Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit

Samankaltaiset tiedostot
Stationaariset stokastiset prosessit ja ARMA-mallit

ARMA mallien ominaisuudet ja rakentaminen

3. Teoriaharjoitukset

6.2.3 Spektrikertymäfunktio

ARMA mallien ominaisuudet ja rakentaminen

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia

Osa 2: Otokset, otosjakaumat ja estimointi

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

Harjoitus 2: Matlab - Statistical Toolbox

6.5.2 Tapering-menetelmä

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

4.0.2 Kuinka hyvä ennuste on?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Estimointi. Vilkkumaa / Kuusinen 1

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Aikasarja-analyysi Aikasarjat

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Tilastollinen aineisto Luottamusväli

Dynaamiset regressiomallit

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

tilastotieteen kertaus

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

STOKASTISET PROSESSIT

Sovellettu todennäköisyyslaskenta B

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Testejä suhdeasteikollisille muuttujille

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Testit laatueroasteikollisille muuttujille

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

3. Tietokoneharjoitukset

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Sovellettu todennäköisyyslaskenta B

9. Tila-avaruusmallit

3.6 Su-estimaattorien asymptotiikka

Ennustaminen ARMA malleilla ja Kalmanin suodin

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Signaalimallit: sisältö

Sovellettu todennäköisyyslaskenta B

Ilkka Mellin Aikasarja-analyysi. Dynaamiset regressiomallit. TKK (c) Ilkka Mellin (2006) 1

Sovellettu todennäköisyyslaskenta B

Tilastomatematiikka Kevät 2008

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

Johdatus regressioanalyysiin. Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Batch means -menetelmä

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

,ܾ jaü on annettu niin voidaan hakea funktion

Ilkka Mellin (2008) 1/5

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

Moniulotteiset satunnaismuuttujat ja jakaumat

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

Sovellettu todennäköisyyslaskenta B

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyden ominaisuuksia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Sovellettu todennäköisyyslaskenta B

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Inversio-ongelmien laskennallinen peruskurssi Luento 7

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus

Transkriptio:

Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit TKK (c) Ilkka Mellin (2007) 1

Stationaariset stokastiset prosessit >> Stationaariset stokastiset prosessit Integroituvuus Korrelaatiofunktioiden estimointi Stationaaristen stokastisten prosessien spektri Spektrin estimointi TKK (c) Ilkka Mellin (2007) 2

Stationaariset stokastiset prosessit Stokastiset prosessit 1/3 Stokastinen prosessi on satunnaismuuttujien x t, t T järjestetty jono, jossa aikaindeksi t määrää satunnaismuuttujien x t järjestyksen jonossa. Satunnaismuuttujien x t yhteisjakaumat määräävät täysin stokastisen prosessin käyttäytymisen. TKK (c) Ilkka Mellin (2007) 3

Stationaariset stokastiset prosessit Stokastiset prosessit 2/3 Olkoon x t, t T jokin stokastinen prosessi. Indeksijoukkona T käytetään (tilanteen mukaan) jotakin seuraavista joukoista: (i) Kokonaislukujen joukko: T = = {, 2, 1, 0, + 1, + 2, } (ii) Luonnollisten lukujen joukko: T = ={1, 2, 3, } (iii) Äärellinen luonnollisten lukujen joukko: T = {1, 2, 3,, n} TKK (c) Ilkka Mellin (2007) 4

Stationaariset stokastiset prosessit Stokastiset prosessit 3/3 Koska oletamme, että stokastisen prosessin x t, t T aikaindeksi t saa arvoja diskreetistä joukosta T, prosessia x t kutsutaan usein diskreettiaikaiseksi tai yksinkertaisesti vain diskreetiksi. Huomautus: Jos indeksijoukkona T on jokin reaaliakselin väli, sanotaan stokastista prosessia jatkuva-aikaiseksi tai vain jatkuvaksi. Jatkuva-aikaisten stokastisten prosessien käsittely sivuutetaan tässä esityksessä. TKK (c) Ilkka Mellin (2007) 5

Stationaariset stokastiset prosessit Aikasarjat stokastisten prosessien realisaatioina Havaittu aikasarja tulkitaan tilastollisessa aikasarjaanalyysissa jonkin stokastisen prosessin realisaatioksi, millä tarkoitetaan sitä, että aikasarja on jonkin stokastinen prosessin generoima. Aikasarja-analyysin tehtävät: (i) Tunnistaa aikasarjan generoinut stokastinen prosessi. (ii) Estimoida aikasarjan generoineen prosessin parametrit ja testata parametreja koskevia hypoteeseja. (iii) Konstruoida ennusteita prosessin (aikasarjan) tulevalle käyttäytymiselle. TKK (c) Ilkka Mellin (2007) 6

Stationaariset stokastiset prosessit Stokastista prosessia kuvaavat tunnusluvut Olkoon x t, t T diskreetti stokastinen prosessi. Määritellään prosessille tavanomaiset tunnusluvut: Odotusarvo: E(x t ) = µ t, t T Varianssi: Var(x t ) = E[(x t µ t ) 2 ] = D 2 (x t ) = σ t2, t T Kovarianssi: Cov(x t, x s ) = E[(x t µ t )(x s µ s )] = γ ts, t ja s T Erityisesti: γ tt = Var(x t ) = σ t2, t T TKK (c) Ilkka Mellin (2007) 7

Stationaariset stokastiset prosessit Tunnusluvut stokastisille prosesseille: Tulkinta 1/2 Olkoon x t, t T diskreetti stokastinen prosessi. Odotusarvo E(x t ) = µ t, t T kuvaa satunnaismuuttujan x t todennäköisyysjakauman todennäköisyysmassan painopistettä. Varianssi Var(x t ) = E[(x t µ t ) 2 ] = σ t2, t T kuvaa satunnaismuuttujan x t todennäköisyysjakauman todennäköisyysmassan vaihtelua todennäköisyysmassan painopisteen µ t ympärillä. TKK (c) Ilkka Mellin (2007) 8

Stationaariset stokastiset prosessit Tunnusluvut stokastisille prosesseille: Tulkinta 2/2 Kovarianssi Cov(x t, x s ) = γ ts, t ja s T kuvaa satunnaismuuttujien x t ja x s yhteisjakauman todennäköisyysmassan vaihtelua yhteisjakauman todennäköisyysmassan painopisteen (µ t, µ s ) ympärillä. TKK (c) Ilkka Mellin (2007) 9

Stationaariset stokastiset prosessit Stationaarisuus 1/2 Olkoon x t, t T diskreetti stokastinen prosessi. Stokastinen prosessi x t, t T on kovarianssistationaarinen eli heikosti stationaarinen jos seuraavat ehdot pätevät: (i) E(x t ) = µ kaikille t T (ii) Var(x t ) = σ 2 kaikille t T (iii) Cov(x t, x s ) = γ t s kaikille t ja s T TKK (c) Ilkka Mellin (2007) 10

Stationaariset stokastiset prosessit Stationaarisuus 2/2 Olkoon x t, t T diskreetti stokastinen prosessi. Stokastinen prosessi x t, t T on vahvasti stationaarinen, jos kaikilla satunnaismuuttujilla x t on sama jakauma. Vahvasti stationaariset stokastiset prosessit ovat aina myös heikosti stationaarisia, mutta käänteinen ei päde. Huomautuksia: Jos heikosti stationaarinen prosessi on normaalinen, prosessi on myös vahvasti stationaarinen. Emme tarvitse vahvan stationaarisuuden käsitettä tässä esityksessä ja käsite stationaarisuus viittaa jatkossa aina heikosti stationaarisiin prosesseihin. TKK (c) Ilkka Mellin (2007) 11

