DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS RYHMÄ P8 Marita Intonen toukokuu 2002
A. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...1 LÄMMITTÄMISEN, JÄÄHDYTTÄMISEN JA PURISTUKSEN VAIKUTUKSET AINEIDEN OMINAISUUKSIIN, AINEIDEN JA ILMIÖIDEN LUOKITTELU JA TUNNISTUS...1 A1. Kiinteän aineen laajeneminen...1 A2. Nesteen laajeneminen...1 A3. Kaasun laajeneminen 1...1 A4. Kaasun laajeneminen 2...2 A5. Lämmittäminen aiheuttaa kiinteän aineen muuttumisen nesteeksi...2 A6. Lämmittäminen aiheuttaa nesteen muuttumisen kaasuksi...2 A7. Aineen laajeneminen/kutistuminen olomuodon muuttuessa...2 A8. Puristuksen vaikutuksia kiinteän aineen ominaisuuksiin...2 A9. Puristuksen vaikutuksia nesteen ominaisuuksiin...3 A10. Puristuksen vaikutuksia kaasun ominaisuuksiin...3 A11.Puristaminen aiheuttaa kiinteän aineen muuttumisen nesteeksi...3 A12. Puristaminen aiheuttaa kaasun muuttumisen nesteeksi...3 MISTÄ LÄMPIMÄN JA KYLMÄN AISTIMUS AIHEUTUU...3 A13. Ihminen aistii ihonsa lämpötilan...3 A14. Lämpötilaerot...4 A15. Materiaalin vaikutus lämpöaistimukseen...4 TASAPAINOTILA JA TILANMUUTTUJIEN PERUSHAHMOTUS...4 A16. Kappaleiden lämpötilaerojen tasoittuminen...4 A17. Kappaleiden puristustilojen tasoittuminen...4 A18. Termodynaaminen systeemi 1...4 A19. Termodynaaminen systeemi 2...5 OLOMUODON MUUTOKSET...5 A20. Haihtuminen...5 A21. Veden olomuodon muutokset...5 A22. Sublimoituminen...5 A23. Härmistyminen...6 A24. Puristuksen vaikutus olomuodon muutoksiin 1...6 A25. Puristuksen vaikutus olomuodon muutoksiin 2...6 TIHEYDEN, PAINEEN, ILMANPAINEEN JA NOSTEEN PERUSHAHMOTUS...6 A26. Tiheyden perushahmotus...6 A27. Tiheyden esikvantifiointi...6 A28. Puristustilojen eron vaikutus voimiin 1...6 A29. Puristustilojen eron vaikutus voimiin 2...7 A30. Nosteen perushahmotus...7 A31. Kelluminen ja sen riippuvuus kappaleen muodosta...7 A32. Kelluminen ja sen riippuvuus nesteestä...7 B. KVANTIFIOINTI JA KVANTITATIIVISET KOKEET...8 TIHEYS...8 B1. Tiheyden kvantifiointi...8 PAINE...10 A33. Perushahmotus...10 B2. Esikvantifiointi...10 B3. Kvantifiointi...10 HYDROSTAATTINEN PAINE...12 A34. Perushahmotus...12
B4. Kvantifiointi...13 NOSTE...14 B5. Kvantifiointi...14 ILMANPAINE...16 B6. Ilmanpaineen määrittäminen...16 KYLLÄISEN HÖYRYN PAINE...17 A35. Perushahmotus 1...17 A36. Perushahmotus 2...17 B7. Esikvantifiointi...17 LÄMPÖTILA...18 B8. Kvantifiointi...18 LÄMPÖTILAKERTOIMET...19 B9. Pituuden lämpötilakertoimen kvantifiointi...19 KAASUJEN TILANYHTÄLÖT: BOYLEN LAKI, CHARLESIN LAKI, GAY-LUSSACIN LAKI ABSOLUUTTINEN LÄMPÖTILA...21 B10. Boylen laki: paineen riippuvuus tilavuudesta vakiolämpötilassa...21 B11. Charlesin laki: paineen riippuvuus lämpötilasta vakiotilavuudessa...22 B12. Gay-Lussacin laki: tilavuuden riippuvuus lämpötilasta vakiopaineessa...24 LAKIEN YHDISTÄMINEN...26 C. STRUKTUROINTIA...27 PROSESSIN KUVAUS...28 KÄSITTEENMUODOSTUS...29
A. Perushahmotus ja esikvantifiointi Lämpöopissa tutkitaan lämmittämisen, jäähdyttämisen ja puristuksen vaikutuksia aineiden ominaisuuksiin. Kappaleet lämpenevät ja jäähtyvät, laajenevat ja kutistuvat, kun ympäristön lämpötila tai paine muuttuvat. Aineen olomuoto voi myös muuttua. Lämpöopissa tarkasteltavaa kohdetta sanotaan termodynaamiseksi systeemiksi. Systeemi on vuorovaikutuksessa ympäristönsä (olosuhteiden) kanssa. Lämmittämisen, jäähdyttämisen ja puristuksen vaikutukset aineiden ominaisuuksiin, aineiden ja ilmiöiden luokittelu ja tunnistus. Lämmittäminen yleensä suurentaa aineen tilavuutta, voi aiheuttaa kiinteän aineen muuttumisen nesteeksi tai nesteen muuttumisen kaasuksi. Jäähdyttäminen aiheuttaa päinvastaiset ilmiöt. Puristaminen pienentää tilavuutta ja voi myös lämmittää. Yleisesti: kun yhtä näistä kolmesta (aineen lämpötila, puristustila tai tilavuus) muutetaan, niin toinen muista kahdesta tai ne molemmat muuttuvat myös. A1. Kiinteän aineen laajeneminen A2. Nesteen laajeneminen i Metallinen pallo ja reikälevy, kuumennusvälineet Näytetään, että huoneenlämpötilassa oleva metallipallo sopii metallilevyssä olevan reiän läpi (Kuva 1). Kuumennetaan palloa kaasupolttimen liekillä ja sovitetaan uudestaan metallilevyssä olevaan reikään. Havaitaan, ettei pallo enää mahdu reiästä. Kun pallo taas jäähtyy, se sopii. on näyttää, että kiinteä aine laajenee lämmitettäessä ja kutistuu jäähtyessään. Kuva 1 Kolme lämpömittarin aihiota, paloöljyä, spriitä ja vettä, väriainetta, vesihaude Otetaan kolme lämpömittarin aihiota, joista ensimmäisessä on värjättyä vettä, toisessa värjättyä spriitä ja kolmannessa värjättyä paloöljyä. Merkitään tussilla viiva nestepintojen yläreunoihin. Upotetaan lämpömittarin aihiot kuumaan veteen ja merkitään nesteen uusi yläpinta. Nostetaan aihiot pois vesihauteesta ja tarkastetaan tilanne hetken kuluttua. on näyttää, että nesteet laajenevat lämmetessään ja kutistuvat jäähtyessään. Samalla voidaan alustavasti hahmottaa eri nesteiden erilaista laajenemista. A3. Kaasun laajeneminen 1 ii kaksi samanlaista ilmapalloa, hiustenkuivain, pakastin Kaksi samanlaista ilmapalloa puhalletaan yhtä täyteen. Toinen viedään pakastimeen ja toista lämmitetään varovasti hiustenkuivaajalla. Havaintojen 1
