hypertasoille (m kpl) yhteinen piste. Tulkinta 2: Matriisi A määrittelee kuvauksen R n R m, x Ax. Etsitään pistettä x R n, joka kuvautuu pisteeksi b R m. 2. Esimerkki (lasketaan luennolla) 3 Olkoon A = 3 5. Määritellään kuvaus T : R 2 R 3 7 säännöllä T (x) = Ax, ts. T (x) = Ax = 3 3 5 7 ( x x 2 a) Etsi pisteen u = (2, ) kuva T (u). ) = b) Etsi x R 2 siten, että T (x) = (3, 2, 5). c) Löytyykö b-kohdassa useampia ratkaisuja? x 3x 2 3x + 5x 2 x + 7x 2 d) Löytyykö pistettä x R 2 siten, että T (x) = (3, 2, 5)?. 5 / 32 N. Hyvönen, c R. Kangaslampi 2. 6 / 32 N. Hyvönen, c R. Kangaslampi 2. 2. Tarkastellaan hieman laajempaa esimerkkiä. On annettu kolme R 3 :n vektoria: a = 2, 2 a 2 = 4, 3 a 3 = 8. 3 6 Etsitään vektorin b = 6 esitys vektoreiden {a, a 2, a 3 } avulla. 7 Tarkasteltavana on siis yhtälö a x + a 2 x 2 + a 3 x 3 = b, missä x, x 2, x 3 R ovat tuntemattomia, jotka on tarkoitus ratkaista, jos mahdollista. 7 / 32 N. Hyvönen, c R. Kangaslampi 2. 2. Kirjoitetaan tämä yhtälöryhmäksi: x + 2x 2 + 3x 3 = 2x + 4x 2 + 8x 3 = 6 3x + 6x 2 + x 3 = 7 Etsitään siis toisaalta kolmen tason leikkauspisteitä. Sama matriisimuodossa Ax = b: 2 3 x 2 4 8 x 2 = 6 } 3 6 {{ x 3 }}{{} 7 }{{} A x b 8 / 32 N. Hyvönen, c R. Kangaslampi 2.

2. 2. Siis: 2 3 x 2 4 8 x 2 = 6 3 6 x 3 7 2 3 2 x + 4 x 2 + 8 x 3 = 6 3 6 7 x + 2x 2 + 3x 3 = 2x + 4x 2 + 8x 3 = 6 3x + 6x 2 + x 3 = 7 Mitä tiedämme ratkaisujen lukumäärästä? Ratkaisuja voi olla kpl: Tasot eivät leikkaa, eli A ei kuvaa mitään vektoria b:lle. 2 kpl: Tasot leikkaavat yhdessä pisteessä, eli {a, a 2, a 3 } on kanta. 3 kpl: Tasot leikkaavat pitkin suoraa/tasoa, eli A:n ydin on ei-triviaali. Hyödyllinen käsite on A:n kuva-avaruus R(A), jonka alkiot ovat kaikki vektoreiden a, a 2, a 3 lineaarikombinaatiot. Jos ratkaisua ei ole olemassa, tulkitaan, että b / R(A). 9 / 32 N. Hyvönen, c R. Kangaslampi 2. / 32 N. Hyvönen, c R. Kangaslampi 2. 2. 2.2 Perinteisesti yhtälöryhmät ratkaistaan lisäämällä ja vähentämällä yhtälöitä toisistaan, jollakin kertoimilla painotettuina. Matriisimuodossa vastaavat operaatiot voidaan tehdä yksinkertaisemmin merkinnöin. Kirjoitetaan matriisiyhtälö liittomatriisiksi a a 2... a n a 2 a 22... a 2n [A b] eli...... a m a m2... a mn Suoritetaan sitten ratkaisu Gaussin algoritmilla: b b 2.. b m x + 2x 2 + 3x 3 = 2x + 4x 2 + 8x 3 = 6 3x + 6x 2 + x 3 = 7 x + 2x 2 + 3x 3 = 8x 2 + 4x 3 = 8 2x 3 = 4 x + 2x 2 = 5 8x 2 = 2 x 3 = 2 eli eli eli 2 3 2 4 8 3 6 2 3 8 4 2 2 8 2 6 + 7 3 + 8 + 4 :2 4 5 2 :8 2 + 2 + 3 / 32 N. Hyvönen, c R. Kangaslampi 2. 2 / 32 N. Hyvönen, c R. Kangaslampi 2.

