MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016
Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen ARMA mallien tunnusluvut 2 ARIMA- ja SARIMA-mallit 2 ARMA-mallien rakentaminen 1 Tunnuslukujen estimointi 2 ARMA-mallin estimointi 3 Ennustaminen ARMA-malleilla
Sisältö 1 ARMA-mallien ominaisuudet 2 ARMA-mallien rakentaminen
MA(q)-prosessin ominaisuudet x t = ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 +... + θ q ɛ t q, (ɛ t ) t T WN(0, σ 2 ) Odotusarvo µ x = E[x t ] = 0 Varianssi q σx 2 = var(x t ) = σ 2 θi 2, θ 0 = 1 i=1 Autokovarianssi γ k = cov ( x t, x t k ) = { σ 2 q k i=0 θ iθ i+k, k = 0, 1, 2,..., q 0, k > q.
MA(q)-prosessin ominaisuudet x t = ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 +... + θ q ɛ t q, (ɛ t ) t T WN(0, σ 2 ) Autokorrelaatio 1, k = 0 q k ρ k = i=0 θ i θ i+k q, k = 1, 2,..., q i=0 θ2 i 0, k > q AR( )-esitys (jos kääntyvä) π i x t i = ɛ t (π 0 = 1) i=0 Osittaisautokorrelaatio vaimenee exponentiaalisesti
MA(3) prosessi, θ 1 = 1, θ 2 = 0.5, θ 3 = 0.2 Autokorrelaatio 0.0 0.4 0.8 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.2 0.2 0.6 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Kääntyvän MA(1)-prosessin ominaisuudet x t = ɛ t + θ 1 ɛ t 1, (ɛ t ) t T WN(0, σ 2 ) Viivepolynomin θ(l) = 1 + θ 1 L juuri on yksikköympyrän ulkopuolella, joten θ 1 < 1 AR( )-esitys: ( θ 1 ) i x t i = ɛ t i=0 Autokovarianssi ja autokorrelaatio σ 2( 1 + θ1) 2, k = 0 1, k = 0 γ k = σ 2 θ θ 1, k = 1, ρ k = 1, k = 1 1+θ1 0, k > 1 2 0 k > 1
MA(1) prosessi, θ 1 = 0.9 Autokorrelaatio 1.0 0.0 0.8 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.4 0.2 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Stationaarisen AR(p)-mallin ominaisuudet x t = φ 1 x t 1 + φ 2 x t 2 +...φ p x t p + ɛ t, (ɛ t ) t T WN(0, σ 2 ). Sillä on MA( )-esitys x t = ψ i ɛ t i (ψ 0 = 1) i=0 Odotusarvo µ x = E[x t ] = 0 Varianssi σx 2 = var(x t ) = σ 2 Autokovarianssi ja autokorrelaatio i=0 γ k = σ 2 ψ i ψ i+k, ρ k = i=0 ψ 2 i i=0 ψ iψ i+k i=0 ψ2 i
Stationaarinen AR(p)-malli: Yulen ja Walkerin yhtälöt x t = φ 1 x t 1 + φ 2 x t 2 +...φ p x t p + ɛ t, (ɛ t ) t T WN(0, σ 2 ). Autokorrelaatiot toteuttavat Yulen ja Walkerin yhtälöt ρ 0 = 1 ρ k = φ 1 ρ k 1 + φ 2 ρ k 2 +... + φ p ρ k p, k > 0, koska [ ( p )] γ k = E[x t x t k ] = E x t k φ i x t i + ɛ t i=1 = p φ i E[x t k x t i ] + E[x t k ɛ t ] = i=1 p φ i γ k i. i=1
AR(3) prosessi, φ 1 = 0.5, φ 2 = 0.4, φ 3 = 0.2 Autokorrelaatio 1.0 0.2 0.4 1.0 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.4 0.0 0.4 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Stationaarinen AR(1)-malli: Ominaisuudet x t = φ 1 x t 1 + ɛ t, (ɛ t ) t T WN(0, σ 2 ). MA( )-esitys x t = φ i 1 ɛ t i i=0 Odotusarvo µ x = E[x t ] = 0 Varianssi σx 2 = var(x t ) = σ 2 φ 2i 1 = σ2 1 φ 2 1 i=0 Autokovarianssi ja autokorrelaatio γ k = σ 2 i=0 φ i 1 φi+k 1 = φ k 1 σ2 x ja ρ k = φ k 1.