A4. Kaasun laajeneminen 2 tekemisen jälkeen ilmapallot jätetään huoneenlämpöön ja vertaillaan niitä uudelleen hetken kuluttua. on näyttää, että kaasut laajenevat lämmetessään ja kutistuvat jäähtyessään. Kylmempi pallo on pienempi tai löysempi. Huoneenlämpöiset pallot ovat taas saman kokoisia. Huomioita: keittopullo, keitinlasi, ilmapallo, vettä, kuumennusvälineet Pingotetaan tyhjä ilmapallo pienen tyhjän keittopullon suulle. Keittopullo laitetaan keitinlasiin, jossa on vettä, jota kuumennetaan (Kuva 2). on näyttää, että kaasut laajenevat lämmetessään ja kutistuvat jäähtyessään. Ilman lämmetessä tyhjä ilmapallo täyttyy ja jäähtyessä ilmapallo taas tyhjenee. Keittopullon ja lämpötilaeron pitää olla riittävän suuria, jotta ilmapallo laajenisi tarpeeksi. Kuva 2 A5. Lämmittäminen aiheuttaa kiinteän aineen muuttumisen nesteeksi uudenvuoden tina, kauha, kuumennusvälineet, vesiastia Kuumennetaan tinaa kauhassa, jolloin se muuttuu nesteeksi. Kaadetaan nestemäinen tina kylmään veteen, jolloin se muuttuu jälleen kiinteäksi. on näyttää, että lämmittäminen voi aiheuttaa kiinteän aineen muuttumisen nesteeksi ja jäähdyttäminen aiheuttaa päinvastaisen ilmiön. A6. Lämmittäminen aiheuttaa nesteen muuttumisen kaasuksi tislauslaitteisto Kuumennetaan vettä tislauslaitteistossa, jolloin vesi lämpenee ja muuttuu vesihöyryksi. Jäähdyttimessä vesihöyry muuttuu nesteeksi. on näyttää, että lämmittäminen voi aiheuttaa nestemäisen aineen muuttumisen kaasuksi ja jäähdyttäminen aiheuttaa päinvastaisen ilmiön. A7. Aineen laajeneminen/kutistuminen olomuodon muuttuessa iii metallinen kanisteri, jossa on metallikorkki, vettä, kuumennusvälineet Laitetaan kanisterin pohjalle vettä ja lämmitetään kanisteria niin, että vesi kiehuu. Tämän jälkeen korkki suljetaan ja kanisterin annetaan jäähtyä. Kanisteriin jäänyt vesihöyry muuttuu nesteeksi ja kanisteri puristuu kasaan. on näyttää, että aineen olomuodon muuttuessa se laajenee/kutistuu. A8. Puristuksen vaikutuksia kiinteän aineen ominaisuuksiin Kouluvälineillä on vaikeaa havaita muutoksia, kun kiinteän aineen puristustilaa muutetaan. 2
A9. Puristuksen vaikutuksia nesteen ominaisuuksiin muoviruisku, kuumaa vettä Otetaan muoviruisku puolilleen kuumaa vettä. Suljetaan sormella ruiskun pää ja vedetään mäntää ulospäin. Tarkkaillaan vettä. on havaita, että vesi alkaa kuplia (kiehua). Paineen pienentäminen alentaa lämpötilaa, jossa neste kiehuu. A10. Puristuksen vaikutuksia kaasun ominaisuuksiin iv Työn suoritus polkupyörän pumppu Painetaan polkupyörän pumpun mäntää voimakkaasti ja samalla estetään ilmaa pääsemästä pumpusta esim. sormella painamalla. Tunnustellaan pumpun ulkopintaa. on näyttää, että puristaminen pienentää tilavuutta ja lämmittää. A11.Puristaminen aiheuttaa kiinteän aineen muuttumisen nesteeksi Huomioita: Suorakulmaisen särmiön muotoinen jääpala, punnus, metallilankaa Jääpala tuetaan molemmista päistään esim. kahden pöydän väliin. Jään ympärille laitetaan ohut metallilanka ja suuri punnus laitetaan roikkumaan langan varaan painoksi. Lanka menee jään läpi ja lanka on senkin jälkeen yhtenäinen kimpale. on näyttää, että puristaminen voi aiheuttaa kiinteän aineen muuttumisen nesteeksi ja puristamisen lakkaaminen aiheuttaa päinvastaisen ilmiön. Ulkopuolisten tekijöiden poistaminen vaatisi oikeastaan työn tekemistä pakkasessa. A12. Puristaminen aiheuttaa kaasun muuttumisen nesteeksi nestekaasupullo (kerrottu empiria) Ravistellaan nestekaasupulloa ja loiskumisesta huomataan, että sen sisällä on nestettä. Kuitenkin pullosta tulee ulos kaasua. on näyttää, että puristaminen voi aiheuttaa kaasun muuttumisen nesteeksi ja puristamisen lakkaaminen aiheuttaa päinvastaisen ilmiön. Mistä lämpimän ja kylmän aistimus aiheutuu Ihminen aistii ihonsa lämpötilan. Koskettamalla voimme tuntea, että esim. vesi on kylmää, viileää, lämmintä tai kuumaa. Aineella on jokin ominaisuus, joka aiheuttaa erilaisia lämpöaistimuksia. Ihoa koskettava kappale muuttaa ihon lämpötilaa, mutta myös iho muuttaa kappaleen lämpötilaa. Esimerkiksi kuuma puu tai ilma jäähtyy ihoa koskettavalta osaltaan nopeasti, eikä polta, mutta kuuma vesi tai metalli polttaa. A13. Ihminen aistii ihonsa lämpötilan v Kylmä, kuuma ja haalea vesi, astiat Pidetään ensin toista kättä kylmässä ja toista kuumassa vedessä ja kastetaan sitten molemmat samaan haaleaan veteen. 3
A14. Lämpötilaerot on havaita kylmän ja lämpimän tuntemukset sekä alustavasti se, että tuntoaistin perusteella ei kuitenkaan voida sanoa, kuinka kylmää tai lämmintä jokin aine on. Tätä varten tarvitaan jokin uusi suure, sekä väline, jolla mittaus voidaan tehdä. metallipallo Jäähdytetään metallipallo esim. jääkaapissa ja otetaan se sieltä käteen. Puristetaan pallo nyrkin sisään. on havaita, että ihoa koskettava kappale muuttaa ihon lämpötilaa, mutta myös iho muuttaa kappaleen lämpötilaa. Käden ja pallon lämpötilat tasoittuvat. A15. Materiaalin vaikutus lämpöaistimukseen löylykauha, sauna (kerrottu empiria) Tutkitaan, miltä metallisen, puuvartisen kuuman löylykauhan eri osat tuntuvat on havaita, että kuuma metalli polttaa ihoa enemmän kuin saman lämpöinen puu. Lämpöenergia johtuu metallista käteen nopeammin kuin puusta käteen. Tasapainotila ja tilanmuuttujien perushahmotus A16. Kappaleiden lämpötilaerojen tasoittuminen Kuten työ A5 Kuten työ A5 on huomata, että jos erilämpöisiä kappaleita asetetaan toistensa kanssa kosketuksiin, ne ennen pitkää saavuttavat saman lämpötilan A17. Kappaleiden puristustilojen tasoittuminen Ilmapallo Puhalletaan ilmapallo täyteen, jolloin sen sisällä on suurempi ilman puristustila kuin ympäristössä. Avataan ilmapallon suu, jolloin ilma purkautuu pois. on huomata, että jos puristustilaltaan erilaiset kaasut asetetaan toistensa kanssa kosketuksiin, niiden puristustilat tasoittuvat. A18. Termodynaaminen systeemi 1 Vesilasi, vettä, jääpaloja, kalorimetri Laitetaan vettä ja jääpaloja lasiin suljettavaan kalorimetriin. Tarkkaillaan tulosta jonkin ajan kuluttua. on havainnollistaa, että jääpalat ja lasissa oleva vesi ovat systeemi, joka hakeutuu termiseen tasapainotilaan, jossa sen ominaisuudet pysyvät muuttumattomina. 4
