Returns to Scale Chapters

Samankaltaiset tiedostot
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

The CCR Model and Production Correspondence

Alternative DEA Models

Capacity Utilization

16. Allocation Models

Efficiency change over time

Other approaches to restrict multipliers

Capacity utilization

Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

11. Models With Restricted Multipliers Assurance Region Method

Categorical Decision Making Units and Comparison of Efficiency between Different Systems

812336A C++ -kielen perusteet,

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007

DATA ENVELOPMENT ANALYSIS

Kvanttilaskenta - 1. tehtävät

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Information on preparing Presentation

Bounds on non-surjective cellular automata

anna minun kertoa let me tell you

Results on the new polydrug use questions in the Finnish TDI data

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

The Viking Battle - Part Version: Finnish

Kvanttilaskenta - 2. tehtävät

A DEA Game I Chapters

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Operatioanalyysi 2011, Harjoitus 2, viikko 38

C++11 seminaari, kevät Johannes Koskinen

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Tietorakenteet ja algoritmit

LYTH-CONS CONSISTENCY TRANSMITTER

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Itämeren MoU ja SOLAS vaatimustenmukaisuustodistus

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Choose Finland-Helsinki Valitse Finland-Helsinki

Alternatives to the DFT

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Travel Getting Around

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Exercise 1. (session: )

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Topologies on pseudoinnite paths

Miehittämätön meriliikenne

Mat Optimointiopin seminaari

KMTK lentoestetyöpaja - Osa 2

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

Use of spatial data in the new production environment and in a data warehouse

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

TM ETRS-TM35FIN-ETRS89 WTG

Visualisoinnin aamu 16.4 Tiedon visualisointi. Ari Suominen Tuote- ja ratkaisupäällikkö Microsoft

TM ETRS-TM35FIN-ETRS89 WTG

Olet vastuussa osaamisestasi

TM ETRS-TM35FIN-ETRS89 WTG

03 PYÖRIEN SIIRTÄMINEN

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Alueellinen yhteistoiminta

TM ETRS-TM35FIN-ETRS89 WTG

Gap-filling methods for CH 4 data

Metsälamminkankaan tuulivoimapuiston osayleiskaava

TM ETRS-TM35FIN-ETRS89 WTG

Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

TM ETRS-TM35FIN-ETRS89 WTG

Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

I. Principles of Pointer Year Analysis

1. Liikkuvat määreet

( ,5 1 1,5 2 km

SIMULINK S-funktiot. SIMULINK S-funktiot

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

21~--~--~r--1~~--~--~~r--1~

TM ETRS-TM35FIN-ETRS89 WTG

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Lakimies PDF. ==>Download: Lakimies PDF ebook

Opintomatkat PDF. ==>Download: Opintomatkat PDF ebook By Risto Antikainen

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) ( (Finnish Edition)

Security server v6 installation requirements

Curriculum. Gym card

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

Exercise 3. (session: )

AYYE 9/ HOUSING POLICY

Operatioanalyysi 2011, Harjoitus 3, viikko 39


TM ETRS-TM35FIN-ETRS89 WTG

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

Laskennallisesti Älykkäät Järjestelmät. Sumean kmeans ja kmeans algoritmien vertailu

Security server v6 installation requirements

Valuation of Asian Quanto- Basket Options

Strict singularity of a Volterra-type integral operator on H p

Transkriptio:

Return to Scale Chapter 5.1-5.4 Saara Tuurala 26.9.2007

Index Introduction Baic Formulation of Retur to Scale Geometric Portrayal in DEA BCC Return to Scale CCR Return to Scale Summary Home Aignment

Introduction 1/2 Return to Scale (RTS) Mittakaavatuoto, der Skalenertrag [1] It i a technical property of a production function y f ( x1, x2,..., x m ) Decribe what happen when the cale of production increae [2]

Introduction 2/2 The main quetion can be formulated a [3]: When we double all input, doe output: double (contant return to cale, CRTS) more than double (increaing return to cale, IRTS) le than double (decreaing return to cale, DRTS)?