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit: Ominaisuudet 1/2 Stationaarisen stokastisen prosessin x t, t T ominaisuudet: (i) Odotusarvo E(x t ) = µ, t T ei riipu ajanhetkestä t eli on vakio ajassa. (ii) Varianssi Var(x t ) = σ 2, t T ei riipu ajanhetkestä t eli on vakio ajassa. (iii) Kovarianssi Cov(x t, x s ) = γ t s, t ja s T ei riipu ajanhetkistä t ja s, vaan ainoastaan ajanhetkien t ja sväliajastat s. TKK (c) Ilkka Mellin (2007) 12

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit: Ominaisuudet 2/2 Stationaarisen stokastisen prosessin x t, t T realisaatioissa ei saa näkyä seuraavia piirteitä: (i) Determinististä tai stokastista trendiä. (ii) Varianssin (systemaattista) vaihtelua. (iii) Determinististä tai stokastista kausivaihtelua. (iv) Sisäisen riippuvuusrakenteen, kuten rytmin, (systemaattista) vaihtelua. TKK (c) Ilkka Mellin (2007) 13

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit aikasarjojen malleina 1/2 Vaikka stationaarisuuden ehdot saattavat tuntua rajoittavilta, stationaariset stokastiset prosessit muodostavat käyttökelpoisen ja moniin erilaisiin tilanteisiin soveltuvan malliluokan aikasarjoille. Tämä perustuu seuraavaan empiiriseen havaintoon: Monet käytännön tutkimuksessa kohdattavat aikasarjat ovat stationaarisia tai ne voidaan stationarisoida. TKK (c) Ilkka Mellin (2007) 14

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit aikasarjojen malleina 2/2 Lisäperustelu stationaaristen stokastisten prosessien käyttökelpoisuudelle aikasarjamalleina on se, että stationaaristen stokastisten prosessien teoria hallitaan erinomaisesti: (i) Stationaaristen stokastisten prosessien teoreettiset ominaisuudet tunnetaan hyvin. (ii) Stationaaristen stokastisten prosessien estimointi-ja testiteoria on hyvin strukturoitu ja helposti sovellettavissa. (iii) Stationaarisille aikasarjoille on kehitetty järjestelmällisiä mallinrakennusprosesseja. TKK (c) Ilkka Mellin (2007) 15

Stationaariset stokastiset prosessit Autokovarianssi: Määritelmä Olkoon x t, t T stationaarinen stokastinen prosessi. Voimme määritellä prosessin k. autokovarianssin kaavalla γ k = Cov( xt, xt k) = E[( xt µ )( xt k µ )], t T, k jossa µ = E( xt ), t T on prosessin odotusarvo. Erityisesti 2 γ 0 = Var( xt ) = σ, t T on prosessin varianssi. TKK (c) Ilkka Mellin (2007) 16

Stationaariset stokastiset prosessit Autokovarianssi: Kommentteja Autokovariansseja ei ole määritelty epästationaarisille stokastisille prosesseille. Autokovarianssit eivät riipu ajanhetkestä t. TKK (c) Ilkka Mellin (2007) 17

Stationaariset stokastiset prosessit Autokovarianssifunktio: Määritelmä Stationaarisen stokastisen prosessin x t, t T autokovarianssifunktio on γ k, k = 0, 1, 2, jossa γ k on prosessin k. autokovarianssi. Huomautus: Autokovarianssifunktio ei ole määritelty epästationaarisille stokastisille prosesseille. TKK (c) Ilkka Mellin (2007) 18

Stationaariset stokastiset prosessit Autokorrelaatio: Määritelmä Olkoon x t, t T stationaarinen stokastinen prosessi. Määritellään prosessin k. autokorrelaatiokerroin kaavalla γ k ρk =, k γ 0 jossa γ k = Cov( xt, xt k), t T, k on prosessin k. autokovarianssi ja 2 γ 0 = Var( xt ) = σ, t T on prosessin varianssi. TKK (c) Ilkka Mellin (2007) 19

Stationaariset stokastiset prosessit Autokorrelaatio: Kommentteja Autokorrelaatiokertoimia ei ole määritelty epästationaarisille stokastisille prosesseille. Autokorrelaatiokertoimet eivät riipu ajanhetkestä t. Autokorrelaatiokerroin ρ k mittaa stationaarisen stokastisen prosessin x t, t T aikavälin k päässä toisistaan olevien satunnaismuuttujien lineaarisen riippuvuuden voimakkuutta. TKK (c) Ilkka Mellin (2007) 20

Stationaariset stokastiset prosessit Autokorrelaatiokertoimet: Ominaisuudet Autokorrelaatiokertoimilla on seuraavat ominaisuudet: (1) ρ 0 = 1 (2) ρ k = ρ k kaikille k = 0, 1, 2, (3) ρ k 1 kaikille k Ominaisuuden (2) takia on riittävää tarkastella autokorrelaatioita, kun k = 0, 1, 2, TKK (c) Ilkka Mellin (2007) 21

Stationaariset stokastiset prosessit Autokorrelaatiofunktio: Määritelmä Stationaarisen stokastisen prosessin x t, t T autokorrelaatiofunktio (akf) on ρ k, k = 0, 1, 2, jossa ρ k on prosessin k. autokorrelaatiokerroin. Huomautus: Autokorrelaatiofunktio ei ole määritelty epästationaarisille stokastisille prosesseille. TKK (c) Ilkka Mellin (2007) 22

Stationaariset stokastiset prosessit Autokorrelaatiofunktio: Graafinen esitys Autokorrelaatiofunktiota ρ k, k = 0, 1, 2, on tapana kuvata graafisesti piirtämällä pisteet (k, ρ k ), k = 0, 1, 2, tasoon. Tavallisesti pisteet (k, ρ k ), k = 0, 1, 2, yhdistetään pisteisiin (k, 0), k = 0, 1, 2, janalla, jolloin autokorrelaatiofunktion kuvaajasta tulee piikkifunktio. TKK (c) Ilkka Mellin (2007) 23

Stationaariset stokastiset prosessit Osittaisautokorrelaatio: Määritelmä Olkoon x t, t T stationaarinen stokastinen prosessi. Prosessin k. osittaisautokorrelaatiokerroin φk = Cor( xt, xt k xt 1,, xt k+ 1), t T, k on satunnaismuuttujien x t ja x t k ehdollinen korrelaatio, kun ehtomuuttujina ovat muuttujat x t 1,, x t k+1 eli ajanhetkien t ja t k väliin jäävät satunnaismuuttujat stokastisen prosessin muodostavien satunnaismuuttujien jonossa. TKK (c) Ilkka Mellin (2007) 24

Stationaariset stokastiset prosessit Osittaisautokorrelaatio: Kommentteja Osittaisautokorrelaatiokertoimia ei ole määritelty epästationaarisille stokastisille prosesseille. Osittaisautokorrelaatiokertoimet eivät riipu ajanhetkestä t. Osittaisautokorrelaatiokerroin φ k mittaa stationaarisen stokastisen prosessin x t, t T aikavälin k päässä toisistaan olevien satunnaismuuttujien korrelaatiota, kun korrelaatiosta on eliminoitu aikavälin k päässä toisistaan olevien satunnaismuuttujien väliin jäävien satunnaismuuttujien vaikutus. TKK (c) Ilkka Mellin (2007) 25

Stationaariset stokastiset prosessit Osittaisautokorrelaatiokertoimet: Ominaisuudet Osittaisautokorrelaatiokertoimilla on seuraavat ominaisuudet: (1) φ 0 = 1 (2) φ k = φ k kaikille k = 0, 1, 2, (3) φ k 1 kaikille k Ominaisuuden (2) takia on riittävää tarkastella osittaisautokorrelaatioita, kun k = 0, 1, 2, TKK (c) Ilkka Mellin (2007) 26

