Matematiikan tukikurssi

Samankaltaiset tiedostot
Matematiikan tukikurssi

Matematiikan tukikurssi

Matematiikan tukikurssi

Matematiikan tukikurssi

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Matemaattisen analyysin tukikurssi

Matematiikan tukikurssi. Toinen välikoe

Matematiikan tukikurssi: kurssikerta 10

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Taustatietoja ja perusteita

12. Hessen matriisi. Ääriarvoteoriaa

Matematiikkaa kauppatieteilijöille

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Matematiikan tukikurssi

Matematiikan tukikurssi, kurssikerta 3

2 Osittaisderivaattojen sovelluksia

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Luento 8: Epälineaarinen optimointi

Derivaatan sovellukset (ääriarvotehtävät ym.)

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Matematiikan tukikurssi

Matematiikan tukikurssi

Ratkaisuehdotus 2. kurssikoe

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

1 Rajoittamaton optimointi

Luento 8: Epälineaarinen optimointi

Matriisit ja optimointi kauppatieteilijöille

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

Matematiikan tukikurssi

Ratkaisuehdotus 2. kurssikokeeseen

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

x = (1 t)x 1 + tx 2 x 1 x 2

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Matematiikan tukikurssi

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Matematiikan tukikurssi

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Harjoitus 7: vastausvihjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

Funktion suurin ja pienin arvo DERIVAATTA,

MATP153 Approbatur 1B Harjoitus 6 Maanantai

Matematiikan tukikurssi

Matematiikan tukikurssi

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus reaalifunktioihin P, 5op

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Matematiikan tukikurssi

Viikon aiheet. Funktion lineaarinen approksimointi

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

Vastaa kaikkiin kysymyksiin (kokeessa ei saa käyttää laskinta)

Luento 9: Newtonin iteraation sovellus: optimointiongelma

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Vektorianalyysi II (MAT21020), syksy 2018

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Valintakoe

Matematiikan tukikurssi: kurssikerta 12

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

lnx x 1 = = lim x = = lim lim 10 = x x0

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Matematiikan tukikurssi

Likimääräisratkaisut ja regularisaatio

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

Taloustieteen matemaattiset menetelmät - pikakertausta ja toimintaohjeita Kurssin 1. osa

b 1. b m ) + ( 2b Ax) + (b b)

Differentiaalilaskenta 1.

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

MATEMATIIKAN ALKEET II (YE19B), SYKSY 2011

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Transkriptio:

Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 ) f (x). Tässä määritelmässä x kuuluu välille, johon sisältyy piste x 0 eli x (x 0 ɛ, x 0 + ɛ), jossa ɛ > 0. Lokaali minimi määritellään vastaavalla tavalla, ainoastaan epäyhtälön suunta muuttuu. Jos funktiolla f on pisteessä x 0 joko lokaali maksimi tai lokaali minimi, niin tällöin sanotaan että funktiolla f on pisteessä x 0 lokaali ääriarvo. Jos funktio f on derivoituva, niin välttämätön ehto tämän funktion lokaalille ääriarvolle on, että sen derivaatta tässä pisteessä on nolla eli f (x 0 ). Puolestaan funktion f toinen derivaatta kertoo, onko tällä funktiolla ääriarvopisteessä x 0 lokaali maksimi, lokaali minimi vaiko kumpaakaan. Jos pätee f (x 0 ) ja f (x 0 ) < 0, niin funktio f on tässä pisteessä x 0 aidosti konkaavi ja sillä on kyseisessä pisteessä lokaali maksimi. Jos puolestaan f (x 0 ) ja f (x 0 ) > 0, niin kyseisessä pisteessä funktio on aidosti konveksi ja sillä on lokaali minimi. Jos puolestaan pätee f (x 0 ) ja f (x 0 ), emme tiedä onko funktiolla tässä pisteessä lokaalia minimiä, lokaalia maksimia vaiko kumpaakaan. Nyt etsimme kuitenkin useamman muuttujan funktioiden ääriarvoa. Yllä yhden muuttujan funktiolle esitellyillä ideoilla on kuitenkin selkeät vastineet usean muuttujan funktion ääriarvoja etsittäessä. Tarkastellaan aluksi yksinkertaisuuden vuoksi kahden muuttujan funktiota f (x, y). Tällaisella 1