AR(1) prosessi, φ 1 = 0.9 Autokorrelaatio 0.8 0.2 0.4 1.0 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.8 0.4 0.0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Stationaarinen AR(2)-malli: Ominaisuudet x t = φ 1 x t 1 + φ 2 x t 2 + ɛ t, (ɛ t ) t T WN(0, σ 2 ). MA( )-esitys x t = ψ i ɛ t i, i=0 ψ 0 = 1, ψ 1 φ 1 = 0, ψ i φ 1 ψ i 1 φ 2 ψ i 2 = 0, i 2. Odotusarvo µ x = E[x t ] = 0 Varianssi σx 2 = var(x t ) = σ 2 Autokovarianssi ja autokorrelaatio γ k = σ 2 i=0 i=0 ψ i ψ i+k, ρ 1 = φ 1 1 φ 2, ρ 2 = φ2 1 1 φ 2 + φ 2. ψ 2 i
Stationaarinen AR(2)-malli: Ominaisuudet x t = φ 1 x t 1 + φ 2 x t 2 + ɛ t, (ɛ t ) t T WN(0, σ 2 ). Koska viivepolynomin φ(l) = 1 φ 1 L φ 2 L 2 juuret ovat yksikköympyrän ulkopuolella, niin φ 1 + φ 2 < 1 φ 1 + φ 2 < 1 φ 2 < 1 Juuret ovat kompleksisia, jos φ 2 1 + 4φ 2 < 0. Tällöin autokorrelaatiofunktio on eksponentiaalisesti vaimenevan sinikäyrän rajoittama. Jos juuret ovat reaaliset, niin eksponenttifunktio(t) rajaa autokorrelaatiofunktion.
AR(2) prosessi, φ 1 = 0.5, φ 2 = 0.2 Autokorrelaatio 0.0 0.4 0.8 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.0 0.4 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
AR(2) prosessi, φ 1 = 0.5, φ 2 = 0.4 Autokorrelaatio 0.2 0.2 0.6 1.0 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.4 0.0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Stationaarinen ARMA(p, q)-prosessi x t φ 1 x t 1 φ 2 x t 2... φ p x t p = ɛ t +θ 1 ɛ t 1 +θ 2 ɛ t 2 +...+θ q ɛ t q, missä (ɛ t ) t T WN(0, σ 2 ). Stationaarisen AR(p)-prosessin Autokorrelaatiofunktio vaimenee eksponentiaalista vauhtia (geometrinen sarja) Osittaisautokorrelaatiofunktio katkeaa viiveellä p. MA(q)-prosessin Autokorrelaatiofunktio katkeaa viiveellä q Osittaisautokorrelaatiofunktio vaimenee eksponentiaalisesti. Stationaarisen ARMA(p, q)-prosessin auto- ja osittaisautokorrelaatiofunktiot vaimenevat eksponentiaalista vauhtia.