Stationaariset stokastiset prosessit Osittaisautokorrelaatiofunktio: Määritelmä Stationaarisen stokastisen prosessin x t, t T osittaisautokorrelaatiofunktio (oakf) on φ k, k = 0, 1, 2, jossa φ k on prosessin k. osittaisautokorrelaatiokerroin. Huomautus: Osittaisautokorrelaatiofunktio ei ole määritelty epästationaarisille stokastisille prosesseille. TKK (c) Ilkka Mellin (2007) 27

Stationaariset stokastiset prosessit Osittaisautokorrelaatiofunktio: Graafinen esitys Osittaisautokorrelaatiofunktiota φ k, k = 0, 1, 2, on tapana kuvata graafisesti piirtämällä pisteet (k, φ k ), k = 0, 1, 2, tasoon. Tavallisesti pisteet (k, φ k ), k = 0, 1, 2, yhdistetään pisteisiin (k, 0), k = 0, 1, 2, janalla, jolloin osittaisautokorrelaatiofunktion kuvaajasta tulee piikkifunktio. TKK (c) Ilkka Mellin (2007) 28

Stationaariset stokastiset prosessit Auto- ja osittaisautokorrelaatiokertoimien yhteys: Yulen ja Walkerin yhtälöt 1/3 Olkoon stationaarisen stokastisen prosessin x t, t T autokorrelaatiofunktio ρ k, k = 0, 1, 2, ja osittaisautokorrelaatiofunktio φ k, k = 0, 1, 2, TKK (c) Ilkka Mellin (2007) 29

Stationaariset stokastiset prosessit Auto- ja osittaisautokorrelaatiokertoimien yhteys: Yulen ja Walkerin yhtälöt 2/3 Määritellään Yulen ja Walkerin yhtälöt 1 ρ1 ρ2 ρk 1 αk1 ρ1 ρ1 1 ρ1 ρ k 2 α k2 ρ 2 ρ2 ρ1 1 ρk 3 α k3 = ρ3 ρk 1 ρk 2 ρk 3 1 α kk ρ k kun k = 1, 2, ja ratkaistaan k. yhtälöstä kerroin α kk TKK (c) Ilkka Mellin (2007) 30

Stationaariset stokastiset prosessit Auto- ja osittaisautokorrelaatiokertoimien yhteys: Yulen ja Walkerin yhtälöt 3/3 k. osittaisautokorrelaatiokerroin φ k saadaan kertoimen α kk ratkaisuna k. yhtälöstä: φ k = α kk Erityisesti: φ = α = ρ φ 1 11 1 2 ρ2 ρ1 2 = α22 = 2 1 ρ1 TKK (c) Ilkka Mellin (2007) 31

Stationaariset stokastiset prosessit Aikasarjan stationarisointi Koska stationaaristen stokastisten prosessien realisaatioissa ei saa olla näkyvää trendiä tai kausivaihtelua, havaitut aikasarjat eivät useinkaan ole stationaarisia! Merkitseekö tämä sitä, että stationaaristen stokastisten prosessien luokka ei ole käytännössä hyödyllinen? Vastaus on ei: Monet epästationaarisilta näyttävät aikasarjat voidaan stationarisoida differensoimalla! Sellaista epästationaariselta näyttävää aikasarjaa, joka voidaan stationarisoida differensoimalla, kutsutaan integroituvaksi tai differenssistationaariseksi; ks. tarkemmin seuraavaa kappaletta. TKK (c) Ilkka Mellin (2007) 32

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit >> Integroituvuus Korrelaatiofunktioiden estimointi Stationaaristen stokastisten prosessien spektri Spektrin estimointi TKK (c) Ilkka Mellin (2007) 33

Integroituvuus Integroituvuus: Määritelmä 1/2 Oletetaan, että diskreetti stokastinen prosessi x t, t T on epästationaarinen, mutta jokin sen differenssi on stationaarinen. Tällöin prosessia x t, t T kutsutaan integroituvaksi tai differenssistationaariseksi. TKK (c) Ilkka Mellin (2007) 34

Integroituvuus Integroituvuus: Määritelmä 2/2 Diskreetti stokastinen prosessi x t, t T on integroituva eli differenssistationaarinen astetta p, jos q Dxt, D= 1 L on epästationaarinen kaikille q = 1, 2,, p 1 mutta p D x t on stationaarinen. TKK (c) Ilkka Mellin (2007) 35

Integroituvuus Kausi-integroituvuus Diskreetti stokastinen prosessi x t, t T on kausi-integroituva eli differenssistationaarinen astetta p kauden pituuden s suhteen, jos q s Dx s t, Ds = 1 L on epästationaarinen kaikille q = 1, 2,, p 1 mutta p Ds xt on stationaarinen. TKK (c) Ilkka Mellin (2007) 36

Integroituvuus Integroituvuus ja kausi-integroituvuus Jos stokastisessa prosessissa on sekä trendi että kausivaihtelua, saattaa olla aiheellista tehdä sekä differensointi että kausidifferensointi stationaarisuuden saavuttamiseksi. Esimerkki: Jos kauden pituus s = 12 (kuukausiaikasarja), stationaarisuuden saavuttamiseksi joudutaan usein soveltamaan differensointia D Dx = DD x jossa D D 12 t 12 t 12 13 (1 ) = 1 L 12 s t = 1 L = L L + L x = x x x + x t t 1 t 12 t 13 12 Lx = x, s= 0,1,2, t s TKK (c) Ilkka Mellin (2007) 37 t

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit Integroituvuus >> Korrelaatiofunktioiden estimointi Stationaaristen stokastisten prosessien spektri Spektrin estimointi TKK (c) Ilkka Mellin (2007) 38

Korrelaatiofunktioiden estimointi Otostunnusluvut Olkoon x t, t = 1, 2,, n havaittu aikasarja. Määritellään aikasarjalle tavanomaiset otostunnusluvut: (Aritmeettinen) keskiarvo: 1 n x = n t = x 1 t (Otos-) varianssi: c 1 n 2 0 = n ( x ) 1 t x t= k. (otos-) autokovarianssi: 1 n ck = n ( xt x)( xt k x), k = 0,1,2,, n 1 t= k+ 1 TKK (c) Ilkka Mellin (2007) 39

Korrelaatiofunktioiden estimointi Autokorrelaatioiden estimointi Olkoon x t, t = 1, 2,, n havaittu aikasarja. Määritellään aikasarjan k. (otos-) autokorrelaatiokerroin kaavalla jossa n ( x x)( x x) c = =, = 0,1,2,, 1 t t k k t= k+ 1 rk k n n c0 2 ( xt x) t= 1 c k = aikasarjan k. otosautokovarianssi c 0 = aikasarjan otosvarianssi TKK (c) Ilkka Mellin (2007) 40

Korrelaatiofunktioiden estimointi Otosautokorrelaatiofunktio: Määritelmä Havaitun aikasarjan x t, t = 1, 2,, n otosautokorrelaatiofunktio (oakf) on r k, k = 0, 1, 2,, n 1 jossa r k on aikasarjan k. otosautokorrelaatiokerroin. TKK (c) Ilkka Mellin (2007) 41

Korrelaatiofunktioiden estimointi Otosautokorrelaatiofunktio: Graafinen esitys Otosautokorrelaatiofunktiota r k, k = 0, 1, 2,, n 1 on tapana kuvata graafisesti piirtämällä pisteet (k, r k ), k = 0, 1, 2,, n 1 tasoon. Tavallisesti pisteet (k, r k ), k = 0, 1, 2,, n 1 yhdistetään pisteisiin (k, 0), k = 0, 1, 2,, n 1 janalla, jolloin otosautokorrelaatiofunktion kuvaajasta tulee piikkifunktio. TKK (c) Ilkka Mellin (2007) 42

