Luonnollisen kielen tilastollinen käsittely. T-61.281 (3 ov) L. Kevät 2005. Luentokalvot: Krista Lagus ja Timo Honkela



Samankaltaiset tiedostot
8. Sananmerkitysten yksikäsitteistäminen (word sense disambiguation, WSD)

Luonnollisen kielen tilastollinen käsittely. T (3 ov) L. Kevät ta Lagus. Luentokalvot: Krista Lagus ja Timo Honkela

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

T Luonnollisten kielten tilastollinen käsittely

805306A Johdatus monimuuttujamenetelmiin, 5 op

1. TILASTOLLINEN HAHMONTUNNISTUS

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen

30A02000 Tilastotieteen perusteet

Johdatus tekoälyyn. Luento : Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Avainsanojen poimiminen Eeva Ahonen

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1 Bayesin teoreeman käyttö luokittelijana

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Viikko 1: Johdantoa Matti Kääriäinen

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Algoritmit 1. Luento 3 Ti Timo Männikkö

Bayesilainen päätöksenteko / Bayesian decision theory

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

Mallipohjainen klusterointi

SGN-2500 Johdatus hahmontunnistukseen 2007 Luennot 4 ja 5

Esimerkkejä vaativuusluokista

Algoritmit 2. Luento 13 Ti Timo Männikkö

Harjoitus 7: NCSS - Tilastollinen analyysi

805306A Johdatus monimuuttujamenetelmiin, 5 op

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Väliestimointi (jatkoa) Heliövaara 1

Luonnollisen kielen tilastollinen käsittely. T (3 ov) L. Luento 2, Luentokalvot: Krista Lagus ja Timo Honkela

T Luonnollisten kielten tilastollinen käsittely Vastaukset 10, ti , 8:30-10:00 Sanojen merkitysten erottelu, Versio 1.

Järvitesti Ympäristöteknologia T571SA

T Luonnollisen kielen tilastollinen käsittely Vastaukset 5, ti , 8:30-10:00 N-grammikielimallit, Versio 1.1

Tiedonlouhinta rakenteisista dokumenteista (seminaarityö)

Tutkimustiedonhallinnan peruskurssi

ABHELSINKI UNIVERSITY OF TECHNOLOGY

5. Kontekstitieto ja yhteisesiintyminen

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1.

pitkittäisaineistoissa

Mat Sovellettu todennäköisyyslasku A

Tämän luvun sisältö. Luku 6. Hahmontunnistuksen perusteita. Luokittelu (2) Luokittelu

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Sovellettu todennäköisyyslaskenta B

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

} {{ } kertaa jotain

1. JOHDANTO. 1.1 Johdattelevia esimerkkejä. 1. Kuinka monta ihmishahmoa näet kuvassa?

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

1. Tilastollinen konekääntäminen

pitkittäisaineistoissa

Tietorakenteet ja algoritmit - syksy

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Lineaarikuvauksen R n R m matriisi

JOHDATUS TEKOÄLYYN TEEMU ROOS

Sovellettu todennäköisyyslaskenta B

1. Liikkuvat määreet

Logistinen regressio, separoivat hypertasot

Tilastollisia peruskäsitteitä ja Monte Carlo

TILASTOLLINEN OPPIMINEN

Tietotekniikan valintakoe

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Luonnollisten kielten tilastollinen käsittely. T (3 ov) L. Kevät 2002

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

Osakesalkun optimointi

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

klusteroi data haluttuun määrään klustereita tee n-gram -mallit klustereista (tasoitus) estimoi sekoitteiden painokertoimet λ k

Yhdyssana suomen kielessä ja puheessa

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Algoritmit 2. Luento 11 Ti Timo Männikkö

805306A Johdatus monimuuttujamenetelmiin, 5 op

Kevät 2003 Luennot: Timo Honkela, Krista Lagus Laskuharjoitukset: Vesa Siivola

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

6. laskuharjoitusten vastaukset (viikot 10 11)

Harha mallin arvioinnissa

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Johdatus tn-laskentaan perjantai

Laskennallinen data-analyysi II

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Transkriptio:

Luonnollisen kielen tilastollinen käsittely T-61.281 (3 ov) L Kevät 2005 Luennot: Laskuharjoitukset: Krista Lagus Sami Virpioja Luentokalvot: Krista Lagus ja Timo Honkela

12. Sananmerkitysten yksikäsitteistäminen (word sense disambiguation, WSD)............. 3 12.1 Eri oppimisperiaatteista............... 7 12.2 Menetelmien onnistumisen mittaaminen...... 11 12.3 Ohjattu disambiguointi............... 13 12.4 Sanakirjapohjainen disambiguointi......... 28 12.5 Ohjaamaton merkitysten keksiminen konteksteja ryhmittelemällä..................... 43 2

12. Sananmerkitysten yksikäsitteistäminen (word sense disambiguation, WSD) Ongelman määrittely: Oletetaan sana w, jolle olemassa k erillistä merkitystä s 1... s k. Tehtävänä on päätellä yksittäisen esiintymän osalta mikä merkitys on kyseessä. Kyse on siis hahmontunnistuksesta tai luokittelusta. Esim. englannin shake. 3

Shake esimerkkejä käyttökonteksteista 700001 What at the end of forty years, eh? Here he < tag >shook< / > the bag again. 700002 They ll just make you over in the studio. Martha < tag >shook< / > her head and tossed the letter on to the table. 700017: Mr Olejnik, a production director of a printing company at Leighton Buzzard, was driving home from work. Mr Olejnik, 34, who was not injured in the accident but badly < tag >shaken< / >, said: I was doing about 50mph and already slowing down as I approached a roundabout when without warning a pack of hounds rushed out of the hedge at the side of the road and crossed the road straight in front of my car. (Esimerkit Senseval-testiaineistosta) 4

Hyödyllisiä aineistotyyppejä Sense-tagged -korpus: aineisto, johon on jokaisen sanan w esiintymän kohdalle tagattu kyseisen esiintymän merkitys s i. Esim. Senseval (englanninkielinen). Sanakirjat ja tesaurukset, ks. esim. sana shake http://www.britannica.c Kaksikielinen linjattu tai kohdistettu aineisto: sama aineisto molemmilla kielillä, johon on merkitty toisiaan vastaavat kohdat, esim. sana tai lause kerrallaan. Yksikielinen aineisto, jossa on siemeneksi sense-tagattu (merkitysmerkitty?) pieni osa sanan esiintymistä Yksikielinen aineisto, jossa paljon sanan esiintymiä kontekstissa Korpukset voivat myös olla syntaktisesti tagattuja (sanaluokat jne) tai sisältää pelkän tekstin. 5

Esim: omatekoinen 2-kielinen kohdistettu aineisto What at the end of forty years, eh? Here he shook the bag again. Entä 40 vuoden päästä, häh? Hän ravisteli taas pussia. They ll just make you over in the studio. Martha shook her head and tossed the letter on to the table. He vain laittavat sinut kuntoon studiolla. Martha pudisteli päätään ja viskasi kirjeen pöydälle. (Suomenkieliset lauseet ovat tässä omatekoisia) Aitoja kohdistettuja aineistoja: esim. EU:n asetusten tekstit virallisille kielille, monikielisten valtioiden viralliset tekstit jne. 6

12.1 Eri oppimisperiaatteista Tunnistusmenetelmät voidaan jakaa ryhmiin mm. oppimisperiaatteen mukaan: Ohjaamaton (unsupervised) oppiminen Vahvistettu (reinforced) oppiminen Ohjattu (supervised) oppiminen Seuraavaksi tarkastellaan tarkemmin ohjaamatonta ja ohjattua oppimista. 7

Ohjaamaton oppiminen Hahmojen luokkia ei tiedetä etukäteen Tavoitteena on muodostaa hahmoista ryhmiä, joiden sisällä hahmot ovat samankaltaisia ja joiden välillä on selkeitä eroja (klusterointi) Optimoitava funktio on klusteroinnin onnistumista kuvaava mitta Aina ei tiedetä edes ryhmien lukumäärää Tehtävänä tällöin word sense discovery merkitysten keksiminen tai löytäminen aineistoista. 8