A19. Termodynaaminen systeemi 2 Termospullo, vettä, jäätä Laitetaan vettä ja runsaasti jäätä termospulloon. Suljetaan pullo ja tutkitaan tilannetta hetken kuluttua. on havainnollistaa, että tasapainotilassa voi esiintyä samalla kertaa eri olomuotoja: jäätä, vettä sekä vesihöyryä. Töiden perusteella havaitaan, että aineen lämpötilan muuttaminen, puristustilan muuttaminen ja tilavuuden muuttaminen vaikuttavat toisiinsa. Määritellään nämä aineen tilanmuuttujiksi ja kutsutaan tilannetta, jossa ne eivät muutu systeemin tasapainotilaksi. Olomuodon muutokset Olomuodon muutoksia ovat: sulaminen, jähmettyminen, höyrystyminen, tiivistyminen, sublimoituminen ja härmistyminen. Aineen olomuotoa voidaan muuttaa lämmittämällä tai jäähdyttämällä. Myös paine vaikuttaa olomuodon muutospisteeseen. A20. Haihtuminen alkoholia, vettä, käsi Tiputetaan kämmenselälle muutama pisara alkoholia ja toiselle kämmenselälle muutama pisara vettä. Tarkkaillaan. on huomata, että alkoholi haihtuu nopeasti. Samalla voidaan havainnoida kylmän tuntemusta kämmenselässä ja todeta, että aineet haihtuvat eri nopeuksilla. A21. Veden olomuodon muutokset jäätä, tislauslaitteisto, kuumennusvälineet, pakastin Kuumennetaan tislauspullossa olevaa jäätä, kunnes se sulaa. Jatketaan kuumentamista kunnes vesi höyrystyy ja kulkeutuu jäähdyttimeen, jossa se tiivistyy vedeksi. Kerätään jäähdyttimestä saatava vesi astiaan ja pakastetaan se. on havainnollistaa veden sulaminen, höyrystyminen tiivistyminen ja jähmettyminen. Myös molemmat höyrystymistavat: haihtuminen ja kiehuminen ovat havaittavissa. Olomuodon muuttaminen vaatii lämmittämistä tai jäähdyttämistä. A22. Sublimoituminen märkä lakana, pakkanen (kerrottu empiria) Ripustetaan märkä lakana pakkasella ulos kuivumaan. Lakana jäätyy. Muutaman päivän kuluttua lakana on kuiva. on havainnollistaa olomuodon muutosta suoraan kiinteästä kaasuksi. 5
A23. Härmistyminen ihminen (esim. parrakas mies), pakkanen (kerrottu empiria) Pakkasella ulos hengitetty vesihöyry härmistyy kuuraksi. on havainnollistaa olomuodon muutosta suoraan kaasusta kiinteäksi. A24. Puristuksen vaikutus olomuodon muutoksiin 1 Huomioita: virvoitusjuomapullo, pakastin Virvoitusjuoma, joka pakastimesta otettuna on vielä nestettä, jäätyy äkkiä kun pullo avataan ja puristustila pienenee. on havainnollistaa, että puristustila voi vaikuttaa olomuodon muutokseen. Vesi käyttäytyy puristustilan muuttuessa eri tavalla kuin muut aineet. Muilla aineilla sulamispiste laskee, kun puristustila pienenee. A25. Puristuksen vaikutus olomuodon muutoksiin 2 keitinlasi, vettä, tyhjöpumppu Laitetaan huoneenlämpöistä vettä keitinlasiin ja keitinlasi tyhjöpumpun kuvun alle. Poistetaan ilma pumppaamalla Vesi alkaa kiehua. on havainnollistaa, että puristustilan muutos vaikuttaa aineen olomuodon muutokseen. Tiheyden, paineen, ilmanpaineen ja nosteen perushahmotus A26. Tiheyden perushahmotus samankokoiset styroksikuutio ja metallikuutio Punnitaan kädessä samankokoisia styroksi ja metallikuutioita ja huomataan niiden tuntuvan eri painoisilta. on havainnollistaa eri materiaalista valmistettujen kappaleiden erilaista massaa. A27. Tiheyden esikvantifiointi kuutioita: esim. puu, alumiini, rauta, messinki, vaaka Punnitaan kuutioita, sekä sama koko/eri aine että sama aine/eri koko. on huomata, että suurempi tilavuus jotain ainetta on, sitä suurempi on ainemäärän massa. Toisaalta samankokoisilla eriaineisilla kappaleilla on eri massa. A28. Puristustilojen eron vaikutus voimiin 1 ruisku Vedetään ruiskun mäntä auki. Painetaan sormi ruiskun suulle ja työnnetään mäntää sisäänpäin. on havainnollistaa puristustilan kasvamisen aiheuttamia voimia. Mitä syvemmälle mäntä halutaan painaa, sitä enemmän voimaa tarvitaan ruiskun painamiseen. 6
A29. Puristustilojen eron vaikutus voimiin 2 A30. Nosteen perushahmotus vi Magdeburgin puolipallot, tyhjöpumppu Asetetaan puolipallot vastakkain. Imetään ilma tyhjöpumpulla pois pallon sisältä. Yritetään irrottaa puolipalloja toisistaan vetämällä eri suuntiin (Kuva 3). on havainnollistaa miten suuren voiman puristustilojen ero voi synnyttää. Kuva 3 kappale, jousivaaka, vesiastia Mitataan kappaleen paino ilmassa, osittain vedessä ja vedessä eri syvyyksillä. on havaita, että mitä suurempi osa kappaleesta on veden alla, sitä pienempi on paino. Kun kappale on kokonaan veden alla, paino ei riipu siitä, miten syvällä kappale on. On siis olemassa jokin ylöspäin suuntautuva voima, jota kutsutaan nosteeksi. A31. Kelluminen ja sen riippuvuus kappaleen muodosta Huomioita: sinitarraa, vesiastia Muovataan sinitarraa eri muotoiseksi, kunnes löydetään muoto, jossa sinitarra kelluu. on havainnollistaa kappaleen muodon vaikutusta kellumiseen. Noste riippuu kappaleen muodosta. Sopivanmuotoinen (venemäinen) sinitarrapalan kellumiseen vaikuttaa tietysti myös sen sisällä oleva ilma. A32. Kelluminen ja sen riippuvuus nesteestä uimari, suolainen ja makea vesi (kerrottu empiria) Uimarin on helpompi kellua suolaisessa (esim. Kuollut Meri) kuin makeassa vedessä on havainnollistaa erilaisten nesteiden vaikutusta kellumisen 7