Korrelaatiofunktioiden estimointi Kuinka monta autokorrelaatiota? 1/2 Aikasarjasta x t, t = 1, 2,, n jonka pituus on n, voidaan periaatteessa estimoida n 1 ensimmäistä autokovarianssia ja korrelaatiota. Kannattaa kuitenkin huomata, että k. autokovarianssi 1 n ck = n ( x )( ), 0,1,2,, 1 1 t x x t k t k x k = n = + estimoidaan vain n k havainnosta. TKK (c) Ilkka Mellin (2007) 43

Korrelaatiofunktioiden estimointi Kuinka monta autokorrelaatiota? 2/2 Tämä merkitsee sitä, että autokovarianssit ja korrelaatiot pitkillä viipeillä k n 1 tulevat estimoiduiksi sangen epätarkasti, koska ne lasketaan vain muutamasta havainnosta. Siten autokovariansseja ja korrelaatioita ei yleensä kannata laskea kuin alle puolet (esim. 1/3) siitä mitä havaintojen lukumäärä sallii. Laskettavien autokovarianssien ja korrelaatioiden lukumäärään on syytä antaa vaikuttaa myös sen, mitä tarkasteltavasta aikasarjasta tiedetään (esim. millaisia ovat syklisten vaihtelukomponenttien aallonpituudet). TKK (c) Ilkka Mellin (2007) 44

Korrelaatiofunktioiden estimointi Osittaisautokorrelaatioiden estimointi 1/4 Olkoon x t, t = 1, 2,, n havaittu aikasarja. Olkoot r k, k = 0, 1, 2,, n 1 aikasarjasta estimoidut autokorrelaatiot. TKK (c) Ilkka Mellin (2007) 45

Korrelaatiofunktioiden estimointi Osittaisautokorrelaatioiden estimointi 2/4 Määritellään Yulen ja Walkerin yhtälöt 1 r1 r2 rk 1 ak1 r1 r1 1 r1 r k 2 a k2 r 2 r2 r1 1 rk 3 ak3 = r3 rk 1 rk 2 rk 3 1 a kk r k kun k = 1, 2,, n 1 ja ratkaistaan k. yhtälöstä kerroin a kk TKK (c) Ilkka Mellin (2007) 46

Korrelaatiofunktioiden estimointi Osittaisautokorrelaatioiden estimointi 3/4 k. osittaisautokorrelaatiokertoimen estimaattori saadaan kertoimen a kk ratkaisuna k. yhtälöstä: ˆk φ = a kk Erityisesti: ˆ φ = a = r ˆ φ 1 11 1 2 r2 r1 2 = a22 = 2 1 r1 φˆk TKK (c) Ilkka Mellin (2007) 47

Korrelaatiofunktioiden estimointi Osittaisautokorrelaatioiden estimointi 4/4 Osittaisautokorrelaatiokertoimet voidaan estimoida myös regressiomalleista xt = αk1xt 1+ αk2xt 2 + + αkkxt k + εt, k = 1,2,, n 1 pienimmän neliösumman menetelmällä. Tällöin k. osittaisautokorrelaatiokertoimen estimaattori on parametrin (eli regressisokertoimen) α kk PNSestimaattori a kk k. mallista: φ = a ˆk kk TKK (c) Ilkka Mellin (2007) 48

Korrelaatiofunktioiden estimointi Otososittaisautokorrelaatiofunktio: Määritelmä Havaitun aikasarjan x t, t = 1, 2,, n otososittaisautokorrelaatiofunktio (ooakf) on φˆk, k = 0, 1, 2,, n 1 jossa on k. osittaisautokorrelaatiokertoimen estimaattori. φˆk TKK (c) Ilkka Mellin (2007) 49

Korrelaatiofunktioiden estimointi Otososittaisautokorrelaatiofunktio: Graafinen esitys Osittaisautokorrelaatiofunktiota φˆk, k = 0, 1, 2,, n 1 on tapana kuvata graafisesti piirtämällä pisteet (k, φˆk ), k = 0, 1, 2,, n 1 tasoon. Tavallisesti pisteet (k, φˆk ), k = 0, 1, 2,, n 1 yhdistetään pisteisiin (k, 0), k = 0, 1, 2,, n 1 janalla, jolloin otososittaisautokorrelaatiofunktion kuvaajasta tulee piikkifunktio. TKK (c) Ilkka Mellin (2007) 50

Korrelaatiofunktioiden estimointi Kuinka monta osittaisautokorrelaatiota? 1/2 Aikasarjasta x t, t = 1, 2,, n jonka pituus on n, voidaan periaatteessa estimoida n 1 ensimmäistä osittaisautokorrelaatiota. Kannattaa kuitenkin huomata, että k. osittaisautokorrelaatio φˆk estimoidaan vain n k havainnosta. TKK (c) Ilkka Mellin (2007) 51

Korrelaatiofunktioiden estimointi Kuinka monta osittaisautokorrelaatiota? 2/2 Tämä merkitsee sitä, että osittaisautokorrelaatiot pitkillä viipeillä k n 1 tulevat estimoiduksi sangen epätarkasti, koska ne lasketaan vain muutamasta havainnosta. Siten osittaisautokorrelaatioita ei yleensä kannata laskea kuin alle puolet (esim. 1/3) siitä mitä havaintojen lukumäärä sallii. Laskettavien osittaisautokorrelaatioiden lukumäärään on syytä antaa vaikuttaa myös sen, mitä tarkasteltavasta aikasarjasta tiedetään (esim. millaisia ovat syklisten vaihtelukomponenttien aallonpituudet). TKK (c) Ilkka Mellin (2007) 52

Korrelaatiofunktioiden estimointi Korrelaatiofunktioiden estimointi ja stationaarisuus Teoreettiset auto- ja osittaisautokorrelaatiofunktiot on määritelty vain stationaarisille stokastisille prosesseille. Otosauto- ja otososittaisautokorrelaatiot voidaan tietysti laskea myös epästationaarisista aikasarjoista eli epästationaaristen stokastisten prosessien realisaatioista. Tällöin otoskorrelaatiofunktioita ei voida tulkita minkään stationaarisen stokastisen prosessin korrelaatiofunktioiden estimaattoreiksi. Epästationaarisen aikasarjan otoskorrelaatiofunktioiden määrääminen on silti järkevää ja hyödyllistä, koska nämä funktiot antavat usein hyviä osviittoja siitä, miten aikasarja kannattaa stationarisoida. TKK (c) Ilkka Mellin (2007) 53

Korrelaatiofunktioiden estimointi Korrelaatiofunktioiden tulkinnasta Otosautokorrelaatiofunktiota ja otososittaisautokorrelaatiofunktiota tulkittaessa kiinnitetään erityistä huomiota siihen, millä viipeillä merkittävimmät korrelaatiot esiintyvät. Erityistä huomiota kiinnitetään tällöin (i) muutamaan ensimmäiseen viipeeseen, (ii) kausiviipeeseen ja sen monikertoihin. TKK (c) Ilkka Mellin (2007) 54

Korrelaatiofunktioiden estimointi Korrelaatiofunktioiden estimaattoreiden stokastiset ominaisuudet Autokovarianssien, autokorrelaatioiden ja osittaisautokorrelaatioiden estimaattoreiden stokastiset ominaisuudet ovat sangen monimutkaisia ja ne sivuutetaan pääosin tässä esityksessä. Tarkastelemme kuitenkin lähemmin seuraavia kohtia: (i) Autokovarianssien odotusarvot, varianssit ja kovarianssit. (ii) Auto- ja osittaisautokorrelaatioiden odotusarvot ja varianssit tilanteessa, jossa aikasarjan generoinut stokastinen prosessi muodostuu riippumattomien ja samoin jakautuneiden satunnaismuuttujien jonosta. TKK (c) Ilkka Mellin (2007) 55

