Siirtotiet (Siirtomedia)



Samankaltaiset tiedostot
Siirtotiet (Siirtomedia)

Siirtotiet - johtimeton (Siirtomedia)

CT30A2600 Langaton tietoliikenne Luento 3 Signaalien eteneminen

Parikaapeli. Siirtomedia. Sähkömagneettinen spektri. EIA/TIA kategoriat

Reititys. Reititystaulukko. Virtuaalipiirin muunnostaulukko. Datasähkeverkko. virtuaalipiiriverkko. Eri verkkotekniikoita

RF-tekniikan perusteet BL50A Luento Antennit Radioaaltojen eteneminen

Sähkömagneettisista kentistä ja aalloista

RF-tekniikan perusteet BL50A0300

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia

SIIRTOTIET JA ANTENNIT

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

Kanavointi (multiplexing) Samalla linkillä usean yhteyden sanomia. Siirtonopeus, siirtoaika. Lasketaan! Ratkaistaan!

RADIOTIETOLIIKENNEKANAVAT

Radioyhteys: Tehtävien ratkaisuja. 4π r. L v. a) Kiinteä päätelaite. Iso antennivahvistus, radioaaltojen vapaa eteneminen.

Älypuhelinverkkojen 5G. Otto Reinikainen & Hermanni Rautiainen

S Tietoliikennetekniikan perusteet. Luento 3 Siirtotiet. OSI kerrokset 1 ja 2.

Satakunnan ammattikorkeakoulu. Juha Halminen PITKÄNMATKAN LÄHIVERKKOYHTEYS

Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut

Kapasitiivinen ja induktiivinen kytkeytyminen

S Tietoliikennetekniikan perusteet

Piirikytkentäinen verkko -ensin varataan resurssit yhteyttä varten -sitten datan siirto yhteyttä pitkin -vapautetaan resurssit.

Kanavointi (multiplexing)

Antennit ja syöttöjohdot

Virtuaalipiirin muunnostaulukko. Magneettinen ja optinen media Siirtomedia. Kierretty parijohto (twisted pair) Eri verkkotekniikoita

Mobiiliverkon sisäpeiton toteuttaminen. Mobiiliverkon sisäpeiton toteuttaminen. Päivitetty 3/2015. Matti Pulkkanen

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

Lyhyen kantaman radiotekniikat ja niiden soveltaminen teollisuusympäristössä. Langaton tiedonsiirto teollisuudessa, miksi?

1 db Compression point

LYHYEN KANTAMAN LANGATTOMAT SIIRTOTAVAT

ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT. Erkki Björk. Kuopion yliopisto PL 1627, Kuopion 1 JOHDANTO

WLAN järjestelmän suunnittelu

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Kanavat eivät ole enää pelkästään broadcasting käytössä Uudet palvelut kuten teräväpiirtolähetykset vaativat enemmän kapasiteettia

nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku ) E a 2 ds

Radioamatöörikurssi 2014

Sanoman siirto paketteina: ei etenemisviivettä, ei jonotuksia

Dataliikenteen tekijät. Dataverkot. Kurssi-info 0DUNXV 3HXKNXUL

JOHDANTO TIETOLIIKENNEJÄRJESTELMIIN

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

Receiver. Nonelectrical noise sources (Temperature, chemical, etc.) ElectroMagnetic environment (Noise sources) Parametric coupling

Radioamatöörikurssi 2012

Radioamatöörikurssi 2016

Johdatus radiotekniikkaan. Ville Viikari ELEC-C5070 Elektroniikkapaja

Antenni ja säteilykuvio

Radioamatöörikurssi 2018

Radiotekniikan perusteet BL50A0301

Suunta-antennin valinta

Passiivista toistinantennia voidaan käyttää myös esimerkiksi WLAN-verkon laajentamiseen toiseen kerrokseen tai kantaman kasvattamiseen ulkona.

Äänen eteneminen ja heijastuminen

Virtuaalipiirin muunnostaulukko

EMC Johdanto EMC. Miksi? Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät

Ensimmäinen välikoe. Kurssin voi suorittaa tentillä tai kahdella välikokeella

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.

2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa?