Ohjattu oppiminen Hahmojen luokat tunnetaan etukäteen Tavoitteena on muodostaa kuvaus piirreavaruudesta luokka-avaruuteen Optimoitava funktio perustuu kuvauksessa tapahtuviin virheisiin, ts. pyritään minimoimaan tapahtuvien luokitteluvirheiden todennäköisyys tai, mikäli virheisiin liittyy toisistaan poikkeavia kustannuksia, virheiden kokonaiskustannuksen odotusarvo. 9

Bootstrapping Luonnollisen kielen aineistoilla relevanttia on lisäksi ns. bootstrap -oppiminen: Pieni osa aineistosta on luokiteltua, jonka avulla päästään alkuun. Tämän jälkeen oppiminen tapahtuu ohjaamattomasti. 10

12.2 Menetelmien onnistumisen mittaaminen Keinotekoinen data: pseudosanat Menetelmiä voidaan kehittää ja testata keinotekoisella datalla, jonka ominaisuudet varmasti tunnetaan. Esim. korvataan kaikki sanojen banaani ja ovi esiintymät pseudosanalla banaaniovi. Mitataan, kuinka hyvin onnistutaan tunnistamaan kutakin banaaniovea vastaava oikea sana. Kyseessä on helppo, halpa ja nopea tuottaa laajoja testiaineistoja, joissa tunnetaan sekä disambiguoimaton data että alkuperäinen - oikea - data, joka menetelmän pitäisi löytää. 11

Onnistumisen laskennalliset ylä- ja alarajat Mikäli yhteisiä testiaineistoja ei ole, pelkkä numeerinen tulos ei riitä menetelmie onnistumisen mittaamiseen: jotkut ongelmat ovat luonnostaan vaikeampia kuin toiset. Pyritään siksi hahmottamaan ongelman vaikeus: Yläraja ground truth : paras mahdollinen tulos. Usein käytetään mittana ihmisen suoriutumista samasta tehtävästä (harvoin 100%). Ylärajan määritys tärkeää esim. jos verrataan menetelmien suoriutumista rajallisen mittaisella kontekstilla. Harvoin 100% esimerkiksi, jos ikkuna kovin kapea. Alaraja, baseline : yksinkertaisin mahdollinen perusmenetelmä. Esim. luokan valinta satunnaisesti tai luokan taustafrekvenssin perusteella. 12

12.3 Ohjattu disambiguointi Käytetään notaatiota: w monimerkityksinen sana s 1... s K sanan eri merkitykset (senses) c 1... c I sanan w kontekstit korpuksessa v 1... v J piirrejoukko (esim. joukko sanoja), jota käytetään disambiguoinn Seuraavaksi esitellään joitain ohjatun oppimisen lähestymistapoja, joita on sovellettu merkitysten disambiguointiongelmaan. Piirteiden valinta Yleisesti piirrejoukko vaikuttaa suuresti luokittelun onnistumismahdollisuuksiin. Hyvä piirrejoukko on riippuvainen käytetyn luokittimen (tai mallin) ominaisuuksista, eli piirrejoukon valintaa ja mallinnusta ei voida täysin erottaa toisistaan. 13

Esimerkkejä mahdollisista piirteistä tietyn sanan esiintyminen jonkin etäisyyden päässä disambiguoitavasta sanasta, esim. etäisyys(w, avasi ) < 3 tiettyjen kahden sanan esiintyminen kontekstissa yhdessä tietyn sanaluokan tai morfologisen luokan esiintymisfrekvenssi kontekstiikkunassa (jos data on POS- tai morfol. tagattua) tietyn sanan tai sanaluokan esiintyminen tietyssä täsmällisessä positiossa suhteessa disambiguoitavaan sanaan (esim. edeltävänä sanana) tieto jonkin semanttisen muuttujan, esim. keskustelunaihe, arvosta jokin ylläolevien funktio tai yhdistelmä 14

Bayesläinen luokitin Luokitin ei tee piirrevalintaa, vain yhdistää evidenssin eri piirteistä Valitaan piirteiksi joukko sanoja Luokitin soveltaa Bayesin päätössääntöä valitessaan luokan, ts. minimoi luokitteluvirheen todennäköisyyttä: P (s k c) = P (c s k)p (s k ) P (c) P (s k ) on merkityksen s k prioritodennäköisyys, eli tn jos emme tiedä kontekstista mitään. (1) 15