Korrelaatiofunktioiden estimointi Autokovarianssien estimointi: Estimaattoreiden stokastiset ominaisuudet 1/3 Olkoon x t, t T stationaarinen stokastinen prosessi, jonka k. autokovarianssi on γ k = Cov( xt, xt k) = E[( xt µ )( xt k µ )], t T, k jossa µ = E( xt ), t T on prosessin odotusarvo. Erityisesti 2 γ 0 = Var( xt ) = σ, t T on prosessin varianssi. TKK (c) Ilkka Mellin (2007) 56

Korrelaatiofunktioiden estimointi Autokovarianssien estimointi: Estimaattoreiden stokastiset ominaisuudet 2/3 Olkoon havaittu aikasarja x t, t = 1, 2,, n stationaarisen stokastisen prosessin x t, t T jokin realisaatio ja olkoon 1 n ck = n ( x 1 t x)( x ), 0,1,2,, 1 t k t k x k = n = + aikasarjan k. otoskovarianssi, jossa 1 n x = n t = x 1 t on havaintojen x t, t = 1, 2,, n aritmeettinen keskiarvo. Erityisesti c 1 n 2 0 = n ( x x) t 1 t = on aikasarjan otosvarianssi. TKK (c) Ilkka Mellin (2007) 57

Korrelaatiofunktioiden estimointi Autokovarianssien estimointi: Estimaattoreiden stokastiset ominaisuudet 3/3 k. otosautokovarianssi c k on autokovarianssin γ k harhainen estimaattori, mutta c k on kuitenkin asymptoottisesti harhaton: lim E( ck) = γ k n Lisäksi + 1 Cov( ck, cl) n γ( r) γ( r+ l k) + γ( r+ l) γ( r k) r = ja edelleen + 1 2 Var( ck ) n γ( r) + γ( r+ k) γ( r k) r = Huomautus: [ ] Autokovarianssien c k ja c l kovarianssin kaavasta nähdään, että autokovarianssit ovat yleisessä tapauksessa korreloituneita. TKK (c) Ilkka Mellin (2007) 58

Korrelaatiofunktioiden estimointi Autokorrelaatioiden estimointi: Estimaattoreiden stokastiset ominaisuudet 1/4 Oletetaan, että x t, t T on riippumattomien, samoin jakautuneiden satunnaismuuttujien jonon muodostama stationaarinen stokastinen prosessi. Tällöin sen k. autokovarianssi on γ k = 0, t T, k, k 0 ja siten myös ρ = Cor( x, x ) = γ γ = 0, t T, k, k 0 k t t k k 0 TKK (c) Ilkka Mellin (2007) 59

Korrelaatiofunktioiden estimointi Autokorrelaatioiden estimointi: Estimaattoreiden stokastiset ominaisuudet 2/4 Olkoon havaittu aikasarja x t, t = 1, 2,, n stationaarisen stokastisen prosessin x t, t T jokin realisaatio ja olkoon 1 n ck = n ( x 1 t x)( x ), 0,1,2,, 1 t k t k x k = n = + aikasarjan k. otoskovarianssi, jossa 1 n x = n t = x 1 t on havaintojen x t, t = 1, 2,, n aritmeettinen keskiarvo. Erityisesti 1 n 2 c0 = n ( x ) t 1 t x = on aikasarjan otosvarianssi. TKK (c) Ilkka Mellin (2007) 60

Korrelaatiofunktioiden estimointi Autokorrelaatioiden estimointi: Estimaattoreiden stokastiset ominaisuudet 3/4 Olkoon havaittu aikasarja x t, t = 1, 2,, n stationaarisen stokastisen prosessin x t, t T jokin realisaatio. Määritellään aikasarjan k. otosautokorrelaatio kaavalla ck rk =, k = 0,1,2,, n 1 c0 jossa c k = aikasarjan k. autokovarianssi, k = 0, 1, 2,, n 1 TKK (c) Ilkka Mellin (2007) 61

Korrelaatiofunktioiden estimointi Autokorrelaatioiden estimointi: Estimaattoreiden stokastiset ominaisuudet 4/4 Voidaan osoittaa, että (tässä tilanteessa, jossa aikasarjan on generoinut riippumattomien, samoin jakautuneiden satunnaismuuttujien jonon muodostama stationaarinen stokastinen prosessi) k. otosautokorrelaatio r k on asymptoottisesti normaalijakautunut ja lisäksi 1 1 E( rk) Var( rk) n n Siten väli 2 2, + n n muodostaa approksimatiivisesti 95 %:n luottamusvälin korrelaatiokertoimelle ρ k = 0. TKK (c) Ilkka Mellin (2007) 62

Korrelaatiofunktioiden estimointi Autokorrelaatioiden testaaminen 1/2 Edellä esitetyn mukaan approksimatiivisesti pätee 1 r k a N 0, n olettaen, että aikasarjan on generoinut riippumattomien, samoin jakautuneiden satunnaismuuttujien jono. Tämä johtaa seuraavaan testausmenettelyyn: Autokorrelaatiokerrointa r k pidetään tilastollisesti merkitsevänä (approksimatiivisesti) 5 %:n merkitsevyystasolla, jos se ei mahdu välille 2 2, + n n TKK (c) Ilkka Mellin (2007) 63

Korrelaatiofunktioiden estimointi Autokorrelaatioiden testaaminen 2/2 Huomautus: Merkitsevyystason frekvenssitulkinnasta seuraa: Jos edellisen kalvon testausmenetelmällä testataan K (esimerkiksi 100) ensimmäistä autokorrelaatiota, niistä n. 5 % (5 kpl) osoittautuu tilastollisesti merkitseviksi tilanteessa, jossa aikasarjan on generoinut riippumattomien samoin jakautuneiden satunnaismuuttujien muodostama stokastinen prosessi. TKK (c) Ilkka Mellin (2007) 64

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit Integroituvuus Korrelaatiofunktioiden estimointi >> Stationaaristen stokastisten prosessien spektri Spektrin estimointi TKK (c) Ilkka Mellin (2007) 65

Stationaaristen stokastisten prosessien spektri Taajuusalue Stationaarisen stokastisen prosessin x t, t T autokorrelaatiofunktio ja osittaisautokorrelaatiofunktio kuvaavat prosessin aikariippuvuusrakennetta. Stationaarisia stokastisia prosesseja on järkevää tarkastella myös ns. taajuus- eli frekvenssialueessa. Taajuusalueen tarkasteluja voidaan käyttää paljastamaan prosesseissa esiintyvät sykliset komponentit (kuten kausitai suhdannevaihtelun), niiden voimakkuudet ja aallonpituudet. Taajuusalueessa stationaarista stokastisia prosesseja analysoidaan prosessin ja sen autokovarianssi- tai autokorrelaatiofunktion spektraaliesitysten avulla. TKK (c) Ilkka Mellin (2007) 66

Stationaaristen stokastisten prosessien spektri Stationaarisen stokastisen prosessin spektraaliesitys 1/2 Jokaisella stationaarisella stokastisella prosessilla x t, t T on spektraaliesitys π xt = cos( λt) du( λ) + sin( λt) dv( λ) π 0 0 jossa du(λ) ja dv(λ) ovat jatkuvia ja korreloimattomia stokastisia prosesseja, joilla on ns. ortogonaaliset lisäykset. Suuretta λ [0, π] kutsutaan frekvenssiksi eli taajuudeksi ja suuretta 2π/λ, λ [0, π] kutsutaan taajuutta λ vastaavaksi periodiksi (eli jaksoksi) tai aallonpituudeksi. TKK (c) Ilkka Mellin (2007) 67

