4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI

Koko: px
Aloita esitys sivulta:

Download "4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI"

Transkriptio

1 4 Aineen olomuodot 4.2 Höyrystyminen POHDI JA ETSI 4-1. a) Vesi asettuu astiassa vaakatasoon Maan vetovoiman ja veden herkkäliikkeisyyden takia. Painovoima tekee työtä, kunnes veden potentiaalienergia on pienin. b) 1) Jos halutaan asettaa esimerkiksi kaksi kaukana toisistaan olevaa paalua tai vaikkapa sisustuksessa käytettävää boordinauhaa samaan tasoon, voidaan niiden välille asettaa vesiletku. Molemmissa päissä veden pinta on samalla korkeudella. 2) Jos sinulla ei ole vesivaakaa, mutta sinun pitäisi säätää pyykkikone täsmälleen vaaka-asentoon kaltevalla pesuhuoneen lattialla, voit kaataa hiukan vettä pesukoneen kannen päälle. Säädä sitten korkeutta siten, että kannen päällä oleva vesi ei pyri liikkumaan mihinkään suuntaan. Pyykkikone on tällöin melko tarkasti vaaka-asennossa. ) Kaksi astiaa yhdistetään letkulla. Kun vettä kaadetaan toiseen astiaan, toinenkin astia täyttyy. Vertaa a)-kohta. Veden pinta asettuu astioissa samalle korkeudelle. Tällaisilla astioilla voidaan varmistaa, että esimerkiksi ikkunoiden kehykset ovat samalla korkeudella, kun taloa rakennetaan. Huomaa, että käytettäessä vesiletkua korkeuksien vertailuun vesiletkussa ei saa olla ilmakuplia. c) Vettä ei voi kiehuttaa avoimessa astiassa niin, että veden määrä ei vähene. Vaikka keittämistilan suhteellinen ilmankosteus olisi 100 %, vesi tiivistyy aina kylmimmille pinnoille, kuten ikkunoihin a) Lämpötilaa, jossa aine sulaa, kutsutaan sulamispisteeksi. b) Lämpötilaa, jossa aine kiehuu, kutsutaan kiehumispisteeksi. c) Veden pintaan vaikuttava ulkoinen paine on korkealla vuoristossa pienempi kuin meren pinnalla. Lämmitettäessä vettä korkealla vuoristossa veden sisäinen höyrynpaine saavuttaa ulkoisen paineen arvon alhaisemmassa lämpötilassa kuin meren pinnalla. 4-. a) Veden pintaan kohdistuva paine on ilmanpainetta suurempi koulun painekattilassa. Silloin vettä lämmitettäessä veden sisäinen höyrynpaine saavuttaa veden pintaan kohdistuvan paineen arvon lämpötilassa, joka on suurempi kuin 100 C. b) Veden kiehumislämpötila on suurempi kuin 100 C, joten ruokaa voidaan lämmittää painekattilassa kuumemmaksi kuin tavallisessa kattilassa. 42