Bayesläinen luokitin: todennäköisimmän luokan valinta Jos tehtävänä on vain valita todennäköisin luokka, voidaan jättää kontekstin c todennäköisyys P (c) (joka ei riipu luokasta) laskuissa huomiotta: valitaan merkitys s jos s = arg max s k P (s k c) (2) = P (c s k )P (s k ) arg max s k P (c) (3) = arg max P (c s k )P (s k ) s k (4) = arg max[log P (c s k ) + log P (s k )] s k (5) 16

Estimointiongelma Käytännön hankaluus: kontekstin piirteiden ehdollisen yhteistnjakauman P (c s k ) luotettava estimointi tietylle merkitykselle edellyttäisi, että meillä olisi datajoukko, jossa jokainen merkitys esiintyisi kaikissa periaatteessa mahdollisissa konteksteissaan, mieluiten useita kertoja. Ratkaisu: helpotetaan estimointia tekemällä sopivia yksinkertaistavia oletuksia (Naive Bayes, Naïve Bayes) 17

Naive Bayes -luokitin Naive Bayes -oletuksessa lähdetään siitä, että kukin piirre vaikuttaa luokitukseen toisista piirteistä riippumattomasti: P (c s k ) = P (v 1,..., v J s k ) = v j inc P (v j s k ) (6) Sama graafisesti: Tässä yksinkertaistetussa mallissa (jota kutsutaan myös bag of words - malliksi) sanojen järjestyksellä kontekstissa ei ole merkitystä, ja sama sana voi esiintyä kontekstissa useita kertoja. 18

Naive Bayes -luokitin, jatkoa Sovellettaessa edelliseen päätössääntöön (kaava 5) saadaan Naive Bayes päätössääntö: Valitaan s jos s = arg max[log P (s k ) + log P (v j s k )] (7) s k v j inc Näistä P (v j s k ):lle ja P (s k ):lle lasketaan ML-estimaatit luokitellusta opetusdatajoukosta: P (v j s k ) = C(v j, s k ) C(s k ) P (s k ) = C(s k) C(w) jossa C(... ) tarkoittaa lukumäärää opetusdatajoukossa 19

Naive Bayes -luokitin, jatkoa Kuuden substantiivin duty, drug, land, language, position, sentence luokituksessa kun aineistona oli Hansard-korpus saatiin 90% tunnistustulos (Church, Gale & Yarowsky, 1992). Esimerkkejä drug -sanan merkityksille sovelletuista piirteistä: Merkitys medication illegal substance Piirteet ko. merkitykselle prices, prescription, patent, increase, consumer, pharmaceutical abuse, paraphernalia, illicit, alcohol, cocaine, traffickers 20

Naive Bayes -luokitin, yhteenveto Naive Bayes-luokitin on yksinkertainen ja melko robusti; antaa kohtuullisia tuloksia monenlaisissa ongelmissa. Naive Bayes -ongelma: epärealistiset riippumattomuusoletukset ML-estimoinnin ongelma: käyttää kaikki piirteet, ts. ei kykene tekemään piirrevalintaa 21

Eräs informaatioteoreettinen lähestymistapa Edellisessä mallissa käytettiin kaikki kontekstin sanat estimoinnissa. Nyt päinvastainen lähestymistapa: valitaan yksittäinen mahdollisimman hyvä indikaattori, jonka arvo voidaan selvittää kustakin kontekstista kullekin merkitykselle. Esimerkki: Ranskan prendre -sanan merkitykset tehdä päätös (prendre une decision ja ottaa mitta (prendre une mesure, luotettava indikaattori olisi verbin objektina oleva sana. Disambiguoitava sana: w = prendre Valitaan piirrejoukoksi (indikaattoriksi) esim. objektipositiossa olevat sanat V = {mesure, note, exemple, décision, parole} Käännösten joukko: K = {take, make, rise, speak} 22

Menetelmän kuvaus Maksimoidaan yhteisinformaatio piirteen ja merkityksen välillä. Muistellaan yhteisinformaation kaavaa: I(X; Y ) = x X p(x, y) p(x, y) log p(x)p(y) y Y partitiointi = jonkin joukon jako osajoukkoihin. 23