Seminaariesitelmä. Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator

4 Optiikka. 4.1 Valon luonne

Heijastuminen ionosfääristä

WMS450/470 monikanavajärjestelmien kytkentäopas. Kytkentäkaaviot ja tarvittavat osat 1 16 kanavajärjestelmiin

Virtuaalipiirin muunnostaulukko

Luento 1: Tietokoneverkot ja Internet

Radioamatöörikurssi 2016

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

Sähkötekniikka ja elektroniikka

Mekaniikan jatkokurssi Fys102

4 Optiikka. 4.1 Valon luonne

Ongelmia mittauksissa Ulkoiset häiriöt

2. Peruskerros. tiedonsiirron perusteet siirtotie (media) siirtoverkkoja. puhelinverkko: modeemi, isdn, langaton verkko: soluradio satelliittiverkko

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY GRANT4COM OY

SOLUKKORADIOJÄRJESTELMÄT A Tietoliikennetekniikka II Osa 17 Kari Kärkkäinen Syksy 2015

Radioaaltojen eteneminen. Marjo Yli-Paavola, OH3HOC

LYHYEN KANTAMAN LANGATTOMAT SIIRTOTAVAT

Parikaapelit CATx / RJ45

Radiohäiriöiden selvittämisestä ja taajuusuunnittelusta Viestintäviraston terveiset radioamatööreille

Antennit. Yleisiä tietoja

Tiedote tuulivoimapuiston rakentajille

Radioamatöörikurssi 2014

MFW - I/O:n kaukoluentajärjestelmä

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

S Tietoliikenteen siirtomediat

IARU Reg. 1 V/U/SHF-taajuusjakosuositus

OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen ja TP05S, ryhmä C

Teknisiä käsitteitä, lyhenteitä ja määritelmiä

Häiriöt, siirtojohdot, antennit, eteneminen

Infrapunaspektroskopia

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Kenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen

)\\VLQHQNHUURV Lähiverkot / Markus Peuhkuri 1

Radioamatöörikurssi 2017

SATELCOM OY DI Leif Saarela. Esiselvitys

Radioastronomian käsitteitä

EMC Säteilevä häiriö

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset

MAA (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

LYTH-CONS CONSISTENCY TRANSMITTER

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

S RADIOTIETOLIIKENNEJÄRJESTELMÄT Tentti Osa A. Ilman lähteitä suoritettavat tehtävät (2)

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

Opinnäytetyön Loppuseminaari klo 8

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

Transkriptio:

CT30A2002 Tietoliikennetekniikan perusteet Siirtotiet (Siirtomedia) 1

Yleistä siirtoteistä Käydään läpi fyysiset ominaisuudet, sovelluskohteet ja pääpiirteet siirron kannalta Siirtotiet, joilla tietoa siirretään eri järjestelmien välillä, voidaan jakaa kahteen kategoriaan: johtimellisessa (ohjatussa) siirtotiessä signaalit kulkevat fyysistä reittiä pitkin johtimettomalla (ohjaamattomalla) siirtotiellä tieto siirtyy langattomasti 2

Yleistä siirtoteistä Johtimellisia siirtoteitä Parikaapeli Koaksiaalikaapeli Valokuitu Sähköjohto Johtimettomia siirtoteitä Mikroaaltolinkit Satelliittilinkit Radiotie Infrapunalinkit 3

Yleistä siirtoteistä Sekä siirtotien että signaalin ominaisuudet vaikuttavat tiedonsiirron laatuun ja ominaisuuksiin Johtimellisessa siirrossa siirtotiellä on suurempi vaikutus Johtimettomassa signaalin kaistanleveys ja antennin ominaisuudet ovat siirtotien ominaisuuksia tärkeämpiä esim. antennin suuntaavuus 4

Design Factors Determining Data Rate and Distance bandwidth higher bandwidth gives higher data rate transmission impairments impairments, such as attenuation, limit the distance interference overlapping frequency bands can distort or wipe out a signal number of receivers more receivers introduces more attenuation

Electromagnetic Spectrum

Johtimelliset siirtotiet Johtimellisessa siirtotiessä tiedonsiirtonopeus tai laitteiden välinen etäisyys riippuu pitkälti käytettävissä olevasta kaistanleveydestä Johtimellisia siirtoteitä Parikaapeli (twisted pair) - esim. puhelinkaapeli Koaksiaalikaapeli (coaxial cable) - TV kaapeli Optinen kuitu (optical fiber) Sähköjohto Tilaajaliitäntä sähköverkon välityksellä 7

Johtimelliset siirtotiet Käytetään lyhyistä tilaajaliitännöistä ja lähiverkoista aina pitkiin runkoyhteyksiin asti Siirtoteillä voidaan välittää sekä digitaalisia että analogisia signaaleita Siirtotien pituuden kasvattamiseksi suuremmilla etäisyyksillä signaalia pitää parantaa (vahvistaa/ tahdistaa) Analogisilla signaaleilla käytetään vahvistimia Digitaalisilla signaaleilla toistimia 8