B. Kvantifiointi ja kvantitatiiviset kokeet Tiheys B1. Tiheyden kvantifiointi vii vaaka, mittalasi, eri ainetta olevia kappaleita (esim. puu, metalli, muovailuvaha) ja nesteitä (esim. vesi, suolaliuos, alkoholi) Tehdään sarja kokeita, jossa määritetään samanaineisten, erikokoisten kappaleiden tilavuus ja massa. Esitetään tulokset jokaiselle aineelle erikseen (V,m) koordinaatistossa. Havaitaan, että mittauspisteet asettuvat (V,m) koordinaatistossa suoralle. Suorat ovat jyrkkyydeltään erilaisia. Suoran jyrkkyys, eli fysikaalinen kulmakerroin ρ=m/v, on kutakin ainetta kuvaava, sille ominainen suure, tiheys. Mitä jyrkempi suora, sitä suurempi on aineen tiheys. Kiinteinä aineina käytimme puuta, alumiinia ja kuparia (Taulukko 1). Puu- ja kuparikappaleet olivat kuutioita, joten niiden tilavuuden määritimme mittaamalla. Alumiinikappaleiden tilavuus määritettiin mittalasiin upottamalla (Kuva 4). Kuva 4 Kulmakertoimista (Kuvaaja 1) saimme tiheyksiksi ρ puu = 0,68 g/cm³, ρ alumiini = 2,64 g/cm³ (taulukkoarvo 2,7 g/cm³) ja ρ kupari = 9,55 g/cm³ (taulukkoarvo 8,96 g/cm³). Taulukko 1 Tiheyden kvantifiointi - Kiinteät aineet puu alumiini kupari m (g) V (cm 3 ) m (g) V (cm 3 ) m (g) V (cm 3 ) 6,4 9,3 48 17 88 9,3 13,1 18,6 96 35 177 18,6 19,4 27,9 144 52 266 27,9 25,6 37,2 193 72 355 37,2 31,9 46,5 241 90 443 46,5 8
Tiheyden kvantifiointi - Kiinteät aineet m (g) 600 500 y = 9,5484x - 0,6 400 300 200 100 0 y = 2,6381x + 4,0554 y = 0,6828x + 0,23 0 20 40 60 80 100 V (cm 3 ) Kuvaaja 1 Puu Alumiini Kupari Nesteinä käytimme vettä, etanolia (Industol) ja suolavesiliuosta. Tilavuudet määritimme mittalasin avulla ja massat vaa alla (Taulukko 2). Asetimme tyhjän mittalasin digitaalivaa alle ja taarasimme sen. Kulmakertoimista (Kuvaaja 2) saimme tiheyksiksi ρ vesi = 0,99 g/cm³ (taulukkoarvo 1,00), ρ etanoli = 0,80 g/cm³ (taulukkoarvo 0,79 g/cm³) ja ρ suolavesi = 1,12 g/cm³. Taulukko 2 Tiheyden kvantifiointi - Nesteet vesi etanoli suolavesi m (g) V (cm 3 ) m (g) V (cm 3 ) m (g) V (cm 3 ) 19 21 16 20 23 21 38 40 31 40 43 40 57 60 47 60 66 60 78 80 63 80 89 80 97 100 71 90 111 100 80 100 9
Tiheyden kvantifiointi - Nesteet 140 120 100 80 m (g) 60 40 20 0 y = 1,1214x - 1,1054 y = 0,9899x - 1,792 y = 0,7979x - 0,5298 Vesi Etanoli Suolavesi 0 20 40 60 80 100 120 V (cm3) Kuvaaja 2 Huomioita: Kiinteiden kappaleiden tilavuus määritettiin viivaimella mittaamalla ja siitä laskemalla. Ehkä olisimme saaneet parempia tuloksia työntömittaa käyttämällä. Erityisesti kuparin tiheys poikkeaa taulukkoarvosta. Paine A33. Perushahmotus terottamaton (tasapaksu) lyijykynä, terävä lyijykynä Pistetään tasapaksu kynä etusormien väliin ja puristetaan sitä kevyesti ja voimakkaammin. Pistetään toisesta päästä terotettu kynä etusormien väliin ja puristetaan sitä. on havaita omin aistein, miten tuntemus sormenpäissä muuttuu, kun kosketuspinta-ala ja voima muuttuvat. B2. Esikvantifiointi viii Yhteen kytketyt eripaksuiset ruiskut. Yhdistetään kaksi eripaksuista vedellä täytettyä ruiskua letkulla toisiinsa ja painetaan molempia mäntiä samanaikaisesti. Havaitaan, että suurempaa mäntää on painettava suuremmalla voimalla, jotta se pysyisi paikallaan. Todetaan, että voiman suurentaminen suurentaa painetta, vakiopaineen aiheuttama voima riippuu pinta-alasta. B3. Kvantifiointi Yliopiston laitteisto: kulhot, kelmut ja kannet. Neljän kulhon sarja(kuva 5). Valitaan kulhoista yksi standardiksi. Laitetaan sen kannen päälle punnuksia. Kytketään vuorotellen kukin kolmesta 10 Kuva 5
muusta testikulhosta standardikulhon kanssa Y-letkulla yhteen ja puhalletaan letkuun. Etsitään testikulhon kannelle punnukset joilla testikulhon ja standardikulhon kannet nousevat yhtä aikaa. Muutetaan standardikulhon punnuksia ja toistetaan koesarja. Saadaan seuraavat tulokset (Taulukko 3) ja niistä kuvaajat (A,F)-koordinaatistoon (Kuvaaja 3). Taulukko 3 Paineen kvantifiointi kulho d (cm) r (cm) A (cm 2 ) 1 pienin 11,2 5,6 98 2 toiseksipienin 14,5 7,25 165 3 toiseksisuurin (standardi) 17,8 8,9 249 4 suurin 20 10 314 kulho A (cm 2 ) m (g) m (g) m (g) 1 98 20 40 60 2 165 32 65 100 3 249 50 100 150 4 314 60 125 200 kulho A (cm 2 ) F (N) F (N) F (N) 1 98 0,2 0,4 0,6 2 165 0,32 0,65 1 3 249 0,5 1 1,5 4 314 0,6 1,25 2 2,5 2 Paineen kvantifiointi y = 0,0062x F (N) 1,5 1 y = 0,004x y = 0,002x 0,5 0 0 100 200 300 400 A (cm 2 ) Kuvaaja 3 Havaitaan, että mittauspisteet asettuvat (A,F)-koordinaatistossa suoralle, Suoran kulmakerroin p=f/aon kaasun puristustilaa kuvaava suure, paine. 11
Huomioita: Hydrostaattinen paine Kalvojen nousun silmämääräinen arviointi oli todella vaikeaa, joten laskimme ennakkoon tarvittavien painojen suuruusluokan. Työn suoritus oli hauskaa. Käytännöstä tiedetään, että syvälle sukellettaessa korvat menevät lukkoon, koska paine kasvaa. Syvänmeren tutkimuslaitteiden on kestettävä suuria paineita. Neste pyrkii oman painonsa vaikutuksesta levittäytymään, mutta astian seinämät estävät sitä ja neste aiheuttaa niihin paineen. Tätä nesteen omasta painosta aiheutuvaa painetta kutsutaan hydrostaattiseksi paineeksi. A34. Perushahmotus Korkea purkki (esim. tennispallopurkki), jossa on reikiä eri korkeuksilla, vettä Asetetaan purkki juoksevan vesihanan alle (säädetään vedentulo niin, että vesi ei valu yli) on havaita, että vesi suihkuaa pisimmälle astian alimmasta reiästä, koska veden paine kasvaa syvemmälle mentäessä (Kuva 6). Kuva 6 12