Flip-Flop -algoritmi Voidaan käyttää merkitysten etsimiseen kun tiedetään disambiguoitavan sanan käännösvasteet toisella kielellä. K= käännösten joukko, V = piirteiden joukko Valitse V :lle satunnaisesti jokin partitiointi Y Toista, kunnes parannus ei ole enää suuri: 1. Etsi K:lle partitiointi X siten, että I(X; Y ) maksimoituu 2. Etsi V :lle partitiointi Y siten, että I(X; Y ) maksimoituu Esim. jos partitioidaan vain kahteen ryhmään: Käännettävä sana: prendre Mahdolliset käännökset K = {take, rise, make, speak} Objektiposition piirteet V = {mesure, note, exemple, décision, parole} 24

Esimerkki Data: prendre une mesure : take measure, prendre notes : take notes, prendre exemple : take an example prendre une decision : make a decision prendre la parole : rise to speak Paras partitiointi: X 1 = {take}, X 2 = {rise, make, speak} Y 1 = {mesure, note, exemple}, Y 2 = {decision, parole} 25

Kommentteja flip-flop -algoritmia koskien Jos tehdään täyshaku eli kokeillaan kaikki partitioinnit kummallekin joukolle, K ja V, menee exponentiaalinen aika Flip-Flop-algoritmi kuitenkin vie lineaarisen ajan Toistetaan Flip-Flop-algoritmi eri indikaattorelle (objekti, määre, edellinen sana, jne); valitaan indikaattori, joka maksimoi yhteisinformaation 26

Kommentteja flip-flop -algoritmia koskien, jatkoa Huom. Käännöksistä saadut labelit eivät välttämättä sanan eri merkityksiä vaan osaksi saman merkityksen eri ilmenemismuotoja (ks. sananmuotojen variaatio, esim. cent viitatessaan merkitykseen senttimetri voisi ilmetä suomeksi muodoissa ( cm, sentti ). Partitioidessaan myös eri labelien joukon S algoritmi itse asiassa ryhmittelee nämä eri muodot pienemmäksi joukoksi merkityksiä. Kääntämisen kannalta katsottuna tehtävä on siis ohjatun oppimisen tehtävä. Merkitysten etsimisen (esim. niiden oikea lukumäärä) ja disambiguoinnin kannalta taas ohjaamatonta oppimista. 27

12.4 Sanakirjapohjainen disambiguointi Sanakirjamerkitysmäärittelyihin perustuva menetelmä Notaatio ja piirteet: sanan kuvaus symboli eri merkitykset niiden määritelmät tulkittava sana w s 1... s K D 1... D K w:n kontekstin sana j v j s j1... s jl D j1... D jl Piirrejoukko: E vj = j i D ji eli ei välitetä kontekstin sanojen monimerkityksisyyksistä (yhdistetään määritelmät sanan w piirteitä laskettaessa). Valintakriteeri: s = arg max s k (Dk, E vj ) Huom: Tämä on matemaattisesti sama kuin vektoriavaruusmenetelmä binääriarvoisilla, normalisoimattomilla vektoreilla. Myös paremmat samankaltaisuusmitat mahdollisia (piirteiden painotus ja vektorien pituuksien normalisoin- 28

ti). 29

Sanojen semanttisiin aiheluokkiin perustuva menetelmä (kirjassa nimellä thesaurus-based disambiguation ) Pohjana yleinen semanttinen luokitus (thesauruksessa, mm. Roget, tai muuten, mm. Longman) Luokat t aihealueita (topics), esim. { urheilu, sota, musiikki, kalastaminen,... } score= monellako kontekstin sanalla löytyy yhteinen luokka sananmerkityksen s k kanssa, ts. tässäkään ei käytetä normalisointeja tai painotuksia tai todennäköisyyksiä score(s k ) = v j in c δ(t(s k ), v j ) δ(t(s k ), v j ) = 1 joss t(s k ) on jokin v j :n luokista 30