Stationaaristen stokastisten prosessien spektri Stationaarisen stokastisen prosessin spektraaliesitys 2/2 Huomautus: Stationaarisen stokastisen prosessin spektraaliesityksen integraalit eivät ole tavanomaisia Riemannin integraaleja, vaan ns. stokastisia integraaleja. Sivuutamme stokastisten integraalien tarkemman käsittelyn tässä esityksessä. TKK (c) Ilkka Mellin (2007) 68

Stationaaristen stokastisten prosessien spektri Stationaarisen stokastisen prosessin spektraaliesityksen tulkinta Stationaarisen stokastisen prosessin x t, t T spektraaliesitykselle π xt = cos( λt) du( λ) + sin( λt) dv( λ) π 0 0 voidaan antaa seuraava tulkinta: Jokainen diskreetti stationaarinen stokastinen prosessi voidaan esittää summana (so. stokastisena integraalina) muotoa ujcos( λjt) + vjsin( λjt) olevista syklisistä komponenteista eri taajuuksilla λ j. TKK (c) Ilkka Mellin (2007) 69

Stationaaristen stokastisten prosessien spektri Autokovarianssifunktio Olkoon γ k, k = 0, 1, 2, stationaarisen stokastisen prosessin x t, t T autokovarianssifunktio, jossa γ k = Cov( xt, xt k) = E[( xt µ )( xt k µ )], k = 0,1,2, on prosessin k. autokovarianssi ja µ =E(x t ) on prosessin odotusarvo. TKK (c) Ilkka Mellin (2007) 70

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktio 1/2 Määritellään stationaarisen stokastisen prosessin x t, t T spektritiheysfunktio f(λ)eli spektri kaavalla 1 f( λ) = γ 0 2 γ k cos( λk), λ [0, π] π + k= 1 jossa γ k = Cov( xt, xt k) = E[( xt µ )( xt k µ )], k = 0,1,2, on prosessin k. autokovarianssi. Huomautus: Spektri määritellään usein myös niin, että autokovarianssit korvataan yllä olevassa kaavassa vastaavilla autokorrelaatioilla. Tämä ei kuitenkaan vaikuta spektrin tulkintaan. TKK (c) Ilkka Mellin (2007) 71

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktio 2/2 Spektritiheysfunktion f (λ) argumenttia λ [0, π] kutsutaan frekvenssiksi eli taajuudeksi ja suuretta 2π/λ, λ [0, π] kutsutaan taajuutta λ vastaavaksi periodiksi (eli jaksoksi) tai aallonpituudeksi. Huomautus: Spektritiheysfunktion symmetrisyyden ja jaksollisuuden takia riittää, että spektritiheysfunktiota tarkastellaan välillä 0 λ π Ks. myös aliasing-ilmiötä käsittelevää kohtaa. TKK (c) Ilkka Mellin (2007) 72

Stationaaristen stokastisten prosessien spektri Frekvenssi ja periodi: 1. määritelmä Edellä on todettu, että spektritiheysfunktion f (λ) argumenttia λ [0, π] kutsutaan frekvenssiksi eli taajuudeksi ja suuretta 2π/λ, λ [0, π] kutsutaan taajuutta λ vastaavaksi periodiksi (eli jaksoksi) tai aallonpituudeksi. TKK (c) Ilkka Mellin (2007) 73

Stationaaristen stokastisten prosessien spektri Frekvenssi ja periodi: 2. määritelmä Frekvenssi eli taajuus määritellään joskus myös kaavalla f = λ/2π, λ [0, π] jolloin taajuutta f vastaava periodi (eli jakso) tai aallonpituus on 1/f Näin määritellyllä taajuudella f on seuraava tulkinta: f = syklien (= kierrosten ) lukumäärä aikayksikköä kohden Huomautus: Emme (yleensä) käytä tätä frekvenssin määritelmää tässä esityksessä. TKK (c) Ilkka Mellin (2007) 74

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktio ja autokovarianssifunktio 1/3 Olkoon x t, t T stationaarinen stokastinen prosessi. Tällöin prosessin spektritiheysfunktio f(λ) saadaan prosessin autokovarianssifunktiosta γ k, k = 0, 1, 2, kaavalla 1 f( λ) = γ 0 2 γ k cos( λk), λ [0, π] π + k= 1 TKK (c) Ilkka Mellin (2007) 75

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktio ja autokovarianssifunktio 2/3 Olkoon x t, t T stationaarinen stokastinen prosessi. Tällöin prosessin autokovarianssifunktio γ k, k = 0, 1, 2, saadaan prosessin spektritiheysfunktiosta f(λ) kaavalla π γ k = f( λ)cos( λk) dλ, k = 0,1,2, 0 TKK (c) Ilkka Mellin (2007) 76

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktio ja autokovarianssifunktio 3/3 Edellä esitetystä seuraa, että stationaarisen stokastisen prosessin autokovarianssifunktio ja spektri vastaavat kääntäen yksikäsitteisesti toisiaan ja sisältävät siten täsmälleen saman informaation. TKK (c) Ilkka Mellin (2007) 77

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktion tulkinta 1/2 Stationaarisen stokastisen prosessin x t, t T autokovarianssifunktio γ k, k = 0, 1, 2, saadaan prosessin spektritiheysfunktiosta kaavalla π γ k = f( λ)cos( λk) dλ, k = 0,1,2, 0 Kun k = 0, kaava antaa prosessin varianssin: π 2 Var( t ) ( ) 0 γ 0 = x = σ = f λ dλ Siten stationaarisen stokastisen prosessin spektritiheysfunktion f(λ) kuvaajan alle jäävä pinta-ala edustaa prosessin varianssia. TKK (c) Ilkka Mellin (2007) 78

Stationaaristen stokastisten prosessien spektri Spektritiheysfunktion tulkinta 2/2 Edellä esitetyn nojalla stationaarisen stokastisen prosessin x t, t T spektritiheysfunktiolle f (λ) voidaan antaa seuraava tulkinta: Suure f( λ) dλ edustaa sellaisten syklisten komponenttien kontribuutiota prosessin varianssiin, joiden taajuus on (infinitesimaalisella) välillä [λ, dλ] TKK (c) Ilkka Mellin (2007) 79

Stationaaristen stokastisten prosessien spektri Aliasing 1/2 Spektritiheysfunktion lausekkeesta 1 f ( λ) = γ0 2 γk cos( λk) π + k= 1 nähdään, että frekvenssejä λ ja λ ja frekvenssejä λ ja λ ±2sπ, s = 1, 2, ei voida erottaa toisistaan. Tämän ilmiön englanninkielisenä nimenä on aliasing (engl. alias = toiselta nimeltään). TKK (c) Ilkka Mellin (2007) 80

Stationaaristen stokastisten prosessien spektri Aliasing 2/2 Aliasing-ilmiön takia riittää, että spektritiheysfunktiota tarkastellaan välillä [0, π]. Esimerkki aliasing-ilmiöstä: Elokuvia katsottaessa nähdään usein seuraava ilmiö: Kuva seuraa hevosrattaita, jonka pyörät näyttävät pyörivän todellista nopeutta paljon hitaammin ja joskus jopa taaksepäin. Tämä on seurausta aliasing-ilmiöstä: Pyörien pyöriminen on todellisuudessa jatkuva liike. Filmattaessa pyörimisliikkeestä kerätään (ajassa otannalla) 24 havaintoa (kuvaa) sekunnissa. Aliasing-ilmiön aiheuttaa se, että samat havainnot olisi voitu saada todellista hitaammin tai jopa taaksepäin pyörivistä pyöristä. TKK (c) Ilkka Mellin (2007) 81