B4. Kvantifiointi muoviputki (1,5 m), vettä, väkevää suolaliuosta, barometri, tietokonemittausjärjestelmä (ULI ja Logger Pro) Mitataan veden painetta muoviputkessa eri syvyyksillä tietokoneen paineanturilla (barometri) kuvan (Kuva 7) mukaisesti. Toistetaan mittaukset väkevällä suolavedellä. Saadaan seuraavat tulokset (Taulukko 4). Taulukko 4 Hydrostaattisen paineen kvantifiointi vesi suolavesi h (m) p (Pa) p (Pa) 0 99414 99707 0,1 100701 100867 0,2 101608 101852 0,3 102603 103061 0,4 103734 104026 0,5 104748 105109 0,6 105547 106298 Kuva 7 Pisteet (h,p) -koordinaatistossa asettuvat suoralle (Kuvaaja 4). Hydrostaattisen paineen kvantifiointi p (Pa) 107000 106000 105000 104000 103000 102000 101000 100000 99000 y = 10868x + 99728 suolavesi vesi y = 10220x + 99556 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 h (m) Kuvaaja 4 Saadaan laki p~h. Suoran jyrkkyys riippuu nesteen tiheydestä. Mittaustulokset suolavedessä asettuvat jyrkemmälle suoralle kuin vedessä, sillä suolaveden tiheys on suurempi. 13
Mittaamalla saadut tulokset voidaan selittää seuraavalla päättelyllä. Tarkastellaan nesteestä erotettua suoraa lieriötä (Kuva 8), jonka pohjan pinta-ala on A, korkeus h ja tilavuus V=Ah. Kuva 8 Nesteen tiheys m m ρ = =, jolloin lieriön massa on m = ρah. V Ah Lieriön paino voidaan ilmaista nesteen tiheyden avulla. G = mg = ρ Ahg. Lieriöön vaikuttaa sen oman painon lisäksi vain ilman ja ympäröivän nesteen paineesta aiheutuvia voimia, jotka ovat joka kohdassa sen pintaa vastaan kohtisuoria. Ilmanpaine pi painaa lieriötä alaspäin voimalla Fi = pi A. Nestelieriö painaa alustaansa voimalla F + G = p A + ρahg ja aiheuttaa siten paineen: i Fi + G pi A + ρahg p = = = pi + ρhg. Nesteessä vallitseva paine on siis A A ilmanpaineen ja hydrostaattisen paineen summa. Hydrostaattinen paine p h = ρgh riippuu vain nesteen tiheydestä ρ ja syvyydestä h ja kohdistuu yhtä suurena kaikkiin suuntiin. i Noste Nesteeseen upotetun kappaleen alapintaan vaikuttaa suurempi hydrostaattinen paine kuin yläpintaan. Noste aiheutuu tästä paine-erosta. Se riippuu vain kappaleen koosta ja muodosta, ei siitä mitä ainetta kappale on. B5. Kvantifiointi Täydennetään perushahmottavaa työtä (A30) upottamalla jousivaakaan ripustettuja tilavuudeltaan tunnettuja kappaleita erilaisiin nesteisiin (Kuva 9). Tutkitaan kappaleen painon vähenemisen riippuvuutta upotustilavuudesta (Taulukot 5-7). 14 Kuva 9
Taulukko 5 Taulukko 6 Nosteen kvantifiointi Neste: vesi alumiini kupari V(cm 3 ) F(N) ilma F(N) vesi F (N) V(cm 3 ) F(N) ilma F(N) vesi F (N) 17 0,50 0,30 0,20 18 1,65 1,45 0,20 35 1,00 0,60 0,40 36 3,25 2,90 0,35 52 1,50 0,90 0,60 54 5,00 4,35 0,65 69 1,95 1,20 0,75 72 6,50 5,90 0,60 86 2,40 1,55 0,85 90 8,20 7,30 0,90 Nosteen kvantifiointi Neste: ruokaöljy alumiini kupari V(cm 3 ) F(N) ilma F(N) ruokaöljy F (N) V(cm 3 ) F(N) ilma F(N) ruokaöljy F (N) 17 0,50 0,30 0,20 18 1,65 1,50 0,15 35 1,00 0,65 0,35 36 3,25 2,93 0,32 52 1,50 0,95 0,55 54 5,00 4,40 0,60 69 1,95 1,25 0,70 72 6,50 5,95 0,55 86 2,40 1,59 0,81 90 8,20 7,40 0,80 Taulukko 7 Nosteen kvantifiointi Neste: alkoholi alumiini kupari V(cm 3 ) F(N) ilma F(N) etanoli F (N) V(cm 3 ) F(N) ilma F(N) etanoli F (N) 17 0,50 0,35 0,15 18 1,65 1,55 0,10 35 1,00 0,70 0,30 36 3,25 2,95 0,30 52 1,50 1,00 0,50 54 5,00 4,45 0,55 69 1,95 1,30 0,65 72 6,50 6,00 0,50 86 2,40 1,70 0,70 90 8,20 7,45 0,75 Todetaan, että F~V, ei riipu kappaleen aineesta. Sen sijaan se riippuu nesteestä (Kuvaaja 5). 15
Nosteen kvantifiointi - riippumattomuus aineesta F (N) 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 y = 0,0096x + 0,0626 y = 0,0092x + 0,045 y = 0,0091x + 0,0491 y = 0,0085x + 0,025 y = 0,0084x + 0,023 y = 0,0083x - 0,01 alumiini (vesi) kupari (vesi) alumiini (etanoli) kupari (etanoli) alumiini (ruokaöljy) kupari (ruokaöljy) 0,00 15 35 55 75 95 V (cm3) Kuvaaja 5 Havaitaan että verrannollisuuskerroin on nesteen tiheys Arkhimedeen laki: Nesteessä tai kaasussa olevaan kappaleeseen vaikuttava noste on yhtä suuri kuin kappaleen syrjäyttämän neste- tai kaasumäärän paino. Huomioita: Jouduimme käyttämään mittauksissa kolmea eri jousivaakaa, mittaustarkkuus siis vaihtelee. Upottaminen oli hankalaa, koska tarpeeksi suurta mittalasia oli vaikea löytää. Punnukset koskettivat mittalasin seinämiä. Mittaustulokset eivät siis ole kovin hääppöisiä. Ilmanpaine Ilmanpaineen aiheuttaa ilmakehän ilman paino. B6. Ilmanpaineen määrittäminen jousivaaka tai voimamittari, ruisku Vedetään jousivaa'alla mäntä ulos ensin avoimesta ruiskusta., jolloin voima on männän kitkavoima. Tukitaan ruisku ja toistetaan koe (Kuva 10). Tällöin voima on kitkavoima + ilmanpaineen mäntään kohdistama voima. 16 Kuva 10
