2. Teoriaharjoitukset

Samankaltaiset tiedostot
Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Johdatus regressioanalyysiin. Heliövaara 1

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Yleinen lineaarinen malli

Luento 9: Yhtälörajoitukset optimoinnissa

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

4.0.2 Kuinka hyvä ennuste on?

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

Paikannuksen matematiikka MAT

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

Sovellettu todennäköisyyslaskenta B

3. Teoriaharjoitukset

Mat Tilastollisen analyysin perusteet, kevät 2007

Ominaisvektoreiden lineaarinen riippumattomuus

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1

Sovellettu todennäköisyyslaskenta B

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Ratkaisuehdotukset LH 7 / vko 47

Harjoitus 9: Excel - Tilastollinen analyysi

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

1 Lineaariavaruus eli Vektoriavaruus

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

(1.1) Ae j = a k,j e k.

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Ominaisarvo ja ominaisvektori

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1

Johdatus tilastotieteeseen Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2004) 1

MS-C1340 Lineaarialgebra ja

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

7 Vapaus. 7.1 Vapauden määritelmä

Ilkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

802320A LINEAARIALGEBRA OSA I

b 1. b m ) + ( 2b Ax) + (b b)

Lineaarialgebra, kertausta aiheita

MS-C1340 Lineaarialgebra ja

5 OMINAISARVOT JA OMINAISVEKTORIT

Matematiikan tukikurssi

Matriisit ja vektorit Matriisin käsite Matriisialgebra. Olkoon A = , B = Laske A + B, , 1 3 3

Ortogonaalisen kannan etsiminen

Taustatietoja ja perusteita

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Todennäköisyyden ominaisuuksia

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2007) 1

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

12. Hessen matriisi. Ääriarvoteoriaa

Ratkaisuehdotukset LH 3 / alkuvko 45

Harha mallin arvioinnissa

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Ratkaisuehdotukset LH 8 / vko 47

Kaksisuuntainen varianssianalyysi. Heliövaara 1

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Insinöörimatematiikka D

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Numeeriset menetelmät

Likimääräisratkaisut ja regularisaatio

Lineaarikuvauksen R n R m matriisi

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Koodausteoria, Kesä 2014

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

MS-C1340 Lineaarialgebra ja

3.2.2 Tikhonovin regularisaatio

2 Konveksisuus ja ratkaisun olemassaolo

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Kohdeyleisö: toisen vuoden teekkari

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

JAKSO 2 KANTA JA KOORDINAATIT

Mat Tilastollisen analyysin perusteet, kevät 2007

9. laskuharjoituskierros, vko 12-13, ratkaisut

1. Normi ja sisätulo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Lineaarialgebra ja matriisilaskenta I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

Vektoreiden virittämä aliavaruus

Transkriptio:

2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien normaalisuusoletusta. Gauss- Markovin lauseen perusteella regressiokertoimien PNS-estimaattori b = (X T X) 1 X T y, on paras lineaarinen estimaattori, harhattomien estimaattoreiden joukossa. Kansainvälisessä kirjallisuudessa esiintyy usein termi BLUE (Best Linear Unbiased Estimator). Tässä asiayhteydessä parhaalla estimaattorilla tarkoitetaan pienimmän varianssin omaava estimaattoria. Olkoon b jokin lineaarinen regressiokertoimien harhaton estimaattori. Tällöin Gauss-Markovin lauseen todistamiseksi tulee näyttää Cov(b ) Cov(b) olevan positiivisesti semidefiniitti kaikille lineaarisille regressiokertoimien harhattomille estimaattoreille b. Harjoitustehtävän 1.3 perusteella b on harhaton estimaattori ja Merkitään Cov(b) = σ 2 (X T X) 1. b = Cy = (D + (X T X) 1 X T )y, missä C = D + (X T X) 1 X T on ei-satunnainen matriisi kokoa (k + 1) n ja D on jokin ei-satunnainen matriisi. Estimaattorin b harhattomuudesta saadaan E(b ) = E ( D + (X T X) 1 X T )y ) = E (( D + (X T X) 1 X T ) (Xβ + ε) ) = E(D(Xβ + ε)) + E(β) = DXβ + β = (DX + I)β, mistä nähdään että DX = 0. Huomaa että Cov(y) = σ 2 I (harjoitustehtävä 1.1), missä σ 2 on virhetermien varianssi. Kovarianssimatriisiksi saadaan ( ) Cov(b ) = E (b E(b )) (b E(b )) T = E ((Cy ) E(Cy)) (Cy E(Cy)) T ) = E (C (y E(y)) (y E(y)) T C T = CCov(y)C T = σ 2 CC T = σ 2 ( D + (X T X) 1 X T ) ( D + (X T X) 1 X T ) T = σ 2 ( DD T + DX(X T X) 1 + (X T X) 1 X T D T + (X T X) 1) = σ 2 DD T + σ 2 (X T X) 1 = σ 2 DD T + Cov(b). Kovarianssimatriisien erotukseksi saadaan Cov(b ) Cov(b) = σ 2 DD T, 1 / 6