ARMA(2,3), φ = (0.5, 0.2), θ = ( 0.8, 0.6, 0.2) Autokorrelaatio 0.2 0.2 0.6 1.0 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.0 0.2 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Stationaarinen ARMA(p, q)-prosessi x t φ 1 x t 1 φ 2 x t 2... φ p x t p = ɛ t +θ 1 ɛ t 1 +θ 2 ɛ t 2 +...+θ q ɛ t q, missä (ɛ t ) t T WN(0, σ 2 ). Malli AR(p) MA(q) ARMA(p, q) Osittaisauto- korrelaatiofunktio Katkeaa viiveellä p Vaimenee eksponentiaalisesti Vaimenee eksponentiaalisesti Autokorrelaatiofunktio Vaimenee eksponentiaalisesti Katkeaa viiveellä q Vaimenee eksponentiaalisesti
Stationaarinen ja käännettävä ARMA(1,1)-malli x t φ 1 x t 1 = ɛ t + θ 1 ɛ t 1, (ɛ t ) t T WN ( 0, σ 2) Viivepolynomien φ(l) = 1 φ 1 L, θ(l) = 1 + θ 1 L juuret ovat yksikköympyrän ulkopuolella, jos φ 1 < 1, θ 1 < 1. MA( )-esitys x t = ψ i ɛ t i, i=0 ψ 0 = 1, ψ i = θ 1 φ i 1 1 + φ i 1, i > 0. Odotusarvo, varianssi ja autokovarianssi: µ x = E[x t ] = 0 σ 2 x = var(x t ) = σ 2 γ k = σ 2 ψ i ψ i+k ψi 2 i=0 i=0
ARMA(1,1), φ = 0.8, θ = 0.6 Autokorrelaatio 0.0 0.4 0.8 0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k Osittaisautokorrelaatio 0.0 0.2 1 2 3 4 5 6 7 8 9 11 13 15 17 19 k
Stationaarinen SARMA(P, Q) s -prosessi x t Φ 1 x t s... Φ P x t Ps = ɛ t +Θ 1 ɛ t s +...+Θ Q ɛ t Qs, (ɛ t ) t T WN(0, σ 2 ) SARMA(P, Q) s -prosessin auto- ja osittaisautokorrelaatio-funktiot käyttäytyvät kausiviiveillä s, 2s, 3s,... kuten vastaavan ARMA(p, q)-prosessin akf ja oakf ja saavat kausiviiveiden välissä arvon 0. Stationaarisen SAR(P) s -prosessin akf vaimenee kausiviiveillä s, 2s, 3s,... eksponentiaalista vauhtia oakf katkeaa viiveellä Ps. Stationaarisen SMA(Q) s -prosessin akf katkeaa viiveellä Qs. oakf vaimenee kausiviiveillä s, 2s, 3s,... eksponentiaalisesti. Stationaarisen SARMA(P, Q) s -prosessin auto- ja osittaisautokorrelaatiofunktiot vaimenevat kausiviiveillä s, 2s, 3s,... eksponentiaalista vauhtia
Stationaarinen SARMA(P, Q) s -prosessi x t Φ 1 x t s... Φ P x t Ps = ɛ t +Θ 1 ɛ t s +...+Θ Q ɛ t Qs, (ɛ t ) t T WN(0, σ 2 ) Auto- Osittaisautokorrelaatiofunktio korrelaatiofunktio Malli Vaimenee Katkeaa SAR(P) s eksponentiaalisesti viiveellä Ps Katkeaa Vaimenee SMA(Q) s viiveellä Qs eksponentiaalisesti Vaimenee Vaimenee SARMA(P, Q) s eksponentiaalisesti eksponentiaalisesti
Stationaarisen SARMA(p, q)(p, Q) s -malli x t Φ 1 x t s... Φ P x t Ps = ɛ t +Θ 1 ɛ t s +...+Θ Q ɛ t Qs, (ɛ t ) t T WN(0, σ 2 ) Stationaarisen SARMA(p, q)(p, Q) s -prosessin auto- ja osittaisautokorrelaatiofunktioiden käyttäytyminen on (monimutkainen) yhdistelmä vastaavien ARMA(p, q)- ja SARMA(P, Q) s -prosessien korrelaatiofunktioiden käyttäytymisestä.