2.2 2.2 x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x, x 2, x 3 ) = (, 5/2, 2). (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste. Se on myös piste/vektori, jonka matriisi A kuvaa pisteeksi/vektoriksi b. Toisaalta, nämä kertoimet ovat vektorin b koordinaatit, kun se ilmoitetaan kannassa {a, a 2, a 3 }, eli a 5 2 a 2 + 2a 3 = b. Esimerkki 2 (lasketaan luennolla) Etsi menetelmällä yhtälöryhmän x 2x 2 + x 3 = 2x 2 8x 3 = 8 4x + 5x 2 + 9x 3 = 9 ratkaisu. Vastaus: x 29 x 2 = 6 x 3 3 3 / 32 N. Hyvönen, c R. Kangaslampi 2. 4 / 32 N. Hyvönen, c R. Kangaslampi 2. 2.2 2.2 menetelmässä lineaarinen matriisiyhtälö Ax = b kirjoitetaan liittomatriisina [A b], jota muokataan rivioperaatioin: lisämällä (painotettu) rivi toiseen riviin vastaa (painotetun) yhtälön lisäämistä toiseen 2 vaihtamalla kahden rivin paikkaa keskenään vastaa yhtälöiden paikan vaihtoa 3 kertomalla yksittäinen rivi vakiolla c vastaa yhden yhtälön kertomista vakiolla c Jos lineaarisesta yhtälöstä Ax = b saadaan rivioperaatioin C x = d, merkitään [A b] [C d]. Esimerkki 3 (lasketaan luennolla) Etsi virrat I, I 2 ja jännite E. I + 6V 3 Ω Ω + 8V 3A 2 Ω 3 Ω I 2 + E 5 / 32 N. Hyvönen, c R. Kangaslampi 2. 6 / 32 N. Hyvönen, c R. Kangaslampi 2.

2.2 2.2 Ratkaisu: Kirchhoffin virtalain mukaan virtapiirissä tiettyyn pisteeseen tulevien ja siitä lähtevien virtojen summa on sama, joten piirin yläreunan keskellä olevassa risteyksessä täytyy päteä I + 3 = I 2 (A). Kirchhoffin jännitelain mukaan potentiaalierojen summan virtapiirin ympäri täytyy olla nolla, joten vasemman puoleisesta piiristä saadaan 6 = 3I + 8 + I (V ) ja oikeasta E = 2I 2 3I 2 + 8 (V ), kun muistetaan, että vastuksen aiheuttama potentiaalin muutos on U = RI. Saadaan siis yhtälöryhmä I I 2 = 3 4I = 2 5I 2 + E = 8. Matriisimuodossa 4 5 I 3 I 2 = 2. E 8 askeleilla tämä saadaan muotoon I 5 I 2 = 8 E 4 (Huomaa, että kahden ylimmän rivin järjestystä on vaihdettu!). Vastaus on siis I = 5A, I 2 = 8A ja E = 4V. Olisikin näemmä kannattanut valita virran I suunta toisin päin. 7 / 32 N. Hyvönen, c R. Kangaslampi 2. 8 / 32 N. Hyvönen, c R. Kangaslampi 2. 2.2 2.2 Esimerkki 4 Etsi yhtälöryhmän kaikki ratkaisut, kun x + 2x 2 + 3x 3 + 4x 4 = 2x + 4x 2 + 8x 3 + x 4 = 6 3x + 6x 2 + x 3 + 4x 4 = 7 Ax = b Ratkaisu: Kirjoitetaan yhtälö matriisimuotoon Ax = b, eli x 2 3 4 2 4 8 x 2 x 3 6 4 3 = 6. 7 x 4 Ennen kuin sijoitamme liittomatriisiin oikealle puolelle vektorin b b = 6, suoritetaan eliminaatioaskeleet yleisellä b = b 2. 7 b 3 2 3 4 b 2 3 2 4 8 b 2 + 3 6 4 + 2 3 4 2 2 2 2 b 3 b b 2 2b b 3 3b + 9 / 32 N. Hyvönen, c R. Kangaslampi 2. 2 / 32 N. Hyvönen, c R. Kangaslampi 2.