joka on positiivisesti semidefiniitti matriisi, sillä DD T on symmetrinen ja a T (DD T )a = b T b = b 2 2 0, missä b = D T a ja 2 on tavanomainen l 2 -vektorinormi. 2.2 Olkoon y = Xβ + ε, X R n (k+1) tavanomaiset oletukset toteuttava yleinen lineaarinen malli, jonka regressiokertoimien vektoria β sitoo lineaarinen rajoitus Rβ = r, jossa R on täysiasteinen m (k + 1)-matriisi, m < k + 1. Johda regressiokertoimien vektorin β rajoitettu PNS-estimaattori ja näytä että se on parempi kuin tavanomainen PNS-estimaattiori Gauss-Markovin lauseen mielessä. Vihje: Käytä Lagrangen menetelmää minimin määräämiseen ja huomaa, että k + 1 m n = muutujien lkm = rajoitteiden lkm = havaintojen lkm Ratkaisu. Oletetaan, että y = Xβ + ε, X R n (k+1) on standardioletukset toteuttava yleinen lineaarinen malli, jonka regressiokertoimien vektoria β sitoo lineaarinen rajoitus Rβ = r, missä R on täysiasteinen m (k+1)-matriisi, m < k+1. Oletetaan lisäksi että k+1 < n, eli toisin sanoen että havaintoja on enemmän kuin muuttujia. Minimoidaan neliösumma ε T ε = (y Xβ) T (y Xβ) ehdolla Muodostetaan minimoitava funktio Rβ = r. f(β, λ) = (y Xβ) T (y Xβ) + 2λ T (Rβ r) = y T y 2y T Xβ + β T X T Xβ + 2λ T Rβ 2λ T r, 2 / 6

missä 2λ on Lagrangen kertoimien muodostama (k + 1)-vektori (kerroin 2 on mukana mukavuussyistä). Huomaa että, β T X T y ja y T Xβ ovat skalaareja, jolloin pätee y T Xβ = β T X T y. Derivoidaan funktio f(β, λ) sekä muuttujan β että kerroinvektorin λ suhteen ja merkitään derivaatat nolliksi (tarvittaessa kertaa viikon 1 teoriaharjoituksista matriisien derivoiminen): f(β, λ) = 2y T X + 2β T X T X + 2λ T R = 0, β (1) f(β, λ) = 2β T R T 2r T = 0. λ (2) Yhtälöt (1) ja (2) muodostavat yhtälösysteemin, jossa tuntemattomia ovat vektorit β ja λ. Huomaa että yhtälöt ovat vaakavektori-muodossa ja voidaan halutessa transponoida. Kerrotaan yhtälöä (1) oikealta matriisilla (X T X) 1 R T (ja luvulla -1/2), jolloin saadaan: y T X(X T X) 1 R T β T R T = λ T R(X T X) 1 R T. (3) Matriisin R(X T X) 1 R T voidaan näyttää olevan täysiasteinen m m -matriisi seuraavien teoreemien avulla, jotka löytyvät esimerkiksi Matrix Analysis (Horn & Johnson, 1985) kirjasta sivulta 13. (i) Jos A R m n, niin rank(a T A) = rank(a). (ii) Jos A R m k ja B R k n, niin rank(a) + rank(b) k rank(ab) min (rank(a), rank(b)). Huomaa lisäksi että kääntyvän matriisin A asteluku on sama kuin A 1 asteluku. Oletuksesta m < k + 1 < n ja teoreemasta (i) seuraa että rank((x T X) 1 ) = k + 1 ja rank(r) = rank(r T ) = m. Merkitään X = (X T X) 1 ja käytetään teoreemaa (ii) kahdesti ja saadaan seuraavat epäyhtälöt rank(r) + rank( X) (k 1) rank(r X) min(rank( X), rank(r)) m rank(r X) m ja rank(r X) + rank(r T ) m rank(r XR T ) min(rank(r X), rank(r T )) m rank(r XR T ) m, joista seuraa että R(X T X) 1 R T on täysiasteinen (astetta m) eli kääntyvä matriisi. Käytetään yhtälöä 2 ja ratkaistaan vektori λ yhtälöstä 3: λ T = (y T X(X T X) 1 R T β T R T )(R(X T X) 1 R T ) 1 = (b T R T r T )(R(X T X) 1 R T ) 1, missä b = (X T X) 1 X T y 3 / 6