ARMA(p, q):n spektri: Stokastisen prosessin suodatus Sanotaan, että stokastinen prosessi x t on saatu suodattamalla stokastisesta prosessista y t käyttäen lineaarista aikainvarianttia suodinta, jos x t = w j y t j j= Suotimen määrittelee painot w j, joille j= w j <. Voidaan osoittaa, että suodatetun stokastisen prosessin x t spektritiheysfunktio on f x (λ) = W (λ) 2 f y (λ), missä f y (λ) on y t :n spektritiheysfunktio ja W (λ) = w j e iλj. j= W (λ) 2 on suotimen siirtofunktio.
ARMA(p, q):n spektri Stationaarisella ARMA(p, q)-prosessilla x t on MA( )-esitys x t = Ψ(L)ɛ t, (ɛ t ) t T WN ( 0, σ 2), Ψ(L) = ψ j L j, ψ 0 = 1, φ(l)ψ(l) = θ(l) j=0 x t saadaan siis suodattamalla puhtaasti satunnaisesta prosessista ɛ t suotimella, jonka siirtofunktio on Ψ(e iλ ) θ(e iλ ) = φ(e iλ ) = 1 + θ 1e iλ +... + θ q e qiλ 1 + φ 1 e iλ +... + φ p e piλ. Näin ollen x t :n spektritiheysfunktio on f x (λ) = W (λ) 2 f ɛ (λ) = σ2 1 + θ 1 e iλ +... + θ q e qiλ 2 2π 1 φ 1 e iλ... φ p e piλ 2 (ɛ t :n spektritiheysfunktio on vakio σ 2 /2π).
(Stationaaristen) prosessien spektrejä ARMA(1,1) : f (λ) = σ2 1 + θ 1 e iλ 2 2π 1 + φ 1 e iλ 2 = σ2 1 + θ1 2 + 2θ 1 cos(λ) 2π 1 + φ 2 1 2φ 1 cos(λ) AR(p) AR(2) : f (λ) = σ2 1 2π 1 φ 1 e iλ... φ p e piλ 2 : f (λ) = σ2 1 2π 1 φ 1 e iλ φ 2 e 2iλ 2 = σ2 1 2π 1 + φ 2 1 + φ2 2 2φ 1(1 φ 2 ) cos(λ) 2φ 2 cos(2λ) MA(q) MA(2) : f (λ) = σ2 2π 1 + θ 1e iλ +... + θ q e qiλ 2 : f (λ) = σ2 2π 1 + θ 1e iλ + θ 2 e qiλ 2 = σ2 ( 1 + θ 2 2π 1 + θ2 2 + 2θ 1 (1 θ 2 ) cos(λ) + 2θ 2 cos(2λ) )
SARIMA(p, h, q)(p, H, Q) s Olkoon x t stokastinen prosessi, siten että (i) x t on epästationaarinen (ii) D G s D g x t on epästationaarinen, kun g < h, G < H (iii) y t = D H s D h x t on stationaarinen (iv) y t on SARMA(p, q)(p, Q) s -prosessi. Silloin stokastinen prosessi x t on integroituva astetta h ja kausi-integroituva astetta H ja sanomme, että x t on SARIMA(p, h, q)(p, H, Q) s -prosessi. Kun prosessille x t tehdään (iii)-kohdan differentointi, niin se voidaan mallintaa käyttäen SARMA(p, q)(p, Q) s -prosessia. Vastaavasti: x t on ARIMA(p, h, q)-prosessi, jos y t = D h x t on ARMA(p, q)-prosessi.
Sisältö 1 ARMA-mallien ominaisuudet 2 ARMA-mallien rakentaminen
Korrelaatiofunktioiden ja spektrin estimointi ja stationaarisuus Teoreettiset auto- ja osittaisautokorrelaatiofunktiot sekä spektritiheysfunktio on määritelty vain stationaarisille stokastisille prosesseille. Nämä funktiot voidaan ja kannattaa kuitenkin laskea myös epästationaarisista aikasarjoista eli epästationaaristen stokastisten prosessien realisaatioista. Tällöin niitä ei kuitenkaan voida tulkita minkään stationaarisen stokastisen prosessin korrelaatiofunktioiden estimaattoreina. Antavat usein hyviä vihjeitä siitä, miten aikasarja kannattaa stationarisoida.