2.2 2.2 2 3 4 2 2 b b 2 2b b 3 b 2 b Jotta viimeiselle riville ei syntyisi ristiriitaa, on pädettävä b 3 b 2 b =. Tämä on konsistenssiehto. Annetulla vektorilla 7 6 =, joten ristiriitaa ei synny. 2 / 32 N. Hyvönen, c R. Kangaslampi 2. Palataan sitten annettuun vektoriin b, jolloin saadaan 2 3 4 + 2 2 6 2 :2 3 7 6 2 5 2 Matriisi A on nyt saatettu redusoituun porrasmuotoon. Tämä tarkoittaa muotoa, jossa jokaisen rivin ensimmäinen nollasta poikkeava alkio on ja alemmalla rivillä on alussa nollia aina useampi kuin ylemmällä. 22 / 32 N. Hyvönen, c R. Kangaslampi 2. 2.2 2.2 Jaetaan muuttujat a) kiinnitetyiksi (x, x 3 ) b) vapaiksi (x 2, x 4 ) Miksi nämä nimet? Vapaat voi korvata parametreilla ja ratkaista kiinnitetyt niiden avulla. Olkoon x 2 = σ, x 4 = τ, σ, τ R. Ratkaistavana on siis x 2 σ 5 x 3 = 2. τ Helpoiten loppu onnistuu kirjoittamalla ongelma takaisin yhtälöryhmäksi { x + 2σ + τ = 5. x 3 + τ = 2 Tästä saadaan ratkaistua kiinnitetyt muuttujat x ja x 3 vapaiden avulla: { x = 5 2σ τ. x 3 = 2 τ Kun lisäksi muistetaan, että x 2 = σ ja x 4 = τ ovat mielivaltaisia reaalilukuja, nähdään, että yhtälöt ratkeavat millä tahansa lukunelikolla x, x 2, x 3, x 4, joka on muotoa 23 / 32 N. Hyvönen, c R. Kangaslampi 2. 24 / 32 N. Hyvönen, c R. Kangaslampi 2.

2.2 x = 5 2σ τ x 2 = σ x 3 = 2 τ x 4 = τ missä σ, τ R. Toisin sanoen, kaikki muotoa 5 2 x = 2 + σ + τ, σ, τ R, olevat vektorit toteuttavat siis alkuperäisen yhtälön Ax = b, eli ratkaisuita on ääretön määrä. 25 / 32 N. Hyvönen, c R. Kangaslampi 2., 2.2 Huom. Vapaiden muuttujien kerroinvektorit 2 ja ratkaisevat yhtälön Ax =, eli samaa matriisia vastaavan homogeenisen yhtälön. Myös kaikki niiden lineaarikombinaatiot ratkaisevat homogeenisen yhtälön. Sanotaankin, että matriisin A ydin on yhtälöryhmän Ax = ratkaisuiden kantavektorien joukko, eli tässä tapauksessa 2 N (A) =, ; dim N (A) = 2. 26 / 32 N. Hyvönen, c R. Kangaslampi 2. 2.2 2.2 Esimerkki 5 (lasketaan luennolla) Etsi yhtälöryhmän x + x 2 x 3 + 3x 4 = 3x + x 2 x 3 x 4 = 2x x 2 2x 3 x 4 = kaikki ratkaisut. Vastaus: x = α, α R. Lause 6 Lineaarinen yhtälöryhmä Ax = b, missä A on m n-matriisi, voidaan aina saattaa muotoon ( ) I F c, c 2 missä I on r r-identiteettimatriisi, F on r (n r)-matriisi, c on r-vektori ja c 2 on (m r)-vektori. Ratkaisuiden lukumäärälle saadaan ehdot: Jos r < m ja c 2 lukumäärä on (r = m tai c 2 = ) ja r = n lukumäärä on (r = m tai c 2 = ) ja r < n lukumäärä on 27 / 32 N. Hyvönen, c R. Kangaslampi 2. 28 / 32 N. Hyvönen, c R. Kangaslampi 2.