on tavanomainen PNS-estimaattori vektorille β. Sijoitetaan ratkaistu vektori λ T yhtälöön (1), jolloin saadaan yhtälö y T X + β T X T X + (b T R T r T )(R(X T X) 1 R T ) 1 R = 0 Ratkaisemalla β tästä yhtälöstä saadaan regressiokertimien vektorin β rajoitettu PNSestimaattori: b T R = y T X(X T X) 1 (b T R T r T )(R(X T X) 1 R T ) 1 R(X T X) 1 = b T (b T R T r T )(R(X T X) 1 R T ) 1 R(X T X) 1 b R = b (X T X) 1 R T (R(X T X) 1 R T ) 1 (Rb r) Rajoitetulla PNS-estimaattorilla b R on seuraavat ominaisuudet: i) Rajoitettu PNS-estimaattori b R on rajoitusten Rβ = r pätiessä regressiokertoimien β harhaton estimaattori: E(b R ) = E ( b (X T X) 1 R T (R(X T X) 1 R T ) 1 (Rb r) ) = E(b) (X T X) 1 R T (R(X T X) 1 R T ) 1 (RE(b) r) = β (X T X) 1 R T (R(X T X) 1 R T ) 1 (Rβ r) = β Huomaa, että kaava (ABC) 1 = C 1 B 1 A 1 ei päde yhtälöön (R(X T X) 1 R T ) 1, sillä R ei ole neliömatriisi! ii) Johdetaan rajoitetun PNS-estimaattorin b R kovarianssimatriisi, kun virhetermin ε varianssi on σ 2. Huomataan että b = (X T X) 1 X T y = (X T X) 1 X T (Xβ + ε) = β + (X T X) 1 X T ε, ja että r = Rβ, jolloin saadaan b R = β + (X T X) 1 X T ε (X T X) 1 R T (R(X T X) 1 R T ) 1 (R(β + (X T X) 1 X T ε) Rβ) = β + (X T X) 1 X T ε (X T X) 1 R T (R(X T X) 1 R T ) 1 R(X T X) 1 X T ε b r β = ( (X T X) 1 (X T X) 1 R T (R(X T X) 1 R T ) 1 R(X T X) 1) X T ε = ( (X T X) 1 C(C T X T XC) 1 C T ) X T ε, missä C = (X T X) 1 R T. 4 / 6

Cov(b R ) = E ( (b R E(b R ))(b R E(b R )) T ) = E ( (b R β)(b R β) T ) = (X T X) 1 X T E(εε T )X(X T X) 1 (X T X) 1 X T E(εε T )XC(C T X T XC) 1 C T C(C T X T XC) 1 C T X T E(εε T )X(X T X) 1 + C(C T X T XC) 1 C T X T E(εε T )XC(C T X T XC) 1 C = σ 2 ( (X T X) 1 C(C T X T XC) 1 C T ) = σ 2 ( (X T X) 1 (X T X) 1 R T (R(X T X) 1 R T ) 1 R(X T X) 1) Tällöin Cov(b) Cov(b R ) = σ 2 C(C T X T XC) 1 C T = σ 2 (X T X) 1 R T (R(X T X) 1 R T ) 1 R(X T X) 1, on positiivisesti semidefiniitti matriisi. Huomaa että positiivisesti semidefiniittisyyden osoittaminen tässä tilanteessa ei ole triviaalia. Todistus löytyy esimerkiksi lähteestä http://www.ssc.wisc.edu/ bhansen/econometrics/econometrics.pdf, sivulta 181. Kotitehtävät 2.4 Oletetaan seuraava aineisto: x 1 = {1, 2} x 2 = {3, 4} x 3 = {5, 6} a) Muodosta aineiston kaikki mahdolliset eri permutaatiot siten että permutoit toista alkiota ensimmäisen alkion suhteen (vihje: 6 erilaista permutaatiota). b) Ota aineistosta 5 bootstrap-otosta käyttäen apunasi arpakuutiota. 2.5 Tarkastellaan seuraavia regressioyhtälöitä, y = α 0 + α 1 x + ε, (4) y = β 0 + β 1 x + β 2 z + ν, (5) missä z, y ja x sisältävät n havaintoa. Ratkaistaan regressiokertoimien estimaatit pienimmän neliösumman menetelmällä ja merkitään estimaatteja hatulla. Missä tilanteissa seuraavat väitteet ovat totta (tarkastele jokaista kohtaa erikseen): a. ˆα 1 = ˆβ 1 b. n i=1 ˆε2 i n i=1 ˆν2 i (ˆε ja ˆν ovat estimoituja residuaaleja). 5 / 6

c. ˆα 1 on tilastollisesti merkitsevä (5% merkitsevyystasolla), mutta ˆβ 1 ei ole. d. ˆα 1 ei ole tilastollisesti merkitsevä (5% merkitsevyystasolla), mutta ˆβ 1 on. e. Mallin (4) selitysaste on suurempi kuin mallin (5). f. Mallin (5) varianssin inflaatio-tekijä on suurempi kuin mallin (4) varianssin inflaatiotekijä. 6 / 6