Autokorrelaatioiden estimointi Olkoon x t, t = 1, 2,..., n havaittu aikasarja. (Aritmeettinen) keskiarvo: x = 1 n x t n Varianssin estimaattori: c 0 = 1 n t=1 n (x t x) 2 k. (otos)autokovarianssin estimaattori: c k = 1 n (x t x)(x t k x), k = 0, 1,..., n 1 n t=k+1 t=1 k. (otos)autokorrelaatiokertoimen estimaattori r k = c k c 0, k = 0, 1, 2,..., n 1
Huom Autokovarianssin estimaattorissa c k = 1 n n t=k+1 (x t x)(x t k x), k = 0, 1,..., n 1 jakajana on n, vaikka summassa on n k termiä, koska tämä takaa, että funktio c : {0, 1,..., n 1} R, c(k) = c k on positiivisesti semidefiniitti, joka on välttämätön ehto sille, että c k on stationaarisen prosessin autokovarianssifunktio. Jakajana voi olla myös n k 1, mutta silloin funktio c ei välttämättä ole positiivisesti semidefiniitti. Molemmat antavat asymptoottisesti saman tuloksen.
Kuinka monta autokorrelaatiota estimoida? Aikasarjasta x t, t = 1, 2,..., n, voidaan periaatteessa estimoida n 1 ensimmäistä autokovarianssia c k ja -korrelaatiota r k. Kannattaa kuitenkin huomata, että k. autokovarianssi c k = 1 n n t=k+1 (x t x)(x t k x), k = 0,..., n 1, estimoidaan vain n k havainnosta. Pitkillä viiveillä (k n 1) c k ja r k tulevat estimoiduiksi epätarkasti, koska ne lasketaan vain muutamasta havainnosta. Siten otosautokovarianssit ja -korrelaatiot voivat olla epäluotettavia, jos havaintojen määrä n < 50 ja k > n 4.
Osittaisautokorrelaatioiden estimointi AR(p)-prosessille Olkoon ˆφ k k. osittaisautokorrelaatiokertoimen estimaattori. k:nen oak-kertoimen estimaatin laskeminen: 1 Muodostetaan aineiston avulla Yule-Walkerin yhtälöt (k kpl) 1 r 1 r 2 r k 1 a k1 r 1 r 1 1 r 1 r k 2 a k2 r 2 r 2 r 1 1 r k 3 a k3 = r 3,......... r k 1 r k 2 r k 3 1 a kk 2 Ratkaistaan a kk yhtälöistä 3 Estimaatti: ˆφ k = a kk Esim: ˆφ 1 = a 11, ˆφ 2 = a 22 = r 2 r1 2. 1 r 1 2 Osittaisautokorrelaatiokerrointen estimaatit ˆφ k, määräävät Otososittaisautokorrelaatiofunktion ˆφ : {0, 1,..., n 1} R, ˆφ(k) = ˆφ k kaikilla k = 0, 1,..., n 1. r k
Osittaisautokorrelaatioiden estimointi AR(p)-prosessille Osittaisautokorrelaatiokertoimet voidaan vaihtoehtoisesti estimoida myös regressiomalleista x t = β 1 x t 1 + β 2 x t 2 +...β p x t p + ɛ t. pienimmän neliösumman menetelmällä. Tällöin k. osittaisautokorrelaatiokertoimen φ k estimaattori on parametrin (regressiokertoimen) β k PNS-estimaattori b k : ˆφ k = b k, k = 1, 2,..., p. Nämä tavat sopivat suoraan vain AR(p)-prosesseille, koska MA-osa aiheuttaa sen, että kohina ei ole korreloimatonta.