funktiolla on lokaali maksimi pisteessä (x 0, y 0 ), mikäli funktio f saa tässä pisteessä suuremman (tai yhtä suuren) arvon, kuin tämän ympäristön pisteissä eli mikäli f (x 0, y 0 ) f (x, y), kun (x, y) kuuluu pisteen (x 0, y 0 ) ympäristöön. Tässä määritelmässä pisteen (x 0, y 0 ) ympäristö on ympyrä, jolla on säde r ja jonka keskipiste on (x 0, y 0 ) eli voimme yhtäpitävästi sanoa, että yllä olevassa määritelmässä piste (x, y) kuuluu joukkoon 1. { } (x, y) : (x x 0 ) 2 + (y y 0 ) 2 < r. Täten kahden muuttujan funktiolla on pisteessä (x 0, y 0 ) lokaali ääriarvo, mikäli luku f (x 0, y 0 ) on suurempi kuin mikään luku f (x, y), kun (x, y) kuuluu pisteen (x 0, y 0 ) ympäristöön. Lokaali minimi määritellään vastaavalla tavalla. Lokaali ääriarvo tarkoittaa edelleen joko lokaalia maksimia tai lokaalia minimiä. Jos funktio f (x, y) on differentioituva, niin välttämätön ehto lokaalille ääriarvolle on, että sen osittaisderivaatat ovat pisteessä (x 0, y 0 ) nollia eli. Nämä ehdot eivät kuitenkaan takaa, että funktiolla f olisi tässä pisteessä (x 0, y 0 ) lokaalia ääriarvoa. Tämän ratkaisemiseksi tarvitaan toisen asteen ehtoja. Yhden muuttujan funktiolle toisen asteen ehto maksimille pisteessä x 0 oli se, että tämä funktio f on kyseisessä pisteessä aidosti konkaavi eli että f (x 0 ) < 0. Myös kahden muuttujan funktiolle pätee itse asiassa täsmälleen sama konveksisuusehto: funktio f (x, y) saavuttaa pisteessä 1 Tarkka määritelmä lokaalille maksimille on, että funktiolla f (x, y) on pisteessä (x 0, y 0 ) lokaali ääriarvo, mikäli on olemassa piste r siten että f (x 0, y 0 ) f (x, y), kun { } (x, y) (x, y) : (x x 0 ) 2 + (y y 0 ) 2 < r. 2

(x 0, y 0 ) lokaalin maksimin, mikäli pätee ja f (x, y) on pisteessä (x 0, y 0 ) aidosti konkaavi. Täten voimme sanoa, että funktio f (x, y) saavuttaa pisteessä (x 0, y 0 ) lokaalin maksimin mikäli yllä olevat kolme ehtoa toteutuvat. Derivaattojen nollakohdat on yleensä helppo ratkaista. Funktion f aito konkaavius puolestaan ratkeaa tämän funktion Hessen matriisin definiittisyydestä. Jos [ ] 12 on negatiivisesti definiitti pisteessä (x 0, y 0 ), niin funktio f on aidosti konkaavi tässä pisteessä. Täten yllä esitetty ehto lokaalille maksimille saadaan muotoon ja H(x, y) < 0 pisteessä (x 0, y 0 ). Lisäksi viime viikolta muistetaan, että Hessen matriisi on negatiivisesti definiitti silloin, kun pätee f 11 < 0 ja = f 11 f 22 f12 2 > 0. Täten saadaan muodostettua laskemisen kannalta kaikkein hyödyllisimmät ehdot kahden muuttujan funktion maksimille pisteessä (x 0, y 0 ): ja f 11 < 0 ja > 0. 3