Sanojen semanttisiin aiheluokkiin perustuva menetelmä, jatkoa Olet. että kukin merkitys s k kuuluu täsmälleen yhteen luokista Sanan luokkien joukko on sen eri merkitysten luokkien unioni ts. ei yritä disambiguoida kontekstisanojen merkityksiä Jättää hyödyntämättä sanat, joita ei etukäteen sem. luokiteltu (esim. uudet sanat, jonain aikakautena kuuluisat henkilönnimet Navratilova, Jeltsin jne., jotka voisivat olla oikein hyviäkin piirteitä) 31

Yarowskyn adaptiivinen versio edellisestä Lähtee liikkeelle annetusta semanttisesta luokittelusta ja parantaa sitä luokittelemalla myös uudet sanat niiden kontekstien luokkatiedon perusteella (bootstrapping) Yarowskyn kokeissa konteksti = 100 sanan ikkuna Soveltaa Naive Bayes -oletusta eli oletetaan piirteiden vaikutus riippumattomiksi: P (t l c i ) = P (c i t l ) P (c i ) P (t l) v in c = i P (v t l ) v in c i P (v) P (t l) Käytetään suurehkoa kynnysarvoa α hyväksymään luokka vain, jos se on riittävän todennäköinen tälle kontekstille (eli jos P (t l c i ) > α, suuri α). 32

Yarowskyn algoritmi 1. Luokittele kontekstit sanojen luokkien perusteella päivitä P (t l c i ) kaikille c i päivitä t(c i ) = {c i : n luokat, joille P > α} 2. Luokittele sanat kontekstien luokkien perusteella V j = {kontekstit, joissa piirre v j } T l = {kontekstit, joilla luokkana t l } päivitä P (v j t l ) = V j Tl päivitä P (t l ) = l j V j Tl V j Tl j V j Tl 33

3. Disambiguoi moniselitteinen sana w s = arg max P (t(s k ), v j ) s k v j in c = arg max P (t(s k ))P (v j t(s k )) s k v j in c = arg max[log P (t(s k )) + log P (v j t(s k ))] s k v j in c 34

Yarowskyn algoritmi, jatkoa uusille sanoille: estimoidaan luokat vanhoille sanoille: päivitetään luokat salliiko algoritmi vanhan sanan luokan poistumisen? (kirjassa ei kerrota...) muuten toimitaan todennäköisyyksillä, mutta kontekstien ja piirteiden luokitus on kova. menetelmällä on saatu hyviä tuloksia testidatalla topic-lähestymistapa toimii hyvin silloin, kun merkitys aihealuekohtainen. Kuitenkaan kaikilla sanoilla merkitykset eivät riipu aihealueista huonoja tuloksia. 35

Topikkeja voidaan löytää myös ohjaamattomasti Yarowskyn algoritmi oletti tekstejä ja niille tunnetut aihealueet. Edellä kuvatut asiat voidaan kuitenkin tehdä myös ohjaamattomasti sekä probablistisella mallinnuksella että esim, ICA:lla. 36

2-kielisen aineiston käännöksiä hyödyntävä menetelmä tarvitaan: 2-kielinen sanakirja + toisen kielen korpus käännetään sana kaikilla eri tavoilla (kaikilla eri merkityksillä) käännetään sanan kontekstipiirre (yhdistetään eri käännökset joukoksi sanoja) tarkastellaan käännösparien keskinäisiä frekvenssejä toisen kielen korpuksessa. Mikäli jokin vaihtoehto on riittävän todennäköinen, valitaan sen sisältämä tulkinta (testataan merkitsevyys, ja valitaan vain mikäli p > esim. 90%). yleistyy suoraviivaisesti monen piirteen tutkimiselle 37

Esimerkki: Englannin interest-sanan disambiguointi kun käytössä on saksankielinen korpus ja englanti-saksa sanakirja. Merkitys 1 Merkitys 2 Määritelmä legal share attention, concern Sanan käännös Beteiligung Interesse Lisäksi tarvitaan tieto että konteksti jossa disambiguoitava sana esiintyy on show interest. Algoritmin kulku tälle tapaukselle: 1. Käännä kontekstin sana show saksaksi > zeigen 2. Etsi saksan korpuksesta kaikki yhteenesiintymät zeigen + Interesse ja zeigen + Beteiligung, laske määrät. 3. Huomattavasti yleisempi näistä on zeigen Interesse, joten valitaan disambiguoiduksi merkitykseksi Merkitys 2. Jos kontekstin sana on monitulkintainen, ei pyritä disambiguoimaan sitä, 38