Transmission Characteristics of Guided Media Frequency Range Typical Attenuation Typical Delay Repeater Spacing Twisted pair (with loading) 0 to 3.5 khz 0.2 db/km @ 1 khz 50 µs/km 2 km Twisted pairs (multi-pair cables) 0 to 1 MHz 0.7 db/km @ 1 khz Coaxial cable 0 to 500 MHz 7 db/km @ 10 MHz 5 µs/km 2 km 4 µs/km 1 to 9 km Optical fiber 186 to 370 THz 0.2 to 0.5 db/ km 5 µs/km 40 km

Parikaapeli (twisted pair) Halvin ja eniten käytetty johtimellinen siirtotie Koostuu toistensa ympärille kiedotuista kahdesta kuparijohtimesta Kierrolla häiriöitä pienentävä vaikutus Johdinpari muodostaa aina yhden kommunikointilinkin Useita johdinpareja voidaan yhdistää suuremmaksi kaapeliksi 10

Parikaapeli Käytetään yleisesti niin puhelin- kuin dataverkoissa Puhelinverkoissa parikaapelia käytetään tilaajajohtimena (analoginen signaali) Dataverkoissa (digitaalinen signaali) parikaapelilla päästään jopa Gbps nopeuteen, joskin hyvin rajoitetulla etäisyydellä ja rajoitetulla määrällä laitteita Mitä suurempi tiedonsiirtonopeus sitä lyhyempi etäisyys (mitä suurempi taajuus, sitä suurempi signaalin vaimeneminen) 11

Parikaapeli Erilaiset häiriötekijät vaikeuttavat parikaapelin käyttöä (esim. sähkömagneettiset häiriöt) Häiriösietoisuutta voidaan parantaa päällystämällä kaapeli suojaavalla foliolla tai metallipunoksella Johtimien kiertäminen vähentää matalan taajuuden häiriöitä Eri mittaisten kierteiden käyttö pienentää taas ylikuulumista (vierekkäisien parien) 12

13

Parikaapeli Parikaapelista kaksi yleistä tyyppiä: suojattu (STP) suojaamaton (UTP) Lisäksi olemassa foliosuojattu (FTP) Puhelinkaapelina käytetään suojaamatonta Suojattu kestää paremmin ulkoiset häiriöt ja sitä suositaan dataverkoissa in a variety of categories - see EIA-568 14

Parikaapeli Parikaapeli voidaan jakaa ominaisuuksiensa mukaan kategorioihin: Kategoria 1: Ei suorituskykyvaatimuksia Kategoria 2: < 1Mbps Kategoria 3: < 16 MHz, <16 Mbps Kategoria 4: < 20 MHz Kategoria 5: < 100 MHz, <100 Mbps Kategoria 6: < 200 MHz (1 Gbps) Kategoria 7: < 500 Mhz Eroja esim. kierteiden pituus 0,6-0,85 cm (CAT5) vs. 7,5-10 cm (CAT3) 15

Twisted Pair Categories and Classes

Near End Crosstalk coupling of signal from one pair of conductors to another occurs when transmit signal entering the link couples back to the receiving pair - (near transmitted signal is picked up by near receiving pair)

Signal Power Relationships

19

20

Koaksiaalikaapeli Kaksi johdinta sisäkkäin Parempi häiriönsieto jo luontaisesti Käytetään esim.: TV-jakeluverkoissa Puhelinverkkojen runkoverkoissa (korvattu nykyisin kokonaan kuidulla) Lähiverkoissa (nykyisin hyvin olematonta) Väylätyyppisiä 21

Koaksiaalikaapeli Koaksiaalikaapelilla voidaan välittää sekä analogisia että digitaalisia signaaleita Analogiselle signaalille vahvistimet muutaman kilometrin välein, digitaaliselle toistimet noin kilometrin välein Koaksiaalikaapelissa voidaan käyttää parikaapelia korkeampia taajuuksia (suuremmat tiedonsiirtonopeudet) Suurimmat häiriötekijät: vaimennus, lämpökohina, keskeismodulaatiokohina (FDMA) 22

23

Optinen kuitu Optinen kuitu on 2-125 µm paksuista valoa läpäisevää materiaalia Kuitu koostuu ytimestä, heijastuskerroksesta ja kuoresta Ytimessä (core) siirretään valoaallot (yleensä aina digitaalinen signaali) Heijastuskerroksen (cladding) tarkoituksena on pitää valo ytimessä Kuori (jacket) suojaa kuitua kosteudelta ja vaurioilta 24

