Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Samankaltaiset tiedostot
Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

1.1. Määritelmiä ja nimityksiä

BM20A0700, Matematiikka KoTiB2

2.1.4 har:linyryhmat03. Octavella. Katso ensin esimerkit???? esim:yroctave01 Octaven antamat vastausehdotukset.

Matriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =

Insinöörimatematiikka D

9 Matriisit. 9.1 Matriisien laskutoimituksia

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Johdatus tekoälyn taustalla olevaan matematiikkaan

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Insinöörimatematiikka D

Ortogonaalinen ja ortonormaali kanta

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Insinöörimatematiikka D

1 Matriisit ja lineaariset yhtälöryhmät

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Ennakkotehtävän ratkaisu

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

Insinöörimatematiikka D

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Käänteismatriisi 1 / 14

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Lineaariset yhtälöryhmät ja matriisit

Matematiikka B2 - TUDI

Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ,, x1 x. Matriiseihin perehtyminen voidaan perustella useilla järkisyillä.

Matematiikka B2 - Avoin yliopisto

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

802118P Lineaarialgebra I (4 op)

Matemaattinen Analyysi, k2012, L1

Insinöörimatematiikka D

Talousmatematiikan perusteet

Johdatus tekoälyn taustalla olevaan matematiikkaan

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Kaksirivisen matriisin determinantille käytämme myös merkintää. a 11 a 12 a 21 a 22. = a 11a 22 a 12 a 21. (5.1) kaksirivine

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Insinöörimatematiikka D

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

2.8. Kannanvaihto R n :ssä

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Ominaisarvo-hajoitelma ja diagonalisointi

Numeeriset menetelmät

MS-C1340 Lineaarialgebra ja

Determinantti 1 / 30

9.2 Lineaarikuvaus Olkoon A kuvaus (funktio) vektoriavaruudesta V vektoriavaruuteen U: jos nyt

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Determinantti. Määritelmä

Käänteismatriisin ominaisuuksia

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Determinantti. Määritelmä

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

10 Matriisit ja yhtälöryhmät

(0 desimaalia, 2 merkitsevää numeroa).

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

LAUSEKKEET JA NIIDEN MUUNTAMINEN

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Tiivistelmä matriisilaskennasta

Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti

(1.1) Ae j = a k,j e k.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

802120P MATRIISILASKENTA (5 op)

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Ortogonaalisen kannan etsiminen

Tyyppi metalli puu lasi työ I II III

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Lineaarialgebra (muut ko)

Lineaarialgebra a, kevät 2019 Harjoitus 6 (ratkaisuja Maple-dokumenttina) > restart; with(linalg): # toteuta ihan aluksi!

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

Lineaarialgebra ja matriisilaskenta I

Johdatus matematiikkaan

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

y z = (x, y) Kuva 1: Euklidinen taso R 2

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

6 MATRIISIN DIAGONALISOINTI

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

MS-C1340 Lineaarialgebra ja

Lineaarialgebra a, kevät 2018

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

Numeeriset menetelmät

Johdatus lineaarialgebraan. Juha Honkala 2017

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Ensimmäisen ja toisen asteen yhtälöt

Transkriptio:

Matriisit, L20

Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa usein hakasulkujen väliin. Luvut tulee kirjoittaa selkeästi riveihin ja sarakkeisiin. Lukujen väliin tulee jättää riittävästi väliä. Mitään erottimia (pilkku, tms. ei lukujen väliin laiteta.

Merkintöjä 2 Jos kaaviossa on m riviä ja n saraketta, niin sanomme kaaviota m n-matriisiksi. Edellä matriisi A = ( 2 0.4 8 0 2 1 on 2 3 -matriisi. Matriisi v = v = ( 0 4 on 2 1 -matriisi, eli sarakevektori.

Merkintöjä 3 Matriisi u = u = ( 1 4 2 on 1 4 -matriisi, eli rivivektori. Matriiseille kannattaa laskiessa lähes aina antaa nimi. nimi kirjoitetaan kirjaimella, joka on iso, lihava ja vino. (Esim. A Vektorin nimi kirjoitetaan kirjaimella, joka on pieni, lihava ja vino (tai pieni, normaali, ja vino ja sen päällä on nuoli tai viiva. (Esim. u = u Käsin kirjoitettaessa lihavointi ja vinous jätetään pois.