F tukittu =17N F avoin = 5,5 N r = 0,006 m P = F A = F tukittu F ÿr 2 avoin = 17 N 5,5 N ÿ ( 0,006 m) 2 100 kpa Kylläisen höyryn paine Veden pinnasta haihtuu vettä vesihöyryksi pinnan päällä olevaan ilmaan. Samalla myös vesihöyryä tiivistyy takaisin vedeksi. Tiivistyminen on sitä voimakkaampaa, mitä enemmän vesihöyryä ilman yläpuolella on. Kun astia on avoin, vesihöyry kulkeutuu pois. Kun astia peitetään kannella, vesihöyryn määrä lisääntyy, kunnes tiivistyminen on yhtä nopeaa kuin haihtuminen. Tällöin ilman vesihöyry on kylläistä ja sen paine on saavuttanut arvon, jota sanotaan kylläisen vesihöyryn paineeksi. Koska tiivistyminen nyt tasapainottaa haihtumisen, tämä paine ilmaisee samalla nesteen höyrystymispyrkimyksen voimakkuuden. A35. Perushahmotus 1 kattila ja kansi, keittolevy, vettä Kuumennetaan vettä ensin kannettomassa kattilassa. Tutkitaan haihtumista. Laitetaan sitten kattilan päälle kansi ja tutkitaan eroa. on havainnollistaa, että haihtuminen ja tiivistyminen ovat vastakkaisia prosesseja, jotka pyrkivät tasapainottamaan toisensa. A36. Perushahmotus 2 aerosolipullo (kertova empiria) Ravistellaan aerosolipulloa, kuullaan, että aine on pullossa nesteenä. Ulos suihkuava aine on kuitenkin kaasua. Suihkutetaan pullo tyhjäksi ja huomataan, että suihku on samanlainen aineen loppumiseen saakka. on huomata, että aerosolipullosta saadaan ainetta tasaisena virtana, koska aine on pullossa nesteenä, jonka höyrynpaine säilyy samana niin kauan kuin sitä on vähänkin jäljellä. Ilmeisesti nestettä kaasuuntuu niin, että paine pullossa pysyy vakiona. B7. Esikvantifiointi ruisku, lämmintä vettä, voimamittari Imetään lämmintä vettä ruiskuun ja alennetaan painetta vetämällä mäntää ulospäin, kunnes vesi kiehuu. Kiehumisen loputtua mitataan paine (mäntään kohdistuva voima, joka aiheutuu ruiskun sisäisen ja ulkoisen paineen erotuksesta). Havaitaan että ruiskussa paine > 0, joten sinne on syntynyt kaasua. Se ei ole ilmaa vaan sen on pakko olla vesihöyryä. Kun mäntä päästetään painumaan takaisin, havaitaan että vesihöyry "katoaa" (nesteytyy). 17
Lämpötila Aikaisemmin on havaittu, että lämpöaistin perusteella ei voida sanoa, kuinka kylmää tai lämmintä jokin aine on. Tätä varten tarvitaan suure, lämpötila, ja lämpömittari, jolla tämä suure voidaan mitata. Lämpötilan mittaaminen perustuu lämpöopin nollanteen pääsääntöön: Eristetyssä systeemissä kaikki lämpötilaerot tasoittuvat. Lämpömittariksi kelpaa periaatteessa mikä tahansa laite, jonka jokin mitattava ominaisuus riippuu lämpötilasta. Tämä ominaisuus ilmaisee silloin lämpömittarin oman lämpötilan. Lämpömittari sijoitetaan kohteeseen ja odotetaan kunnes niiden lämpötilaero on tasoittunut. Tällöin mittarin näyttämä ilmaisee myös kohteen lämpötilan. Lämpömittarin valinta riippuu tutkittavasta kohteesta, lämpötila-alueesta ja halutusta mittaustarkkuudesta. Eri lämpötiloissa voidaan käyttää hyväksi erilaisia lämpötilasta riippuvia ilmiöitä. Yleisimmin käytetään neste- ja kaksoismetallilämpömittareita, jotka perustuvat lämpölaajenemiseen. B8. Kvantifiointi Nesteen lämpölaajenemista voidaan tutkia ns. lämpömittarin aihion avulla. Otetaan kylmää vettä (a) ja kuumaa vettä (e), ja sekoitetaan niitä suhteessa 1:1. Intuitio sanoo, että seoksen (c) lämpötilan täytyy olla alkulämpötilojen keskiarvo. Vastaavasti sekoitetaan kylmää vettä (a) ja seosta (c), saadaan seosta (b). Ja vielä kuumaa vettä (e) ja seosta (c), saadaan seosta (d). Laitetaan lämpömittarin aihioon vuorotellen kuhunkin veteen (a)..(e). (Kuva11). Piirretään tussilla lämpömittarin aihion nestepatsaan korkeus jokaisessa lämpötilassa (Kuva12). Mitataan patsaiden korkeudet (Taulukko 8). Havaitaan että nestepinnan korkeuden muutos on verrannollinen lämpötilan muutokseen, t ~ h (Kuvaaja 6). Taulukko 8 Kuva 11 Lämpötilan kvantifiointi vesi h (cm) 1 6,3 2 7 3 7,8 4 8,6 5 9,5 Kuva 12 18
Lämpötilan kvantifiointi 11 10 9 h (cm) 8 7 6 5 0 1 2 3 4 5 6 vesi Kuvaaja 6 Täydellinen lämpötilan kvantifiointi vaatisi vielä peruspisteiden määrittämisen. Emme voineet tehdä tätä osiota, koska fysiikan laitoksella ei ollut käytettävissä jäitä. Voitaisiin kuitenkin todeta, että sulavaa jäätä sisältävässä seoksessa lämpömittarin mallin nestepinta asettuu aina samalle tasolle. Vastaavasti kiehuvassa vedessä nestepinta asettuu aina vakiotasolle. Tällöin yleisesti kahden peruspisteen 1 ja 2 avulla määritellyn lämpötilan t2 t1 lausekkeeksi tulee t x = ( hx h1 ). h h 2 1 Lämpötilakertoimet Eri aineiden pituudet, pinta-alat ja tilavuudet muuttuvat eri tavoin lämpötilan funktiona. B9. Pituuden lämpötilakertoimen kvantifiointi Kootaan Pascon Thermal Expansion mittauslaitteisto oheisen kuvan mukaisesti(kuva 13). Kuva 13 Metalliputki kiinnitetään alustaan ja sen läpi johdetaan virtaavaa vettä. Putken lämpötila määritetään mittaamalla yleismittarilla resistanssi ja lukemalla lämpötila laitteessa olevasta taulukosta. Pituuden muutoksen 19
mittari nollataan ensin käyttäen mahdollisimman kylmää vettä. Veden lämpötilaa muutetaan portaittain ja jokaisessa vaiheessa luetaan pituuden muutos. Mittaukset suoritetaan kupari, alumiini ja teräsputkilla, joiden pituudet ovat 70 cm. Saadaan seuraavat mittaustulokset (Taulukko 9): Taulukko 9 Pituuden lämpötilakertoimen määrittäminen kupari t( C) L (mm) alumiini teräs 24 0 t ( C) L (mm) t( C) L (mm) 46 0,3 20,5 0 18,5 0 34 0,115 30,5 0,18 29 0,105 29 0,06 24,5 0,075 40,5 0,215 38 0,195 44,5 0,465 46 0,27 37,5 0,28 25 0,05 Tutkitaan, miten metalliputkien pituus muuttuu lämpötilan funktiona. Piirretään kuvaajat ( t, L)-koordinaatistoon. Saadaan seuraavat kuvaajat (Kuvaaja 7): 0,6 0,5 Pituuden lämpötilakerroin kupari alumiini teräs 0,4 L (mm) 0,3 0,2 y = 0,0187x - 0,3881 y = 0,0139x - 0,3399 y = 0,01x - 0,1892 0,1 0 15 20 25 30 35 40 45 50 t ( C) Kuvaaja 7 Koska kuvaajat ovat suoria, niin L ~ t, verrannollisuuskerroin riippuu aineesta. Jos oletetaan että putki venyy ja kutistuu tasaisesti koko mitaltaan, niin pituuden lämpötilariippuvuuden laiksi saadaan L = α L t, missä L on putken pituus alussa, t on lämpötilan muutos ja α on kyseisen aineen pituuden lämpötilakerroin. Kokeellisten mittausten lämpötilakertoimet saadaan suorien kulmakertoimista: kupari 13,9 10 6 1 (taulukkoarvo K 16,8 10 6 1 ), alumiini 18,7 10 1 K 6 (taulukkoarvo 23,2 10 1 K 6 )ja K teräs 10 10 6 1 (taulukkoarvo 11,7 10 1 K 6 ) K 20