Optinen kuitu 25

Fiber Optics (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection. 26

Fiber Cables (a) Side view of a single fiber. (b) End view of a sheath with three fibers. 27

Optical Fiber - Benefits greater capacity data rates of hundreds of Gbps smaller size and lighter weight considerably thinner than coaxial or twisted pair cable reduces structural support requirements lower attenuation electromagnetic isolation not vulnerable to interference, impulse noise, or crosstalk high degree of security from eavesdropping greater repeater spacing lower cost and fewer sources of error

Optical Fiber - Transmission Characteristics uses total internal reflection to transmit light effectively acts as wave guide for 10 14 to 10 15 Hz (this covers portions of infrared & visible spectra) light sources used: Light Emitting Diode (LED) cheaper, operates over a greater temperature range, lasts longer Injection Laser Diode (ILD) more efficient, has greater data rates has a relationship among wavelength, type of transmission and achievable data rate

30

Transmission of Light through Fiber Attenuation of light through fiber in the infrared region. 31

Kuitujen käyttökohteita: Optinen kuitu Runkoverkot kuidut ovat parhaimmillaan suurta kapasiteettia vaativiin olosuhteisiin Kaupunkiverkot myös lyhyemmillä matkoilla voidaan kuituja käyttää yhdistämään keskuksia Lähiverkot useat uudet teknologiat perustuvat kuitujen käytölle Tilaajajohdot johtaa todelliseen kotimultimedian mahdollisuuteen 32

Optinen kuitu Optiset kuidut toimivat 100-1000 THz alueella (infrapuna ja näkyvä valo) Kuitujen toiminta perustuu valon kokonaisheijastukseen Kuidut voidaan jakaa monimuoto- ja yksimuotokuituihin Monimuotokuituja on askeltaitekertoimisia ja asteittaistaitekertoimisia 33

Optinen kuitu 34

Optinen kuitu Monimuotokuidut kärsivät signaalipulssin levenemisestä eli dispersiosta johtuen useista säteiden etenemisreiteistä käyttö lyhyillä matkoilla, liitosjohdoissa Askeltaitekertoimiselle muotodispersio on pahin Yksimuotokuidulla tätä dispersion tyyppiä ei esiinny (jonkin verran materiaalidispersiota) käyttö runkojohtimissa 35

Optinen kuitu Kuiduissa valo voidaan tuottaa valodiodilla (light emitting diode, LED) laserilla (Injection laser diode, ILD) LED on halvempi, mutta toimii paremmin erilaisissa lämpötiloissa, ja käyttöikä on pidempi Laser on tehokkaampi ja mahdollistaa suuremmat datanopeudet paremman signaalin ansiosta 36

Fiber Cables (2) A comparison of semiconductor diodes and LEDs as light sources. 37

Frequency Utilization for Fiber Applications 38

39

Sähköjohto Data siirretään sähkön kanssa samassa verkossa pistokemodeemilla erotellaan data sähkövirrasta Edut olemassa oleva verkkorakenne Haitat: sähköverkossa on paljon kohinaa ja heijastuksia ja etenkin sähkövirtapiikkejä, jotka häiritsevät datasignaalia Käyttö lähinnä tilaajaliityntänä 40

The Electromagnetic Spectrum The electromagnetic spectrum and its uses for communication. 41

Johtimettomat siirtotiet Signaali etenee ilmassa (tai muussa väliaineessa) antennien välityksellä Jako Suunnattu (directional) Suuntaamaton (omnidirectional) ympärisäteilevä Suunnatussa antennien oltava tarkasti toisiaan kohden Suuntaamattomassa kommunikoinnissa aallot etenevät kaikkiin suuntiin 42

Tärkeimmät etenemismekanismit 1. Eteneminen näköyhteysreittiä pitkin (line-of-sight propagation) Aallon kaartumisen takia radiohorisontti on geometristä horisonttia kauempana Tärkein etenemismekanismi UHF-, SHF- ja EHF- alueilla (n. 30 MHz - 300 GHz) Yli 30 MHz taajuudet eivät heijastu ionosfääristä Kommunikointi satelliittien kanssa Kurssilla käsiteltävien tekniikoiden käyttämä etenemistapa 43

Tärkeimmät etenemismekanismit 2. Eteneminen ilmakehän heterogeenisuuksista tapahtuvan sironnan (scattering) avulla Taajuusalue on noin 0,3-10 GHz 44