2.2 2.2 Esimerkki 7 (lasketaan luennolla) Eräs yksinkertainen talous koostuu hiili-, sähkö- ja terässektoreista. Sähkösektorin tuotannosta myydään 4% hiilisektorin käyttöön, 5% terässektorin käyttöön ja loput jää omaan käyttöön. Hiilisektorin tuotannosta sähköteollisuus ostaa 6% ja terästeollisuus 4%. Terässektorin tuotannosta puolestaan 6% myydään hiilisektorin käyttöön, 2% sähkösektorille ja loput omaan käyttöön. Merkitään sähkösektorin vuosituotannon arvoa p s, hiilisektorin p h ja terässektorin p t. Etsi tasapainotila, jossa kunkin sektorin tulot ja menot vastaavat toisiaan. Ratkaisu: Tasapainotilassa hiilisektorin vuosituotannon arvo p h on yhtä suuri kuin sen menot. Menot koostuvat siitä, että ostetaan 4% sähkösektorin tuotannosta ja 6% terässektorin tuotannosta. Siis: p h =.4p s +.6p t. Vastaavasti sähkö- ja terässektoreille: p s =.6p h +.2p t +.p s ja p t =.5p s +.4p h +.2p t. (Huomaa, että näillä sektoreilla osa tuotannosta menee omaan käyttöön!) Saadaan siis yhtälöryhmä: p h.4p s.6p t =.6p h +.9p s.2p t =.4p h.5p s +.8p t = 29 / 32 N. Hyvönen, c R. Kangaslampi 2. 3 / 32 N. Hyvönen, c R. Kangaslampi 2. 2.2 2.2 Kirjoitetaan tämä matriisimuodossa:.4.6 p h.6.9.2 p s =.4.5.8 p t lla saadaan (pyöristettynä kahden luvun tarkkuudelle).4.6.94.6.9.2.85,.4.5.8 joten yleinen ratkaisu on p h.94 p s p t.85, p t R. p t 3 / 32 N. Hyvönen, c R. Kangaslampi 2. Esimerkki 8 (lisätehtävä) Fotosynteesissä kasvi muuttaa auringonvalosta saamallaan energialla hiilidioksidia CO 2 ja vettä H 2 O hapeksi O 2 ja glukoosiksi C 6 H 2 O 6. Reaktion kemiallinen yhtälö on siis x CO 2 + x 2 H 2 O x 3 O 2 + x 4 C 6 H 2 O 6 Etsi kertoimet x, x 2, x 3, x 4. Vastaus: Hiili-, vety- ja happiatomien lukumäärien täytyy pysyä vakioina, joten yhtälön kummallakin puolella niitä kutakin on sama määrä. Tästä saamme yhtälöryhmän, joka ratkaistaan esim. menetelmällä. Vastaukseksi saadaan x = x 2 = x 3 = 6τ, x 4 = τ, τ R. 32 / 32 N. Hyvönen, c R. Kangaslampi 2.