Stationaaristen stokastisten prosessien spektri Nyquist-frekvenssi 1/2 Frekvenssiä λ = π kutsutaan tavallisesti Nyquist-frekvenssiksi. Syklisiä liikkeitä, joiden taajuus on Nyquist-frekvenssiä π suurempi ei voida erottaa sellaisista syklisistä liikkeistä, joiden taajuus on välillä [0, π]. Siten Nyquist-frekvenssiä λ = π vastaava periodi eli aallonpituus 2π/π = 2 on lyhyin periodi, joka voidaan havaita. TKK (c) Ilkka Mellin (2007) 82

Stationaaristen stokastisten prosessien spektri Nyquist-frekvenssi 2/2 Sillä, että Nyquist-frekvenssiä λ = π vastaava periodi 2π/π = 2 on lyhyin periodi, joka voidaan havaita, on tärkeä seuraus: Syklisestä liikkeestä ei voida saada kuvaa, ellei havaintoja kerätä vähintään 2 havaintoa/sykli. Esimerkki: Ilman lämpötilan vaihteluista vuorokauden sisällä ei voida saada kuvaa, ellei lämpötilaa mitata vähintään 2 kertaa/vrk. TKK (c) Ilkka Mellin (2007) 83

Stationaaristen stokastisten prosessien spektri Sykliset komponentit ja spektri 1/2 Voidaan osoittaa, että syklinen komponentti, jonka periodi on s, näkyy stationaarisen stokastisen prosessin spektrissä huippuina ns. perustaajuuden λ s = 2π/s lisäksi ns. harmonisilla frekvensseillä kλ s, k = 1, 2,, [s/2] jossa [s/2] = suurin kokonaisluku, joka s/2 TKK (c) Ilkka Mellin (2007) 84

Stationaaristen stokastisten prosessien spektri Sykliset komponentit ja spektri 2/2 Jos spektrissä ei havaita huippuja periodia s vastaavan taajuuden λ s = 2π/s lisäksi sen harmonisilla frekvensseillä kλ s, k = 1, 2,, [s/2] sanomme, että stokastisella prosessilla on pseudosyklistä käyttäytymistä. Esimerkki: Ns. AR(2)-prosessi (ks. lukua ARMA-mallit), jota vastaavalla viivepolynomilla on kompleksijuuret, tuottaa spektriin yhden huipun välille 0 λ π TKK (c) Ilkka Mellin (2007) 85

Stationaaristen stokastisten prosessien spektri Sykliset komponentit ja spektri: Esimerkkejä Jos s = 4 (neljännesvuosiaikasarja) perustaajuutena on λ 4 = π/2 ja ainoa harmoninen frekvenssi on π Jos s = 12 (kuukausiaikasarja) perustaajuutena on λ 12 = π/6 ja harmoniset frekvenssit ovat 2π/6, 3π/6, 4π/6, 5π/6, π TKK (c) Ilkka Mellin (2007) 86

Stationaaristen stokastisten prosessien spektri Aika-alue ja taajuusalue Vaikka stationaarisen stokastisen prosessin autokovarianssifunktio γ k, k = 0, 1, 2, 3, ja spektri f(λ) sisältävät täsmälleen saman informaation, molempien funktioiden tarkasteleminen yhdessä täydentää toisen antamaa kuvaa aikasarjan käyttäytymisestä. Kun aikasarjan analyysi perustetaan korrelaatiofunktioiden tarkasteluun, sanomme, että analyysi tapahtuu aikaalueessa. Kun aikasarjan analyysi perustetaan spektritiheysfunktion tarkasteluun, sanomme, että analyysi tapahtuu frekvenssieli taajuusalueessa. TKK (c) Ilkka Mellin (2007) 87

Stationaariset stokastiset prosessit Stationaariset stokastiset prosessit Integroituvuus Korrelaatiofunktioiden estimointi Stationaaristen stokastisten prosessien spektri >> Spektrin estimointi TKK (c) Ilkka Mellin (2007) 88

Spektrin estimointi Periodogrammi ja spektrin estimointi 1/3 Olkoon c k, k = 0, 1, 2,, n 1 aikasarjan x t, t = 1, 2,, n estimoitu autokovarianssifunktio. Määritellään periodogrammi kaavalla n 1 1 fˆ( λ ) = c0 2 ck cos( λk ) π + k= 1 Periodogrammia f ˆ( λ) kutsutaan usein spektrin f (λ) pistoke-estimaattoriksi, koska se saadaan korvaamalla estimoitavan spektrin parametrit eli autokovarianssit γ k vastaavilla otossuureilla c k. TKK (c) Ilkka Mellin (2007) 89

Spektrin estimointi Periodogrammi ja spektrin estimointi 2/3 Periodogrammia f ˆ( λ) ei voida kuitenkaan sellaisenaan käyttää spektrin f(λ) estimointiin, koska se ei ole tarkentuva estimaattori spektrille: (i) Periodogrammia varten on estimoitava yhtä monta parametria (= autokovarianssia γ k ) kuin aikasarjassa on havaintoja. (ii) Estimoitavien parametrien lukumäärä kasvaa rajatta, jos havaintojen lukumäärän annetaan kasvaa rajatta. (iii) Autokovarianssien γ k estimaattorit c k pitkillä viipeillä k n 1 eivät ole tarkentuvia, koska ne lasketaan vain muutamasta havainnosta olipa havaintoja kuinka paljon tahansa. TKK (c) Ilkka Mellin (2007) 90

Spektrin estimointi Periodogrammi ja spektrin estimointi 3/3 Pitkillä viipeillä epätarkasti estimoituvat autokovarianssit tekevät periodogrammista f ˆ( λ) tavallisesti niin epätasaisen, että sen tulkinta on vaikeata, ellei jopa mahdotonta. Periodogrammi voidaan kuitenkin muuntaa spektrin tarkentuvaksi estimaattoriksi. Tarkastelemme seuraavia menetelmiä: Viiveikkunat Liukuvat keskiarvot TKK (c) Ilkka Mellin (2007) 91

Spektrin estimointi Spektrin tarkentuva estimointi: Viiveikkunat 1/5 Periodogrammista f ˆ( λ) saadaan spektritiheysfunktion f(λ) tarkentuva estimaattori liittämällä periodogrammiin ns. viiveikkuna. Määritellään spektrille estimaattori M ˆ 1 fw ( λ ) = wc 0 0 2 wc k k cos( λk ) π + k= 1 jossa painorakennetta w k, k = 0, 1, 2,, M < n kutsutaan viiveikkunaksi ja lukua M katkaisukohdaksi. Estimaattori fˆ w ( λ ) on tarkentuva stationaarisen stokastisen prosessin spektritiheysfunktiolle f(λ), jos painorakenne {w k } ja katkaisukohta M valitaan sopivasti. TKK (c) Ilkka Mellin (2007) 92

Spektrin estimointi Spektrin tarkentuva estimointi: Viiveikkunat 2/5 Painorakenne {w k } valitaan tavallisesti niin, että w k > w k+1, k = 0, 1, 2,, M 1 Katkaisukohdan M on toteutettava seuraava asymptoottinen ehto: Jos n, niin M mutta siten, että M/n 0 Viiveikkuna eliminoi periodogrammista pitkillä viipeillä epätarkasti estimoituvien autokovarianssien vaikutuksen. TKK (c) Ilkka Mellin (2007) 93