Huomioita: Veden lämpötilan säätämisessä oli ongelmia. Kylmää vettä oli lähes mahdotonta saada. Käyttämämme lämpötila-alue on siksi melko suppea. Kaasujen tilanyhtälöt: Boylen laki, Charlesin laki, Gay-Lussacin laki absoluuttinen lämpötila Kiinteiden kappaleiden ja nesteiden tilavuuksia voidaan muuttaa lämmittämällä ja puristamalla mutta vain hyvin vähän. Sen sijaan kaasut, jotka ovat yleensä paljon harvempaa ainetta, pyrkivät itsestään laajenemaan. Ne pysyvät koossa vain umpinaisessa säiliössä. Ne täyttävät säiliönsä tasaisesti ja aiheuttavat sinne tietyn paineen. Kaasua on myös helppo puristaa kokoon, jolloin sen paine nousee. Tilavuus, lämpötila ja paine ovat kaasusysteemin tilanmuuttujia. Kaksi niistä määrää kolmannen. Kaasusysteemin tilanyhtälöä voidaan tutkia vakioimalla yksi muuttuja kerrallaan ja määrittämällä kahden muun välinen riippuvuus. B10. Boylen laki: paineen riippuvuus tilavuudesta vakiolämpötilassa. Tutkitaan, miten lääkeruiskussa olevan ilman paine riippuu ruiskun tilavuudesta vakiolämpötilassa. Kytketään paineanturi letkun avulla ruiskuun (Kuva 14). Kun mäntää työnnetään sisään, säiliössä olevan ilman tilavuus pienenee ja paine kasvaa. Kun mäntää vedetään ulospäin, tilavuus kasvaa ja paine pienenee. Saadaan seuraavat tulokset (Taulukko 10) Kuva 14 Taulukko 10 Boylen laki: Paineen riippuvuus tilavuudesta vakiolämpötilassa V (ml) 1/V (1/ml) p (kpa) 20,00 0,05 97,91 15,00 0,07 123,58 12,00 0,08 150,63 10,00 0,10 175,18 7,00 0,14 237,67 5,00 0,20 313,54 4,00 0,25 379,93 Havainnollistetaan paineen ja tilavuuden välistä riippuvuutta (1/V,p) koordinaatistossa. Saadaan suora (Kuvaaja 8), joka voidaan asettaa kulkemaan origon kautta: paine on verrannollinen tilavuuden käänteisarvoon. P~1/V. 21
Boylen laki p (kpa) 450 400 350 300 250 200 150 100 50 0 0,00 0,05 0,10 0,15 0,20 0,25 0,30 1/V (1/ml) Kuvaaja 8 Jos Boylen koe toistettaisiin korkeammassa lämpötilassa, saataisiin (1/V,p)- koordinaatistossa kuvaajaksi jyrkempi suora. B11. Charlesin laki: paineen riippuvuus lämpötilasta vakiotilavuudessa. Upotetaan paineanturiin kytketty keittopullovesihauteeseen, jota lämmitetään uppokuumentimella. Lämpötilaa mitataan lämpötila-anturilla (Kuva 15). Mitataan umpinaisessa kaasusäiliössä olevan kaasun paine eri lämpötiloissa (Taulukko 11) ja esitetään tulokset (t,p)-koordinaatistossa (Kuvaaja 9). Kuva 15 22
Taulukko 11 Charlesin laki: paineen riippuvuus lämpötilasta vakiotilavuudessa t (s) p (kpa) t ( C) 4,5 98,469 23,572 35 98,748 26,052 60 99,585 28,604 88 100,143 31,084 118 100,701 34,584 160 101,817 38,231 190,5 102,654 40,71 226,5 102,933 43,408 258 103,769 46,034 288 104,606 48,951 340,5 105,164 53,983 369,5 106,559 56,462 410,5 107,396 59,963 435,5 107,675 62,223 463 108,233 64,484 Charlesin laki p (kpa) 112 110 108 106 104 102 100 98 96 20 30 40 50 60 70 80 t ( C) Kuvaaja 9 Mittauspisteet osuvat suoralle, joten kaasun paineen muutos on verrannollinen lämpötilan muutokseen p~ t. Yleisemmin tutkittaessa on osoittautunut, että suora on riippumaton käytetystä kaasusta.. Ekstrapoloidaan suoraa pienempiin lämpötiloihin. Jos siis kaasun jäähtyminen voisi jatkua samanlaisena, sen paine häviäisi kokonaan siinä lämpötilassa, jossa suora leikkaa lämpötila-akselin. Mittauksissamme tämä lämpötila on n. -380 C (Kuvaaja 10). 23
Charlesin laki, absoluuttisen lämpötilan määritys 120 100 80 p (kpa) 60 40-400 -300-200 -100 0 100-20 t ( C) 20 0 Kuvaaja 10 Tämä laki on ensimmäinen havainto, joka viittaa alimpaan mahdolliseen lämpötilaan. Sen perusteella voidaan ottaa käyttöön absoluuttinen lämpötilaasteikko, jonka nollakohtana on Celsius-asteikon piste 273 C, jota sanotaan absoluuttiseksi nollapisteeksi. Tällä asteikolla kaasun paine on verrannollinen lämpötilaan. Huomioita: Koejärjestely oli poikkeuksellinen, koska laitoksen muuton vuoksi tavallisesti käytettävää vesihaudetta ei ollut käytössä. Ongelmaksi muodostui veden epätasainen lämpeneminen. Uppokuumennin oli sekoitettaessa eri etäisyyksillä lämpötila-anturista ja saattoi jopa osua siihen. Lämpötila vaihteli epämääräisesti. Mittaustulokset ovat tämän vuoksi epätarkkoja. Absoluuttiselle lämpötilalle saamamme arvio on huono, koska lämpötilan mittausalueemme on kovin suppea ekstrapolointiin verrattuna. B12. Gay-Lussacin laki: tilavuuden riippuvuus lämpötilasta vakiopaineessa 100 ml keittopullo, johon on kytketty ruisku, upotetaan uppokuumentimella lämmitettävään veteen. Mitataan pullon painetta ja systeemin lämpötilaa. Paine pyritään pitämään vakiona kasvattamalla ruiskun tilavuutta. Mitataan kaasun lämpötila (anturilla) ja tilavuus (ruiskusta lukien) sopivin väliajoin (Taulukko 12). 24
Taulukko 12 Gay-Lussacin laki: tilavuuden riippuvuus lämpötilasta vakiopaineessa p (mbar) t ( C) V (ml) 1010,622 28,604 100 1013,157 35,314 102 1011,207 40,273 104 1011,5 51,722 108 1011,305 56,9 110 1010,915 63,171 112 1011,11 70,537 114 Kun ilmaa lämmitetään vakiopaineessa, tilavuuden muutos on verrannollinen lämpötilan muutokseen. Sen lämpölaajenemista esittää (t,v)- koordinaatistossa suora (Kuvaaja 11). V (ml) 118 116 114 112 110 108 106 104 102 100 98 96 Gay-Lussacin laki 20 30 40 50 60 70 80 t ( C) Kuvaaja 11 Vakiopaineessa V~t. Tulos on riippumaton kaasusta ja sen määrästä. Kun tätä suoraa ekstrapoloidaan kohti matalia lämpötiloja, se leikkaa t-akselin (V=0) absoluuttisessa nollapisteessä (Kuvaaja 12). 25