Baic Formulation of RTS 1/3 y production function y/x average productivity (a.p.) dy/dx marginal productivity (m.p.) Aumption: technical efficency i alway achieved

Baic Formulation of RTS 2/3 Maximum value of a.p. with repect to x d( y / x) xdy / dx y dx e( x) x y dy dx x 2 1 e i called elaticity and it meaure the relative change in output compared to the relative chance in input (IRTS when e(x) > 1, DRTS when e(x) < 1 and CRTS when e(x) 1 0 (1) (2)

Baic Formulation of RTS 3/3 In the cae of multiple input with a calar output y we get elaticity of cale ε: y ε f ( θx θx θx ) 1, 2,..., θ dy y dθ ( θ ) (4) θ i a calar to repreent increae in cale when θ > 1 In the cae of multiple input and output we need a maximum output intead of the maximal value of y. Thi can be achieved with the help of Pareto- Koopman definition of efficiency (in Chapter 3) m (3)

Geometric Portrayal in DEA 1/3 Piecewie linear production function the failure of m.p. at x o Maximum output can be achieved with the help of upporting hyperplane

Geometric Portrayal in DEA 2/3 Supporting hyperplane H 0 in a (m + ) dimenional input-output pace paing through the point repreented by the vector (x o, y o ): H 0 : u ( y y ) o v( x x o ) 0 (5) u R, v R m u 0 uy o vx o (6)

Geometric Portrayal in DEA 3/3 Hyperplane divide the pace into two halfpace and i upporting when one of the halfpace contain the production poibility et Theorem 5.1 If a DMU (x o, y o ) i BCC-efficient, the normalized coefficient vector (v, u, u 0 ) of the upporting hyperplane to P at (x o, y o ) give an optimal olution of the BCC model and vice vera.

BCC Return to Scale 1/3 Theorem 5.2 Auming that (x o, y o ) i on the efficient frontier the following condition identify the ituation for RTS at thi point: (i) IRTS if and only if u 0* < 0 for all opt. ol. (ii) DRTS if and only if u 0* > 0 for all opt. ol. (iii) CRTS if and only if u 0* 0 in any opt. ol.

BCC Return to Scale 2/3 It can be complex to find all optimal olution. Thi can be avoided by eliminating the efficiency aumption (we can tudy point like D) Aume that a olution i available from the BCC model. Thi give the information needed to proect (x o, y o ) into a point on the efficient frontier: xˆ yˆ io ro θ x B y ro io + + r i, i 1,..., m, r 1,..., (7) (8)

BCC Return to Scale 3/3 Suppoe that u o* < 0 (from the 1t tage of BCC model). Then the dual problem of the BCC model can be replaced with (if : u o* > 0, then min) max t. u i 1 0 u m i 1 i 1 0 m m i v i i v xˆ x io i v xˆ io 0, v + + 1, i r 1 r 1 u u r 1 0, u r r r u y yˆ r r ro yˆ 0 u ro 0 u 0 u 0, 0, 0 1 1,..., n 0 (9) (10) (11) (12)

CCR Return to Scale 1/3 Theorem 5.3 Let (x o, y o ) be a point on the efficient frontier. Employing a CCR model in envelopment form to obtain an optimal olution (λ 1 *,, λ n *), RTS at thi point can be determined from the following condition: (i) IRTS if Σ (λ *) < 1 in any alternate optimum (ii) DRTS if Σ (λ *) > 1 in any alternate optimum (iii) CRTS if Σ (λ *) 1 in any alternate optimum

CCR Return to Scale 2/3 Thi doe not allow u to tudy the point that lie inide the production poibility et. To tudy thee point, let u eliminate the aumption that (x o, y o ) i on the efficient frontier We utilize the information from the firt tage olution of the dual CCR model

CCR Return to Scale 3/3 (17), ˆ 0 (16) ˆ 1 (15) ˆ ˆ (14) ˆ ˆ. (13) ˆ ˆ ˆ min 1 1 1 1 1 1 y y x x t n n o n o o n m i r r i + + + + λ λ λ λ θ ε λ Aume λ * > 1 (from CCR model). Then the CCR problem can be formulated into (if λ * < 1, then max):

Summary Return to cale refer to a technical property of production. It examine change in output ubequent to a proportional change in all input [2]. In the cae of imple output the RTS i achieved by calculating the elaticity In the cae of multiple output there are theorem to tudy the RTS at the point on efficient frontier (CCR and BCC model) Eliminating the aumption that technical efficiency i alway achieved give u tool to tudy the point that lie inide the production poibility et

Reference [1] NetMot [2] Wikipedia, 25.9.2007 [3] http://cepa.newchool.edu/het/eay/product/return.htm, 25.9.2007 All other information i from: Introduction to Data Envelopment Analyi, Cooper William W, 2nd Edition

Home Aignment 1/2

Home Aignment 2/2 Study the point E: With CCR θ o* 27/32 for either λ B* 9/4 or λ C* 9/8 while all other variable 0. Which condition in Theorem 5.3 i applicable at the point E? (Ue equation (13)-(17) to formulate an optimization problem (3 p.) and olve it (2 p.)) With BCC θ o* 7/8 for λ C* λ D* 1/4 while u o* u * v * 1/4. Which condition in Theorem 5.2 i applicable at the point E? (Ue equation (7)-(12) to formulate an optimization problem (3 p.) and olve it (2 p.))