Tärkeimmät etenemismekanismit 3. Eteneminen ionosfäärin kautta (sky wave propagation) Radioaalto voi heijastua ionosfäärin kautta alle 30 MHz:n taajuuksilla Heijastuminen johtuu aaltojen taittumisesta (refraction) Uudelleen heijastumalla maanpinnasta on ympäri maapallon eteneminen mahdollista 45

Tärkeimmät etenemismekanismit 4. Eteneminen maanpinta-aaltona (ground wave propagation) Radioaalto seuraa maan pintaa Vaimennus kasvaa nopeasti taajuuden kasvaessa, tämän vuoksi eteneminen rajoittuu muutaman MHz:n taajuuksille 46

Optinen- ja radio-näköyhteys Maan kaarevuus asettaa ehdottoman maksimin näköyhteydelle maan pinnalla kommunikoitaessa (horisontti) Optiselle näköyhteydelle, jossa antenni on korkeudella h, on maksimi näköyhteys d kilometreinä: 47

Johtimettomat siirtotiet Kolme perustaajuusaluetta: 30 MHz - 1 GHz - käytetään ympärisäteilevissä sovelluksissa (radioaallot) 1-40 GHz mikroaallot - käytetään erittäin tarkasti suunnatuissa antenneissa 300 GHz - 200 THz infrapuna-alue - käytetään esim. toimistoympäristöissä yhden huoneen sisällä point-to-point kommunikointiin 48

Antennas transmission antenna radiated into surrounding environment converted to electromagnetic energy by antenna radio frequency energy from transmitter reception antenna fed to receiver converted to radio frequency electrical energy electromagnetic energy impinging on antenna electrical conductors used to radiate or collect electromagnetic energy same antenna is often used for both purposes

Radiation Pattern power radiated in all directions does not perform equally well in all directions as seen in a radiation pattern diagram an isotropic antenna is a point in space that radiates power in all directions equally with a spherical radiation pattern

Antennit Erilaisia antennityyppejä Ympärisäteilevä Eri tavoin suuntaavat antennit Sektoriantennit Satelliittiantenni On myös hyvä muistaa, että antennien suuntakuviot ovat kolmiulotteisia 51

Antennit Ympärisäteilevä 52

Antennien suuntakuviot a) Yksinkertainen dipoliantenni b) Torviantenni 53

Antennit Suunta-antennit 54

Antennien suuntakuviot Suunta-antenni (Yagi) Ylhäältä Sivulta 55

Antennit Sektoriantennit 56

Antennien suuntakuviot Sektoriantenni 57

Antennit Lautasantennit 58

Antenna Gain measure of the directionality of an antenna power output in particular direction verses that produced by an isotropic antenna measured in decibels (db) results in loss in power in another direction effective area relates to physical size and shape

Antennivahvistus (antenna gain) Tehon ulostulo tiettyyn suuntaan verrattuna isotrooppisen antennin ulostuloon 3 db gain = 3 db:n vahvistus isotrooppiseen antenniin verrattuna kyseisessä suunnassa Antennin vahvistus ei siis tarkoita sitä, että se lähettäisi enemmän tehoa ulos kuin siihen saapuu (verkkokortilta tms. lähettimeltä) Antennin lähettämä teho kohdistetaan pienemmälle alueelle (ja on pois muista suunnista!) Jos antennin keila kavennetaan 5%:iin ympärisäteilevään verrattuna, on sen vahvistus 20-kertainen Lain mukaan antennista saa silloin lähteä kokonaistehoa vain 5 % maksimitehorajasta (esim. 2.4 GHz:n ISMkaistalla max. 100 mw / 20 eli 5 mw) 60

Johtimettomat siirtotiet Johtimettomien siirtoteiden jako Mikroaaltolinkit Suunnattu kommunikointi Satelliittilinkit Satelliittikommunikointi Radiotie Suuntaamaton kommunikointi Infrapuna Lyhyen matkan point-to-point 61

Mikroaaltolinkit Mikroaaltolinkeissä käytetään tarkasti suunnattuja lautasantenneja Antennit sijaitsevat riittävän korkealla, jotta näköyhteysvaatimus saavutettaisiin Maksimietäisyys d antennien välillä on: d = etäisyys [km] h = antennin korkeus [m] K = korjauskerroin 62

Mikroaaltolinkit Korjauskerrointa K tarvitaan, koska aallot taipuvat ilmassa ja etenevät näköyhteyttä pidemmälle K = 4/3 (yleisesti käytetty K:n arvo) Esim. Antennien korkeus 100 m => d = 82 km 63