Gay-Lussacin laki 140 V (ml) y = 0,3434x + 90,144 120 100 80 60 40 20 Lakien yhdistäminen -300-200 -100-20 0 100 t ( C) Kuvaaja 12 Ratkaisemalla suoran yhtälöstä muuttujan x arvo, kun y = 0, saadaan ÿ absoluuttiselle lämpötilalle likiarvo t = 263 C. Töissä B10, B11 ja B12 käyttämämme mittauslaitteisto oli ULI ja mittausohjelma Logger Pro. Boylen ja Gay-Lussacin lait voidaan yhdistää. Edellisen mukaan kaasun isotermisessa prosessissa (T=vakio) on pv=vakio. Jälkimmäisen mukaan isobaarisessa muutoksessa (p=vakio) on V = vakio. Sen vuoksi on tarkoituksenmukaista tarkastella lauseketta T pv kaasun tilanmuutoksissa. T Kaasusysteemi voidaan muuttaa tilasta p1,v1, T1 tilaan p2,v2, T2 muuttamalla sen tilavuutta ensin isotermisesti, kunnes sen paine on p 2, sitten isobaarisesti, kunnes sen lämpötila on T 2. Ensimmäinen muutos noudattaa Boylen lakia: p1v 1 p2v' =, missä V on kaasun tilavuus T1 T1 ensimmäisen muutoksen jälkeen. Toinen muutos noudattaa Gay-Lussacin lakia: p2v' p2v2 =. T1 T2 Kaasusysteemin alku- ja lopputilan tilanmuuttujat toteuttavat siis tilanyhtälön: p V p V T 0 0 1 1 2 2 =. 1 T2 Kaasusysteemi noudattaa Boylen lain pätevyysalueella tilanyhtälöä T pv =vakio. 26
C. Strukturointia Ideaalikaasu on teoreettinen mallikaasu, jonka ideaalikaasun tilanyhtälö määrittelee. Ideaalikaasu noudattaa Boylen ja Gay-Lussacin lakeja kaikissa paineissa ja lämpötiloissa. Sen tilavuus pienenee rajattomasti paineen kasvaessa tai lämpötilan laskiessa. Se ei siis nesteydy, kuten jokainen todellinen kaasu. Kaikki kaasut noudattavat ideaalikaasun tilanyhtälöä, kun ne ovat riittävän harvoja. Italialainen Amadeus Avogadro esitti vuonna 1822 hypoteesin, jonka mukaan samassa tilavuudessa, paineessa ja lämpötilassa kaikki kaasut sisältävät saman määrän molekyylejä. Boylen lain pätevyysalueella kaikki kaasusysteemit noudattavat samaa tilanyhtälöä pv=nrt, missä R = moolinen kaasuvakio ja n = ainemäärä. 27
Prosessin kuvaus Valitsimme lämpöopin kokonaisuuden, koska siinä oli paljon yläasteen opetukseen kuuluvia töitä. Valintamme oli yksimielinen. Teimme työsuunnitelman jo ennen lämpöopin LAB-luentoja, joten jouduimme käyttämään siihen paljon aikaa ja vaivaa. Meillä oli käytettävissä lukuvuotisten labluennon runko, joten suunnittelu lähti käsitteellisistä tavoitteista, joita tukemaan pyrimme löytämään töitä. Suurimman osan töistä teimme helmikuun viikonloppujaksolla. Fysiikan laitoksen muutto oli kesken, joten jouduimme joissakin töissä käyttämään korvaavia laitteistoja. Lab-luento oli vasta työvuoron jälkeen. Luento selkeytti entisestään kuvaamme kokonaisuudesta. Muita kokonaisuuteen kuuluvia töitä teimme vähitellen kevään ja kesän aikana. Kokonaisuuden valmiiksi saattaminen venyi pahasti osittain henkilökohtaisten syiden, osittain sen takia, että huomasimme, ettemme voikaan tehdä kaikkia aikomiamme töitä omalla koululla. Viimeiset työt teimme vasta elokuun intensiivijaksolla. Raportin kirjoittaminen oli työlästä, koska töiden suorittaminen venyi. Kokonaisuus oli todella työläs ja aikaa vievä. Teimme töitä hampaat irvessä (Kuva 16). Kuitenkin kokonaisuus opetti meille paljon ja koimme sen hyödylliseksi omassa työssämme. Toisaalta kokonaisuuden teoreettinen tausta oli meille riittävän helppo, joten uskomme ymmärtäneemme kaiken tekemämme. Työnjaon roolit ovat kurssin kestäessä vakiintuneet: tietotekniikka on Intosen vastuulla, kun taas tarkkuutta ja huolellisuutta vaativat mittaukset ja niiden kirjaaminen ovat Majavan alaa. Työskentelytapamme on parityö, emme siis jaa töitä itsenäisesti suoritettaviin osiin. Kuva 16 28
Käsitteenmuodostus A23 A21 A21 Kiinteä sulamispiste Hydrostaattinen paine A21 Tiheys A22 B6 Massa A34,B4 erot A26, A27 B1 Tilavuus A25 A24 Materiaali sublimoituminen Kaasumainen A20,A21 Nestemäinen härmistyminen sulaminen tiivistyminen jähmettyminen höyrystyminen kiehumispiste Voima Nost e Kylläisen höyryn paine A35,A36,B7 Paine Puristustila A15 Ilmanpaine B8 Lämpötila B8 A33,B2,B3 A28,A29 A30,A31,A32, B5 Olomuoto Olomuodon muutos A13 Aine A5,A6 A5,A6 A7 A17 Supistuminen Tasoittuminen A14,A16 A19 Ympäristö A16,A17 Lämpene - minen A1,A2,A3,A4 A1,A2,A3,A4 Puristuminen Laajeneminen Lämpöopin 0:s pääsääntö Termodynaaminen systeemi A8,A9,A10 terminen tasapainotila A18, A19 Lämpömittari Vuorovaikutus Lämpimyys Lämpöilmiöt Jäähtyminen A11,A12 Tilavuus B10 Boylen laki Tilanmuuttujat Lämpötila B11 Charlesin laki Kaasujen yleinen tilanyhtälö Paine B12 Gay-Lussacin laki A7 B9 Ideaalikaasu Avogadron laki Pituuden lämpötilakerroin Lähdeluettelo i Hirvonen et al: Aine ja energia, Fysiikan opettajan opas 2, s. 94 ii MFKA: Kylmää ja lämmintä, s. 37 iii Hirvonen et al: Aine ja energia, Fysiikan opettajan opas 2, s. 92 iv Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 33 v Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 23 vi Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 18 vii Lavonen, Kurki-Suonio, Hakulinen: Galilei 1, Fysiikka luonnontieteenä, s. 16 viii Lavonen, Kurki-Suonio, Hakulinen: Galilei 2, Lämpö ja energia, s. 9 29