Vastaavasti funktio f (x, y) saavuttaa pisteessä (x 0, y 0 ) lokaalin minimin, mikäli pätee f (x 0,y 0 ), f (x 0,y 0 ) ja f on pisteessä (x 0, y 0 ) aidosti konveksi. Lisäksi muistetaan, että f on aidosti konveksi, mikäli sen Hessen matriisi on positiivisesti definiitti eli [ ] 12 > 0 pisteessä (x 0, y 0 ). Tämä Hessen matriisi on pisteessä (x 0, y 0 ) positiivisesti definiitti mikäli pätee f 11 > 0 ja = f 11 f 22 f12 2 > 0 pisteessä (x 0, y 0 ). Täten riittävä ehto differentioituvan funktion f (x, y) lokaalille minimille pisteessä (x 0, y 0 ) on ja f 11 > 0 ja > 0. Täten verrattuna lokaaliin maksimiin lokaalin minimin toisen asteen ehdon erottaa ainoastaan toisen derivaatan f 11 etumerkki 2. Esimerkki 1.1. Etsitään funktion x 2 + y 2 xy lokaalit ääriarvopisteet. Ensimmäisen asteen ehdot ovat = 2x y 2x = y = 2y x 2y = x. Näistä seuraa, että ainoa mahdollinen lokaali ääriarvokohta on piste jossa yllä olevat ehdot toteutuvat eli piste (x 0, y 0 ) = (0, 0). Tämän ääriarvopisteen laatu nähdään toisen asteen ehdoista. Tämän funktion Hessen matriisi on [ ] [ 12 = 2 1 1 2 2 Itse asiassa koska f 11 > 0 ja f 11 f 22 f12 2 > 0 f 11 f 22 > f12 2 > 0, niin tästä seuraa myös, että f 22 > 0. Vastaavasti maksimin saavuttavalla funktiolla pätee f 11 < 0 ja f 22 < 0. 4 ].

Tälle pätee f 11 = 2 > 0 ja f 11 f 22 f12 2 = 4 1 = 3 > 0, joten piste (0, 0) on tämän funktion lokaali minimi. Esimerkki 1.2. Etsitään funktion (x 1) 2 + (y 2) 2 lokaalit ääriarvot. Suoraan määritelmästä nähdään, että tämän funktion globaali ja lokaali minimi on pisteessä (1, 2). Osoitetaan tämä nyt myös yllä opitulla tekniikalla. Ensinnä (x 1) 2 + (y 2) 2 = x 2 2x + 1 + y 2 4y + 4 = x 2 2x + y 2 4y + 5. Tämän ensimmäiset osittaisderivaatat ovat = 2x 2 x = 1 = 2y 4 y = 2. Täten piste (1, 2) toteuttaa nämä ensimmäisen asteen ehdot. Hessen matriisi on puolestaan [ ] [ ] 12 2 0 =. 0 2 Tälle pätee selvästi f 11 = 2 > 0 ja f 11 f 22 f12 2 = 4 > 0, joten piste (1, 2) on tämän funktio lokaali (ja globaali) minimi. On syytä huomata, että näiden kahden esimerkin funktioilla ei ole ollenkaan globaalia maksimia. Tämä johtuu siitä, että f (x, y), kun x tai y eli nämä funktiot saavat mielivaltaisen suuria arvoja. Esitetään vielä ehdot kolmen muuttujan funktion f (x, y, z) maksimille. Ensimmäisen asteen ehto on edelleen, että funktion ensimmäiset osittaisderivaatat ovat nollia. Lisäksi vaadimme, että funktio f (x, y, z) on ääriarvopisteessä (x 0, y 0, y 0 ) aidosti konkaavi. Täten ehdot lokaalille maksimille ovat: ja z f 11 < 0 ja > 0 ja f 11 f 12 f 13 f 23 f 13 f 23 f 33 < 0. 5

Vastaavasti ehto lokaalille minimille on, että funktio f (x, y, z) on ääriarvopisteessä (x 0, y 0, y 0 ) aidosti konveksi. Täten ehdot lokaalille minimille ovat: z f 11 > 0 ja ja > 0 ja f 11 f 12 f 13 f 23 f 13 f 23 f 33 > 0. 6