Mikroaaltolinkit Mikroaaltolinkkejä käytetään: runkoverkot point-to-point linkit rakennusten välillä sekä äänelle että datalle Mikroaaltolinkkejä voidaan käyttää laajalla taajuusalueella (1-40 GHz) Mitä korkeampi taajuus sitä laajempi taajuuskaista ja suurempi siirtonopeus (lyhyempi etäisyys) 64

Mikroaaltolinkit Suurin häiriötekijä on signaalin vaimennus Vaimennus on etäisyyden ja aallonpituuden funktio: Vaimennus on etäisyyden neliön funktio, kun parikaapelilla ja koaksiaalilla vaimennus on exponentiaalinen etäisyyden suhteen => vahvistimet ja toistimet voidaan sijoittaa kauemmas (10-100 km päähän) Sade ja taajuusalueiden päällekkäisyys muita häiriötekijöitä, heijastukset Taajuusalueiden käyttö onkin hyvin säänneltyä 4-6 GHz, 11 GHz, 22 GHz Mitä suurempi taajuus, sitä pienempi antenni 65

Microwave Bandwidth and Data Rates

Satelliittilinkit Satelliittilinkit ovat eräänlaisia mikroaaltolinkkejä maassa sijaitsevat lähettimet ja vastaanottimet linkitetty satelliittien kautta Satelliitilla kaksi taajuusaluetta: vastaanottaa signaalin uplink-kaistalla, vahvistaa ja ja lähettää eteenpäin downlinkillä Toiminta voi olla point-to-point broadcast 67

Satelliittien toimintatyypit 68

Satelliittien kiertoratatyypit Vanhimmat satelliitit paikallaan pysyviä eli ns. geostationaarisia (korkeudella 35784 km) GEO (Geostationary Earth Orbit) Uudemmat satelliitit voivat olla matalarata-satelliitteja (LEO, MEO (Low/Medium Earth Orbit)) Myös HEO (Highly Elliptical Orbit) satelliitteja on olemassa Samalla kaistalla toimivat satelliitit eivät saa olla liian lähellä toisiaan häiriöiden vuoksi 4 astetta 4/6 GHz kaistalla 3 astetta 12/14 GHz kaistalla => rajoittaa satelliittien maksimimäärää 69

Paras taajuusalue 1-10 GHz Satelliittilinkit alle 1 GHz luonnollisia häiriölähteitä yli 10 GHz vaimeneminen kasvaa rajusti Yleisesti käytössä 4/6 GHz kaista (täynnä) 11(12)/14 GHz kaista uutena, etuna pienemmät vastaanottolaitteet 19(20)/29(30) GHz seuraavana vuorossa (yhä suuremmat kaistanleveydet) Huomattava etäisyyden takia noin 0.25 sekunnin etenemisviive 70

Communication Satellites 71

Satelliittien kiertoratatyypit 72

Communication Satellites (2) The principal satellite bands. 73

Satelliittilinkit Satelliitteja käytetään: Televisiokanavien jakeluun broadcast-jakelu asemille broadcast-jakelu asiakkaille Puhelinliikenteeseen satelliittipuhelut alueilla joilla ei mahdollisuutta järkevästi maanpäälliseen verkkoon Yksityisiin tietoverkkoihin Erittäin vähäistä 74

)b()a( Low-Earth Orbit Satellites Iridium http://www.iridium.com/ 75 (a) The Iridium satellites from six necklaces around the earth. (b) 1628 moving cells cover the earth.

Globalstar http://www.globalstar.com/ (a) Relaying in space. (b) Relaying on the ground. 76

Radiotie Radiotie eroaa mikroaalto- ja satelliittilinkeistä lähinnä aaltojen suuntaamattomuudessa Antennien ei tarvitse olla lautasantenneja Taajuusalueet 3 khz - 300 GHz radioaaltoja Tehokkaimmillaan radiotie on 30 MHz - 1 GHz alueella Aallot eivät vaimene niin herkästi 77

Radiotie Radiotietä käyttävät laitteet näköyhteydellä eli noin Vaimennus mikroaaltoja vastaavalla tavalla Suurempi aallonpituus tosin näkyy selkeästi pienempänä vaimenemisena Suurin häiriötekijä on monitie-eteneminen (heijastukset esteistä ja pinnoista aiheuttavat signaaleille useita etenemisreittejä) Muut häiriöt vastaavia kuin mikroaalloilla 78

Line of Sight Transmission Free space loss loss of signal with distance Atmospheric Absorption from water vapor and oxygen absorption Multipath multiple interfering signals from reflections Refraction bending signal away from receiver