Merkintöjä 4 A rivillä r sarakkeessa c olevaa lukua merkitsemme a rc. Vektorin tapauksessa yksi indeksi riittää. Esimerkki: Jos M = 2 3 1 0 4 5 7 1 0 2 6 2, niin m 23 = 7 jos v = ( 4 5 7 1, niin v 3 = 7 Jos tulkintaongelmia ei tule, niin merkinnän m 23 rivi-indeksin 2 ja sarake-indeksin 3 väliin ei lisätä erotinta. Joskus erotin on tarpeen. Esimerkiksi 30 30 -matriisin Q alkio rivillä 12 sarakkeessa 3 on q 12,3.

Merkintöjä 5 (päälävistäjä (diagonaali muodostuu niistä luvuista, joiden rivi-osoite ja sarake-osoite ovat samat. A lävistäjällä ovat siis luvut a 11, a 22, a 33,... 3 1 0 2 1 5 2 4 8 Matriisi on neliömatriisi (n n, jos siinä on sarakkeita yhtä monta kuin rivejä.

Merkintöjä 6 Nollamatriisi 0 on matriisi, jonka kaikki alkiot ovat nollia. Nollamatriisin ei tarvitse olla neliömatriisi. ( 0 0 0 0 = 0 0 0 Yksikkömatriisi I on neliömatriisi, jonka lävistäjällä on ykkösiä ja muualla nollia I = 1 0 0 0 1 0 0 0 1

Merkintöjä 7 m n -matriisi A ja p q -matriisi B ovat samat (identtiset ja merkitsemme A = B, jos 1. Kummassakin on yhtä monta riviä eli m = p, ja 2. Kummassakin on yhtä monta saraketta eli n = q, ja 3. Niissä on samat luvut samoissa paikoissa Esimerkki: Jos ( 3 1 0 A = 2 0 5 niin A = B, mutta A C. a ij = b ij, i, j. ( 3 1 0, B = 2 0 5 ( 0 1, C = 5 0,

Matriisien laskutoimitukset 8 Yhteenlasku Kahden saman kokoisen matriisin summa lasketaan niin, että samassa paikassa olevat luvut lasketaan yhteen ja tulos sijoitetaan samaan paikkaan. Jos C = A + B, niin c ij = a ij + b ij, i, j Esimerkki 3 1 0 2 + 1 4 2 4 7 2 2 3 = 5 3 7 0 1 1

Matriisien laskutoimitukset 9 Luvulla kertominen Matriisi kerrotaan luvulla siten, että jokainen matriisin luku erikseen kerrotaan. Jos C = r A, niin c ij = r a ij, i, j Esimerkki 5 3 1 0 2 1 4 = 15 5 0 10 5 20

Matriisien laskutoimitukset 10 Luvulla kertominen Edellä tehdyistä määritelmistä seuraa, että A + A = 2A ra + qa = (r + qa A = ( 1 A A A = 0

Matriisien laskutoimitukset 11 Vektorien pistetulo Kahden vektorin pistetulo saadaan periaatteella: Laske ensimmäisten koordinaattien tulo + toisten koordinaattien tulo +... + viimeisten koordinaattien tulo. Eli kaavalla u v = u 1 v 1 + u 2 v 2 + + u n v n = n j=1 u j v j Esimerkki ( 3 2 5 2 1 2 = 3 2 + ( 2 1 + 5 ( 2 = 6

Matriisien laskutoimitukset 12 Matriisien kertolasku m p -matriisin A ja p n -matriisin B tulo on m n -matriisi C jonka alkio c ij rivillä i sarakkeessa j saadaan laskemalla A:n i:nnen rivin ja B:n j:nnen sarakkeen pistetulo. (AB ij = ( a i1 a i2 a ip b 1j b 2j. b pj = p k=1 a ik b kj ( 3 0 1 1 2 1 3 0 1 2 1 2 1 0 5 1 2 0 ( 14 =

Matriisien laskutoimitukset 13 Matriisien kertolasku ( 3 0 1 1 2 1 3 0 1 2 1 2 1 0 5 1 2 0 ( 14 1 = ( 3 0 1 1 2 1 ( 3 0 1 1 2 1 3 0 1 2 1 2 1 0 5 1 2 0 3 0 1 2 1 2 1 0 5 1 2 0 ( 14 1 5 = ( 14 1 5 6 =