Otosautokovarianssien stokastiset ominaisuudet Huom k. otosautokovarianssi c k on autokovarianssin γ k harhainen estimaattori, mutta c k on kuitenkin asymptoottisesti harhaton: lim E[c k] = γ k. n
Autokorrelaatioiden testaaminen Riippumattomien, samoin jakautuneiden satunnaismuuttujien jonon muodostaman stationaarisen stokastisen prosessin k. otosautokorrelaatio r k on asymptoottisesti normaalijakautunut: ( r k a N 0, 1 ) n Huom Tämä motivoi approksimatiiviseen testausmenettelyyn: 5 %:n merkitsevyystasolla r k kuuluu välille [ 2 n, 95 % todennäköisyydellä. ] 2 n (2 1.96). Jos IID satunnaismuuttujien muodostaman stokastisen prosessin generoimasta aikasarjasta estimoidaan 100 ensimmäistä autokorrelaatiota, niin keskimäärin niistä 5 kpl löytyvät annetun välin ulkopuolelta.
ARMA-mallin parametrien estimointi Olkoon x t, t = 1,..., n aikasarja, johon halutaan sovittaa ARMA(p, q)-malli x t φ 1 x t 1... φ p x t p = ɛ t + θ 1 ɛ t 1 +... + θ q ɛ t q, missä (ɛ t ) t T IID(0, σ 2 ) ja lisäksi ɛ t N(0, σ 2 ) kaikilla t T. Silloin satunnaismuuttujien x 1,..., x n yhteisjakauma on n-ulotteinen normaalijakauma, jonka kovarianssimatriisi riippuu (voimakkaan epälineaarisesti) ARMA(p, q)-mallin parametreista. Muodostetaan x 1,..., x n uskottavuusfunktio ja maksimoidaan uskottavuusfunktio parametrien suhteen (R: arima()), jolloin saadaan ARMA(p, q)-mallin parametrien SU-estimaattorit: ˆφ 1, ˆφ 2,..., ˆφ p, ˆθ 1, ˆθ 2,..., ˆθ q, ˆσ 2 Estimaattoreita ei saa ratkaistua suljetussa muodossa. Lisätietoja esim. Hamilton (1994), Brockwell & Davis (1991).
ARMA-mallin parametrien estimointi Oletetaan, että ollaan ratkaistu ARMA(p, q)-mallin parametrien SU-estimaattorit ˆφ 1, ˆφ 2,..., ˆφ p, ˆθ 1, ˆθ 2,..., ˆθ q, ˆσ 2. SU-estimaattoreiden keskivirheet saadaan käyttämällä hyväksi Fisherin informaatioita 1. SU-estimaattorit ovat asymptoottisesti normaalisia, joten parametreille saadaan luottamusvälit normaali- tai t-jakaumaan avulla merkitsevyyttä voidaan testata t-testillä. Jäännökset voidaan määrätä kaavalla e t = ˆφ(L) ˆθ(L) x t, ˆφ(L) = 1 ˆφ 1 L... ˆφ p L p, ˆθ(L) = 1 + ˆθ1 L +... + ˆθ q L q. 1 log-uskottavuusfunktion kunkin parametrin suhteen lasketun derivaatan toinen momentti
Ennustaminen ARMA-mallilla: Idea Oletetaan, että prosessilla (x t ) t T on MA-esitys x t = ψ j L j ɛ t, ψ 0 = 1, ψ j <, j=0 ja ollaan havaittu prosessi (ɛ t ) t T ajanhetkeen t asti, eli meillä on havainnot ɛ t, ɛ t 1, ɛ t 2... Silloin x t+s = ɛ t+s + ψ 1 ɛ t+s 1 +... + ψ s 1 ɛ t+1 + ψ s ɛ t + ψ s+1 ɛ t 1 +... j=0 ja ajanhetkellä t tehty optimaalinen ennuste (keskineliövirheen mielessä) on ˆx t+s t := Ê[ x t+s ɛ t, ɛ t 1,... ] = ψ s ɛ t +ψ s+1 ɛ t 1 +ψ s+2 ɛ t 2 +... Ennusteen keskineliövirhe on E [( x t+s ˆx t+s t ) 2 ] = ( 1 + ψ 2 1 + ψ 2 2 +... + ψ2 s 1) σ 2.