Radioaaltojen ominaisuuksia Radioaaltojen etenemiseen vaikuttaa useita tekijöitä, esim.: Vaimeneminen Monitie-eteneminen Sironta Heijastuminen, taipuminen ja taittuminen Häipyminen Doppler-ilmiö 80

Vaimeneminen (attenuation/path loss) Signaalin tehon väheneminen Signaalin amplitudi (aallon korkeus) pienenee Johtimellisella siirtotiellä (kaapeli) lasku logaritmista ja voidaan ilmoittaa desibeleinä etäisyyden suhteen Johtimettomalla siirtotiellä on useampia tekijöitä Vaimeneminen vaihtelee riippuen taajuudesta ja käytetystä siirtotiestä Signaalin eri taajuuskomponentit vaimenevat eri tavalla, joten signaalin muoto vääristyy (korkeammilla taajuuksilla vaimeneminen on suurempaa kuin matalilla taajuuksilla) 81

Vaimeneminen Vastaanotettavan signaalin täytyy olla tarpeeksi voimakas jotta vastaanotin tunnistaa sen Signaalin pitää olla selkeästi voimakkaampi kuin kohinan Vaimenemisen johdosta signaalia tulee vahvistaa (vahvistimilla tai toistimilla) tietyin välimatkoin Korkeampia taajuuksia voidaan vahvistaa enemmän jotta vaimeneminen olisi kaikilla taajuuksilla yhtä voimakasta Liian voimakas signaali voi aiheuttaa vääristymiä vastaanottimessa Useat vastaanottimet eri etäisyyksillä voivat olla ongelmallisia 82

Vapaan tilan vaimeneminen Signaalin vaimeneminen ilmassa kun mitään esteitä ei ole. Edetessään signaali hajaantuu laajemmalle ja laajemmalle alueelle Energia pistettä kohden on pienempi. Suurin vaimenemisen aiheuttaja satelliittikommunikoinnissa Ilmoitetaan joko lähetetyn ja vastaanotetun tehon suhteena tai desibeleinä 83

Vapaan tilan vaimeneminen Mikro- ja radioaaltojen vapaan tilan vaimennus lasketaan esim. kaavalla Kaavassa d = etäisyys ja λ = aallonpituus (samassa mittayksikössä) Vapaan tilan vaimennus tarkoittaa suoraa näköyhteyttä (Line of Sight, LOS) 84

Vapaan tilan vaimeneminen 85

Vapaan tilan vaimeneminen Kaapelissa etenevään signaaliin verrattuna Vaimennus tapahtuu etäisyyden neliössä (vrt. logaritmisesti) Teho leviää laajemmalle alueelle Vaimennus on suoraan verrannollinen radioaallon taajuuteen Pienemmät taajuudet vaimenevat vähemmän kuin suuret signaali vääristyy etäisyyden kasvaessa 86

Vaimeneminen Atmospheric Absorption Vesihöyry Vaikutus vahvimmillaan 22 GHz:n alueella Alle 15 GHz:n vaikutus selvästi pienempää Happi Huippu 60 GHz:n alueella Alle 30 GHz:n vaikutus selvästi pienempää Vaihtuvat tekijät (vesi/lumisade, sumu) Aiheuttavat signaalien hajaantumista Matalammilla taajuuksilla vaikutus pienempi 87

Atmospheric Absorption 88

Esteiden vaikutus Heijastus (Reflection, R) Signaali osuu pintaan joka on suuri suhteessa signaalin aallonpituuteen Tulo- ja heijastuskulma ovat yhtä suuret. aallonpituus ja etenemisnopeus säilyvät Taipuminen (Diffraktio, D) Tapahtuu kun signaali osuu aallonpituuttaan suuremman kohteen reunaan Sironta (Scattering, S) Tapahtuu kun signaali osuu kohteeseen jonka kokoluokka on signaalin aallonpituus tai sitä pienempi. Esim epätasainen pinta. 89

90

Heijastuminen (Reflection) Radioaallot heijastuvat osuessaan esteeseen, joka on tasainen (suhteessa signaalin aallonpituuteen) Tulo- ja heijastuskulma ovat yhtä suuret Heijastuneilla aalloilla on myös sama aallonpituus ja etenemisnopeus kuin tulevilla aalloilla Fresnel Zone 91

Taipuminen (diffraction) Radioaallot taipuvat ja leviävät esteeseen osuessaan Taipumista tapahtuu erityisesti aaltoja huonosti läpäisevän ja tasaisen (suhteessa aallonpituuteen) esteen kohdalla Esim. kuva: aalto kohtaa esteen, jossa on kaksi reikää taipuminen + interferenssi: 92