Matriisien laskutoimitukset 14 Matriisien kertolasku ( 3 0 1 1 2 1 ( 3 0 1 1 2 1 ( 3 0 1 1 2 1 ( 3 0 1 1 2 1 3 0 1 2 1 2 1 0 5 1 2 0 3 0 1 2 1 2 1 0 5 1 2 0 3 0 1 2 1 2 1 0 5 1 2 0 3 0 1 2 1 2 1 0 5 1 2 0 ( 14 1 5 6 = 0 ( 14 1 5 6 = 0 3 = = ( 14 1 5 6 0 3 3 ( 14 1 5 6 0 3 3 2

Matriisien laskutoimitukset 15 Matriisien kertolasku Siis ( 3 0 1 1 2 1 }{{} A: 2 3 3 0 1 2 1 2 1 0 } 5 1 {{ 2 0 } B: 3 4 ( 14 1 5 6 = 0 3 3 2 }{{} AB: 2 4 Huomaa, että Jotta kertolasku AB onnistuu tulee A:n rivin olla yhtä pitkä kuin B:n sarake on korkea. Tulossa AB on yhtä monta riviä kuin matriisissa A ja yhtä monta saraketta kuin matriisissa B.

16 Matriisien yhteenlasku ja reaaliluvulla kertominen noudattavat seuraavia lakeja. Olkoon A, B ja C m n -matriiseja ja α, β R. Silloin (1 A + (B + C = (A + B + C (2 A + 0 = A (3 A + ( A = 0 (4 A + B = B + A (5 1 A = A (6 α(βa = (αβa (7 (α + βa = αa + βa (8 α(a + B = αa + αb

17 Olkoon A, B ja C matriiseja ja α R. Jos matriisien tyypit ovat sellaiset, että seuraavat tulot ovat olemassa, niin (1 A(BC = (ABC (2 A(B + C = AB + AC (3 (A + BC = AC + BC (4 α(ab = (αab = A(αB (5 I A = AI = A Edellä olleet kaavat merkitsevät sitä, että matriisilausekkeita voi käsitellä hyvin samaan tapaan kuin koulussa on käsitelty x:n lausekkeita. Kun pitää seuraavat kolme matriisilaskennan erityispiirrettä valppaasti mielessään, niin matriiseilla voi laskea kuten x:n lausekkeilla

18 Olkoon A, B ja C matriiseja. Jos matriisien tyypit ovat sellaiset, että seuraavat tulot ovat olemassa, niin on mahdollista että (1 AB BA (2 AC = BC, vaikka A B (3 AB = 0, vaikka (A 0 ja B 0 Kommentteja: (1 Kertolaskussa ei saa vaihtaa tekijöiden järjestystä. ( 1 1 2 3 ( 2 4 0 1 = ( 2 3 4 11 ( 2 4 0 1 ( 1 1 2 3 ( 6 14 = 2 3

19 (1 AB BA, (2 (AC = BC (A = B (1 Järjestys ei vaihdu! Periaate näkyy kaavoissa. Jos A on vasemmalla LHS:ssa, niin se on vasemmalla myös RHS:ssa. Esim A(B + C = AB + AC (2 Matriisilla ei saa jakaa! Kun koulussa on käsitelty x:n lausekkeita, on totuttu jakamaan LHS:n ja RHS:n yhteinen tekijä pois yhtälöstä. Matriisi-yhtälön kohdalla näin ei saa tehdä.

20 (3 (AC = 0 (A = 0 tai B = 0 (3 Tulon nollasääntö ei ole voimassa! Esimerkiksi ( 1 2 4 8 ( 2 4 1 2 = ( 0 0 0 0 On totta, että matriiseissa on jotakin erikoista, kun niiden tulo on nollamatriisi, mutta se erikoinen seikka ei ole se, että toinen niistä olisi nollamatriisi.

21 Määritelmä: m n -matriisin A tarnsponoitu matriisi eli (engl. transpose A T on n m -matriisi, jolle (A T ij = a ji. Transpoosi A T saadaan siis A:sta tekemällä riveistä sarakkeita. 0 2 0 9 5 5 1 2 3 1 3 0 T 0 5 3 = 2 5 1 0 1 1 3 9 2 0 (Huomaa, että lävistäjä pysyy paikallaan.

22 Transpoosille on voimassa seuraavat kaavat (1 (A T T = A (2 (A + B T = A T + B T (3 (αa T = αa T (4 (AB T = B T A T huomaa järjestys!

23 Esimerkki Olkoon ( 7 2 A = 10 4 Nyt (AB T = B T A T = (( 7 2 10 4 2 3 0 1 1 5 ( 2 0 1, B = 3 1 5 ( 2 0 1 3 1 5 ( 7 10 2 4 = T = 8 32 2 4 3 30 8 32 2 4 3 30