Ennustaminen ARMA-mallilla Yleensä prosessin (ɛ t ) t T sijaan on havaittu (stationaarinen) prosessi (x t ) t T, ( 1 φ1 L... φ p L p) x t = ( 1 + θ 1 L +... + θ q L q) ɛ t eikä MA( )-esitystä ole aina mielekästä käyttää ennustamiseen. Kääntyvyys kuitenkin takaa sen, että on yhdentekevää havaitaanko (x t ) t T vai (ɛ t ) t T. Silloin s-askeleen ennusteeksi hetkellä t saadaan φ 1ˆx t+s 1 t + φ 2ˆx t+s 2 t +... + φ pˆx t+s p t ˆx t+s t = +θ s ɛ t + θ s+1 ɛ t 1 +... + θ q ɛ t+s q s = 1, 2,..., q, φ 1ˆx t+s 1 t + φ 2ˆx t+s 2 t +... + φ pˆx t+s p t s q + 1, missä ˆx τ t = x τ, kun τ t ja termit ɛ t voi laskea rekursiivisesti kaavalla ɛ t = x t ˆx t t 1.
Ennustaminen ARMA-mallilla Huom Jos ennustetaan pitkälle, eli s > q, niin ennuste ei ota enää liukuvaa keskiarvoa huomioon, koska havaintoja sen laskemiseen ei ole. Edellä oletettiin, että havaintoja on äärettömän pitkälle historiaan. Käytännössä voidaan antaa havaitsemattomille arvoille arvot 0. Tämä toimii hyvin, jos havaintoja on paljon ja kertoimet θ i ja ψ i ovat suhteellisen pieniä (ei lähellä ykköstä).
ARMA-mallin ennusteen optimaalisuus Jos aikasarja x t on realisaatio ARMA(p, q)-prosessista (tunnetuilla) parametreilla φ 1, φ 2,..., φ p, θ 1, θ 2,..., θ q, niin ennuste ˆx t+s t on optimaalinen siinä mielessä, että se minimoi keskineliövirheen MSE(ˆx t+s t ) = E [( x t+s ˆx t+s t ) 2 ]. ARMA(p, q)-prosessin parametreja ei yleensä tunneta, vaan ne on estimoitava havainnoista.tällöin ennusteen keskineliövirheen kaavaan tulee korjaustekijä, joka riippuu estimointivirheestä ja optimaalisuustulos ei tarkasti ottaen enää pidä paikkaansa, mutta on kuitenkin suuntaa-antava.
ARMA-mallin ennusteen ominaisuudet Ennustefunktio ˆx t+s t (argumenttina ennushorisontti s) noudattaa jossain mielessä määritetyn ARMA-mallin autokorrelaatio-funktion muotoa I ˆx t+s t 0 eksponentiaalista vauhtia, jos kyseessä puhdas AR-malli tai sekamalli. II ˆx t+s t katkeaa kohdassa s = q, jos mallina on MA(q)-malli Näin ollen ARMA-mallin ennusteen hyödyllisyys häviää ennustehorisontin kasvaessa, joten ennustaminen ARMA-mallilla on olennaisesti lyhyen ajan ennustamista.
Ensi viikolla 1 ARMA-mallien rakentaminen (jatkuu) 1 Box-Jenkinsin menetelmä 2 Eksponentiaalinen tasoitus 3 Aikasarjojen ositus 2 Kalmanin suodatin
Luentokalvot pohjautuvat osittain Mellinin ja Liesiön aiempien vuosien kalvoihin.