Sironta (Scattering) Tapahtuu, kun radioaallot osuvat epätasaiseen esteeseen (epätasaisuus pienempi tai yhtä suuri kuin aallonpituus) Tarkoittaa sitä, että osa radioaallon energiasta synnyttää uusia radioaaltoja eri suuntiin Heikentää signaalia Sironnasta aiheutuvaa sirontakenttää voidaan myös käyttää hyväksi Esim. troposfäärisironta n. 500 km:n pituiset mikroaaltoyhteydet 93

Monitie-eteneminen 94

Monitie-eteneminen Monitie-etenemisen aiheuttamia ongelmia: Heijastuva signaali tulee perille väärään aikaan Signaalit menettävät osan energiastaan heijastuksen yhteydessä Heijastumat summautuvat toisiinsa ja vaikeuttavat signaalien tulkitsemista vastaanottopäässä 95

Interferenssi 96

Interferenssi Konstruktiivinen interferenssi: Destruktiivinen interferenssi: 97

Monitie-eteneminen Signaali saapuu kohteeseen useaa reittiä pitkin Koska signaali lähetetään useaan suuntaan voi sama signaali heijastumisen johdosta saapua vastaanottimelle useaa eri reittiä ja eri aikaan Erilaiset esteet aiheuttavat signaalin hajautumista Joskus ei ole edes suoraa reittiä vaan vahvin signaalikin tulee heijastuman kautta. Monitie-eteneminen aiheuttaa myös häiriötä signaalissa. 98

Monitie-eteneminen (Multipath Propagation) Aiheuttaa ongelmia ja virheitä tiedonsiirrossa Virheet johtuvat symbolien (pulssien) välisestä keskinäisvaikutuksesta (Intersymbol interference, ISI) Aiheuttaa vastaanotetun signaalin vääristymistä Signaali leviää ja summautuu muihin signaaleihin sekä saman signaalin heijastuksiin Vaikeuttaa vastaanottajan tehtävää tulkita signaalista oikein sen eri elementit virheitä Eri tekniikat ovat eri tavalla herkkiä monitie-etenemisen aiheuttamille ongelmille, esim. GSM-tekniikassa monitie-eteneminen joudutaan hoitamaan viiveitä käyttämällä WLAN (802.11g) käyttää OFDM-modulaatiota, joka ei juurikaan häiriinny monitie-etenemisestä WLANin tuleva (802.11n) versio tulee käyttämään monitieetenemistä hyödykseen 99

Monitie-eteneminen Muistuttaa optisissa kuiduissa tapahtuvaa pulssin leviämistä eli dispersiota Signaali etenee heijastuen kuidun rakenteissa ja valonsäteiden erilaiset heijastuskulmat muuttavat kokonaismatkaa Radioliikenteessä tilanne on monimutkaisempi Optiseen kuituun verrattuna radiosignaaleilla on huomattavasti enemmän mahdollisia kulkureittejä 100

Monitie-eteneminen Lähetetään lyhyitä ja teräviä pulsseja Siirtotiellä pulssi etenee eri teitä Vastaanottaja näkee suoraan saapuneen pulssin lisäksi heijastuneita pulsseja 101

Multipath Interference

Radiotie Eniten käytetty johtimeton siirtotie nykypäivän tietoliikenteessä (käytetään mm. seuraavissa): Matkapuhelinjärjestelmät Bluetooth (ja muut lyhyen kantaman radiotekniikat) Radio- / TV-lähetykset Langattomat lähiverkot 103

Politics of the Electromagnetic Spectrum The ISM bands in the United States. 104

Characteristics of selected wireless link standards 200 802.11n Data rate (Mbps) 54 5-11 4 1.384 802.15 802.11a,g 802.11b 802.11a,g point-to-point 802.16 (WiMAX) UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO UMTS/WCDMA, CDMA2000 3G data 3G cellular enhanced.056 IS-95, CDMA, GSM 2G 105 Indoor 10-30m Outdoor 50-200m Mid-range outdoor Long-range outdoor 200m 4 Km 5Km 20 Km

Infrapuna Käytetään infrapuna-alueella olevaa valoa signaalin siirtoon Lähettimen ja vastaanottimen oltava näköyhteydellä Infrapuna-aallot eivät läpäise esteitä (johtuen pienestä aallonpituudesta) Ei siis tietoturvaongelmia Käyttö: esim. kaukosäätimet ja pienimuotoinen datan siirto (esim. PC <-> matkapuhelin) 106

107