vaan summataan eri tulkintavaihtoehdoilla saadut luvut yhteen ko. merkityksen yhteisluvuksi. Vastaavasti toimitaan jos halutaan käyttää montaa kontekstin piirrettä. Huom. tällaisenaan menetelmä ei huomioi kontekstin eri sanojen (tai niiden eri merkitysten) erilaisia prioritodennäköisyyksiä, mikä saattaa johtaa vääriin tuloksiin yksittäistapauksissa, eli saatetaan preferoida prioritn:ltään suurempaa kontekstia. Jos tämän tekisi ihan kunnolla, pitäisi esiintymislukumäärien sijaan tarkastella priori- ja posterioritodennäköisyyksien eroja. Menetelmä on kuitenkin muokattavissa tällaiseksi. Samaan tähtää tuo edellisellä kalvolla mainittu merkitysevyyden testaus. 39

Yksi merkitys per aihe, yksi merkitys per kollokaatio Sanakirjapohjaiset menetelmät tarkastelivat jokaista sananesiintymää erillisenä Kuitenkin esiintymien välillä keskinäisiä riippuvuuksia Oletus 1: Yksi merkitys per aihe: sanalla yleensä yksi merkitys läpi koko dokumentin Oletus 2: Yksi merkitys per kollokaatio: sanan merkitys riippuu vahvasti aivan lähikontekstin sanoista, mukaanlukien sanojen järjestys ja sanaluokkatieto (ts. usein toisistaan täysin erilliset merkitykset ovat eri syntaktisessa ja/tai semanttisessa roolissa ympäristön suhteen) 40

Yarowskyn algoritmin ongelmia NB:n tekemä piirteiden riippumattomuusoletus. Vaihdetaan siksi mallia: valitaan 1 paras piirre ja käytetään vain sen mukanaantuoma evidenssi. (Kolmas vaihtoehto olisi mallittaa oikeasti piirteiden yhteisvaikutus) 41

Yarowskyn (toinen) algoritmi 1. Sovella oletusta 1: sovella sanakirjamenetelmää tai bootstrappaystä merkitysten valintaan, mutta nyt vain parasta diskriminoivaa kontekstin piirrettä käyttäen 2. Sovella oletusta 2: äänestetään sanan merkitys dokumentin sisällä kaikille samaksi Yarowsky: 2-vaihe parantaa tuloksia 27%. Lopulliset tulokset luokkaa 90%- 96%. 42

12.5 Ohjaamaton merkitysten keksiminen konteksteja ryhmittelemällä Edelläkuvatut menetelmät tarvitsevat leksikaalisia resursseja: sanakirjoja tai (pieniä) merkityksin tagattuja aineistoja jokaiselle monimerkityksisen sanan eri merkitykselle Aina sellaisia ei ole, esim. erikoistermien tai uusien merkitysten ilmaantuessa. Jos disambiguoinnilla tarkoitetaan merkitysten taggausta, täysin ohjaamattomasti ei voida disambiguoida. Voidaan kuitenkin klusteroida sanan esiintymät, ja toivoa/olettaa että kukin klusteri vastaa sanan yhtä merkitystä. Hyvä tai huono puoli: ryhmittely voi olla tarkempaa kuin esim. sanakirjoissa. Menetelmiä esim. EM-algoritmi, k-means, SOM, hierarkkiset klusterointimenetelmät,... 43

EM-algoritmi disambiguoinnissa Seuraavassa esitellään EM (Expectation Maximation) -algoritmin käyttö disambiguonnissa. Esitetyissä kaavoissa K on eri merkitysten lukumäärä. c 1,..., c i,..., c I ovat monitulkintaisen sanan konteksteja korpuksessa. v 1,..., v j,..., v J ovat sanoja, joita käytetään piirteinä disambiguoinnissa. 44