Spektrin estimointi Spektrin tarkentuva estimointi: Viiveikkunat 3/5 Viiveikkunan katkaisukohta M vaikuttaa seuraavalla tavalla estimoidun spektrin tasaisuuteen: Mitä pienempi katkaisukohta M valitaan, sitä tasaisempi spektri saadaan. Katkaisukohdan M optimaalinen valinta on vaikea ongelma: (i) Jos M on liian pieni, spektri tasoittuu liikaa, jolloin osa tulkittavista yksityiskohdista katoaa. (ii) Jos M on liian suuri, spektri tasoittuu liian vähän, jolloin spektri jää niin epätasaiseksi, että sen tulkinta on vaikeata. TKK (c) Ilkka Mellin (2007) 94

Spektrin estimointi Spektrin tarkentuva estimointi: Viiveikkunat 4/5 Katkaisukohta M pitää valita niin, että saavutetaan kompromissi liian pienen ja liian suuren resoluution eli erotuskyvyn välillä. Eräs mahdollinen työtapa on seuraava: (i) Kokeillaan kolmea katkaisukohdan M arvoa: Valitaan katkaisukohdan arvoksi M = 2 n (n = aikasarjan pituus) sekä selvästi tätä perusarvoa pienempi ja suurempi arvo. (ii) Verrataan spektrin estimaatteja valituilla katkaisukohdan arvoilla ja valitaan lopulliseksi katkaisukohdan M arvoksi arvoista se, joka tuottaa parhaiten tulkittavissa olevan spektrin estimaatin. TKK (c) Ilkka Mellin (2007) 95

Spektrin estimointi Spektrin tarkentuva estimointi: Viiveikkunat 5/5 Aikasarja-analyysin kirjallisuudessa on esitetty useita erilaisia viiveikkunoita. Varsin suosittu valinta viiveikkunaksi on ns. Parzenin ikkuna: w k 2 3 k k M 1 6 + 6 0 k M M 2 = 3 k M 21 k M M 2 TKK (c) Ilkka Mellin (2007) 96

Spektrin estimointi Spektrin tarkentuva estimointi: Liukuvat keskiarvot 1/3 Periodogrammista f ˆ( λ) saadaan spektritiheysfunktion f(λ) tarkentuva estimaattori myös tasoittamalla periodogrammia liukuvalla keskiarvolla. Liukuvan keskiarvon jänteen pituuden valinnalla on samanlainen vaikutus spektrin estimaattiin kuin viiveikkunan katkaisukohdan valinnalla. TKK (c) Ilkka Mellin (2007) 97

Spektrin estimointi Spektrin tarkentuva estimointi: Liukuvat keskiarvot 2/3 Liukuvan keskiarvon jänteen pituus vaikuttaa seuraavalla tavalla estimoidun spektrin tasaisuuteen: Mitä pitempi jänne valitaan, sitä tasaisempi spektri saadaan. Jänteen pituuden optimaalinen valinta on vaikea ongelma: (i) Jos jänne on liian pitkä, spektri tasoittuu liikaa, jolloin osa tulkittavista yksityiskohdista katoaa. (ii) Jos jänne on liian lyhyt, spektri tasoittuu liian vähän, jolloin spektri jää niin epätasaiseksi, että sen tulkinta on vaikeata. TKK (c) Ilkka Mellin (2007) 98

Spektrin estimointi Spektrin tarkentuva estimointi: Liukuvat keskiarvot 3/3 Liukuvan keskiarvon jänteen pituus pitää valita niin, että saavutetaan kompromissi liian pienen ja liian suuren resoluution välillä. Eräs mahdollinen työtapa on seuraava: (i) Kokeillaan kolmea jänteen pituuden arvoa: Valitaan jänteen pituuden arvoksi n/40 (n = aikasarjan pituus) sekä selvästi tätä perusarvoa pienempi ja suurempi arvo. (ii) Verrataan spektrin estimaatteja valituilla jänteen pituuden arvoilla ja valitaan lopulliseksi jänteen pituuden arvoksi arvoista se, joka tuottaa parhaiten tulkittavissa olevan spektrin estimaatin. TKK (c) Ilkka Mellin (2007) 99

Spektrin estimointi Spektrin estimointi ja stationaarisuus Teoreettinen spektritiheysfunktio on määritelty vain stationaarisille stokastisille prosesseille. Spektri voidaan kuitenkin laskea myös epästationaarisista aikasarjoista eli epästationaaristen stokastisten prosessien realisaatioista. Tällöin estimoitua spektriä ei kuitenkaan voida tulkita minkään stationaarisen stokastisen prosessin spektrin estimaattoriksi. Epästationaarisen aikasarjan spektritiheysfunktion määrääminen on silti usein järkevää ja hyödyllistä, koska funktio antaa usein hyviä osviittoja siitä, miten aikasarja kannattaa stationarisoida. TKK (c) Ilkka Mellin (2007) 100

Spektrin estimointi Spektrin estimaatin tulkinta 1/3 Jos aikasarjan spektri on vakio kaikille taajuuksille λ [0, π] ovat kaikki eri taajuuksiin λ liittyvät sykliset komponentit yhtä voimakkaita. Tällöin sanomme, että spektriä vastaava stokastinen prosessi (aikasarja) on valkoista kohinaa. Analogia: Valkoisessa valossa kaikki eriväriset komponentit ovat yhtä voimakkaita. TKK (c) Ilkka Mellin (2007) 101

Spektrin estimointi Spektrin estimaatin tulkinta 2/3 Trendi tuottaa aikasarjan spektriin huipun taajuudelle λ = 0 joten trendi vastaa sykliä, jonka periodi on äärettömän pitkä. Jos estimoidun spektritiheysfunktion alle jäävä massa keskittyy välin [0, π] vasempaan laitaan, niin matalataajuiset sykliset komponentit ovat aikasarjassa dominoivia ja aikasarjan yleisilme on rauhallinen. Jos estimoidun spektritiheysfunktion alle jäävä massa keskittyy välin [0, π] oikeaan laitaan, niin korkeataajuiset sykliset komponentit ovat aikasarjassa dominoivia ja aikasarjan yleisilme on rauhaton. TKK (c) Ilkka Mellin (2007) 102

Spektrin estimointi Spektrin estimaatin tulkinta 3/3 Jos spektrissä on huippu taajuudella 0 λ π niin aikasarjassa on taajuudella λ syklinen komponentti, joka tuottaa huomattavan osan aikasarjan varianssista. Jos aikasarjan spektrissä on huippu taajuudella λ, vastaava periodi eli syklisen komponentin aallonpituus s saadaan kaavalla s = 2π/λ TKK (c) Ilkka Mellin (2007) 103

Spektrin estimointi Spektrin estimaatin tulkinta: Esimerkki Jos aikasarjan spektrissä on huippu taajuudella λ = π/6 niin vastaava periodi eli syklisen komponentin aallonpituus on 2π/λ = 12 Huomautus: Sama aallonpituus 12 vastaa 1/4-vuosisarjassa 3:n vuoden mittaista sykliä, mutta kk-sarjassa 1:n vuoden mittaista sykliä. TKK (c) Ilkka Mellin (2007) 104

Spektrin estimointi Periodogrammin ja spektrin estimointi sekä frekvenssien lukumäärä Periodogrammi ja siten myös spektri voidaan periaatteessa määrätä mielivaltaisille frekvensseille eli taajuuksille λ. Valittujen taajuuksien lukumäärä vaikuttaa periodogrammin ja spektrin resoluutioon (yksityiskohtien näkyvyyteen). Eräs suosittu valinta on määrätä periodogrammi ja spektri ns. harmonisille frekvensseille λj = 2 π j/ n, j = 1,2,, k jossa k n/2, jos n on parillinen = ( n 1)/2, jos n on pariton TKK (c) Ilkka Mellin (2007) 105