EM-algoritmi disambiguoinnissa, alustusvaihe Alusta mallin µ parametrit satunnaisesti. Parametrit ovat P (v j s k ), 1 j J, 1 k K ja P (s k ), 1 k K. Laske log-likelihoodin arvo korpuksesta C annettuna malli µ. Arvo saadaan kertomalla keskenään yksittäisten kontekstien c i todennäköisyyd P (c i ), missä P (c i ) = K k=1 P (c i s k )P (s k ): l(c µ) = log I K i=1 k=1 P (c i s k )P (s k ) = I K i=1 k=1 P (c i s k )P (s k ) 45

EM-algoritmi disambiguoinnissa, EM-osuus Niin kauan kuin I(C µ):n arvo kasvaa, toistetaan E- ja M-askeleita. E-askel: Kun 1 j J, 1 k K, estimoidaan h ik eli posterioritodennäköisyys sille, että s k on kontekstin c i :n generoinut merkitys h ik = P (c i s k ) K k=1 P (c i s k ) Jotta P (c i s k ) saadaan lasketuksi, tehdään Naive Bayes -oletus: P (c i s k ) = v j c j P (v j s k ) 46

EM-algoritmi disambiguoinnissa, M-askel M-askel: Estimoidaan uudelleen parametrit P (v j s k ) ja P (s k ) käyttämällä MLestimointia: P (v j s k ) = I i=1 c i :v j c i h ik Z j Kaavassa c i :v j c i laskee summan kaikkien sellaisten kontekstien yli, joissa kontekstin sana v j esiintyy. Z j = K I k=1 i=1 c i :v j c i h ik on normalisointivakio. Lasketaan uudelleen merkitysten todennäköisyydet seuraavasti: P (s k ) = I i=1 h ik K I k=1 i=1 h ik = I i=1 h ik I 47

Huomioita EM-algoritmista Algoritmi on herkkä alustukselle. l(c µ) paranee joka kierroksella Mitä suurempi määrä luokkia (merkityksiä), sen parempi l(c µ). Ongelmana on siis ylioppiminen (jos soveltaa sellaisenaan eri luokkamäärien vertailuun). 48

Paluu lähtökuoppiin Joissain tilanteissa on OK epäonnistua. Esim. sanaleikit, In AI, much of the I is in the beholder Vrt. Beauty is in the eye of the beholder (kauneus on katsojan silmässä) Hypoteesi (Kilgariff): On tavallista että useat merkityksistä yhtäaikaa läsnä: For better or for worse, this would bring competition to the licenced trade competition - competitors vs. competition - the act of competing Mahdollinen selitys: ihmiset eivät disambiguoi sanoja vaan tulkitsevat lauseita ja tekstejä. Jos kaksi sananmerkitystä johtavat samaan lauseen tulkintaan, sananmerkityksiä ei ole tarpeen eritellä. 49

Disambiguointiongelmia esim. systemaattinen polysemia (tekemisen akti vs. osallistujat/yhteisö) pisteen merkitys (lauseen loppu vs. muu) erisnimi vai yleisnimi Brown, Bush etu- vai sukunimi Pentti Jaakko 50

Muita menetelmiä Muita ohjatun oppimisen menetelmiä: knn valitaan k lähintä luokiteltua esimerkkiä, ja luokitellaan tämä esimerkki enemmistöäänestyksellä. Sopii hyvin harvalle datalle Edellyttää ainoastaan samankaltaisuuden määrittelyn + mittauksen lähimpiin samankaltaisiin (kompleksisuus O(Nd) jossa N datan määrä ja d dimensio) Muita ohjaamattoman oppimisen menetelmiä Klusterointimenetelmiä: K-means (Schütze soveltanut merkitysten ryhmittelyyn), SOM, hierarkkiset klusterointimenetelmät, erilaiset samankaltaisuusmitat 51

Menetelmien vertailua Senseval-projekti: laaja WSD-menetelmien vertailu yhteisellä datalla aineisto + evaluoinnit webissä Kriittinen kommentti lähtökohtaoletuksesta Alussa määriteltiin ongelma tähän tapaan: oletetaan sana w, jolle olemassa k erillistä merkitystä s 1... s k. Kuitenkin on kyseenalaista, voidaanko sanojen eri merkityksiä jäännöksettömäs tarkastella pistemäisinä, diskreetteinä oliona. 52