2 c) Korkealla vuoristossa voisi käyttää painekattilaa, jolloin veden kiehumislämpötilaa voidaan kohottaa. Ruokaa voidaan myös kypsentää kauemmin, jos kiehumislämpötila on alle 100 ºC ja lämpötila on kuitenkin riittävän korkea kypsentämiseen a) Kun tilavuus männässä suurenee, paine alenee. Tällöin vesi höyrystyy ja voi alkaa kiehua. Höyrystyminen sitoo energiaa, joten veden lämpötila alenee. b) Kun männällä varustetun sylinterin tilavuutta suurennetaan, paine pienenee ja vesi jäähtyy sekä lopulta jäätyy. Kammion on oltava hyvin lämpöeristetty. Jos kammiosta imetään tehokkaalla tyhjiöpumpulla ilmaa pois jatkuvasti, muodostuu kammion sisälle nopeasti hyvin pieni paine. Koska ympäristöstä ei pääse helposti lämpöä kammion sisälle, vesi jäätyy. Näin voidaan tehdä kesälläkin jäätä. c) Ihmisen verestä poistuu vettä hengityksen mukana a) Kaasun lämpötila on suurempi kuin kriittinen lämpötila, eikä kaasu nesteydy puristamalla. Kriittisen pisteen lämpötila on kaasun ja höyryn rajalämpötila. Kriittinen piste tarkoittaa kriittistä lämpötilaa ja kriittistä painetta. b) Kaasumaista ainetta kutsutaan höyryksi, jos sen lämpötila on pienempi kuin kyseisen aineen kriittinen lämpötila. Höyry nesteytyy puristamalla. c) Höyry on kylläistä, jos tiivistyminen ja höyrystyminen on suljetussa astiassa yhtä runsasta a) Vesi saadaan kiehumaan lämmittämällä vettä kädellä, jos astiassa on tarpeeksi pieni paine. Jos tyhjiöpumpulla imetään ilmaa pois kädessä olevasta keittopullosta, vesi pullossa alkaa kiehua. Kiehuminen alkaa, kun paine pullossa on tarpeeksi pieni. Tällaista koetta tehtäessä on syytä käyttää suojalaseja ja - asusteita. Alipaine voi joskus rikkoa lasipullon, varsinkin jos siinä on jo valmiiksi jokin pieni särö. b) Korkeapaineen saapuessa ilmanpaine kohoaa hiukan. Silloin myös veden kiehumislämpötila nousee vähän a) Aineen sulamispiste on 40 C ja kiehumispiste 140 C. b) Aineen A sulamispiste ja kiehumispiste ovat korkeampia kuin aineen B. 4

3 4. Ilmankosteus POHDI JA ETSI 4-8. a) Jos ilman lämpötila laskee, ilman suurin mahdollinen kosteus pienenee. Jos ilman lämpötila laskee niin paljon, että tätä lämpötilaa vastaava kylläisen vesihöyryn paine (ks. taulukkokirja) on yhtä suuri kuin ilmassa olevan vesihöyryn osapaine, vesihöyry alkaa tiivistyä vedeksi. Tätä lämpötilaa kutsutaan kastepisteeksi. b) Kastepiste on lämpötila, jonka alittamisen jälkeen ruohikkoon tai esimerkiksi auton pintaan voi ilmestyä vesipisaroita. Sisällä huonekalujen pinta tuntuu kostealta, jos kastepiste on saavutettu. Seinän sisään muodostuva kastepiste aiheuttaa homevaurion, jos seinä ei hengitä riittävästi tai ole pystysuunnassa tuulettuva. Jos muovia käytetään höyrysulkuna seinän rakenteessa, sen paikka on suunniteltava huolellisesti. Usein muovipinnat sijoitetaan ulkoseinän huoneen puoleisen pinnan välittömään läheisyyteen. c) Jos Maan pinnalla lämpimän ilmakerroksen paksuus on riittävän suuri, ylhäältä putoava pisara höyrystyy lämpimän ilman vaikutuksesta eikä se ehdi päästä Maan pinnalle asti a) Jos paine kasvaa, veden sulamispiste alenee. b) Kuumassa ilmassa on kosteutta. Ilma kohtaa viileämmän pinnan, jolloin ilmassa oleva vesihöyry muuttuu kylläiseksi lasin pinnalla ja tiivistyy vedeksi. c) Pyykki kuivuu pakkasella, koska vesi höyrystyy ja myös pyykissä oleva jää voi muuttua höyryksi. Jää voi siis sublimoitua a) Lämpötila on alhainen. Hiilidioksidin sulamispiste on 78,5 C. b) Ilman suhteellinen kosteus on tullut märän pyykin takia suureksi. Jos ilmanvaihto on huono, kosteutta jää paljon huoneilmaan. Silloin kosteasta pyyhkeestä ei pääse siirtymään vettä haihtumalla nopeasti huoneilmaan. c) Ilman suhteellinen kosteus on suuri, joten haihtumista ei tapahdu paljon a) Lämpötila on laskenut kastepisteen alapuolelle. b) Jäähileitä syntyy ruohon pintaan syksyllä, kun kastepiste on alempana kuin jään sulamispiste. 44

4 c) Lämpötila laskee kastepisteen alapuolelle. Silloin ilmassa oleva vesihöyry ei voi pysyä enää höyrynä, vaan ilmaan muodostuu pieniä pisaroita. Ilmassa oleva vesihöyry tulee kylläiseksi ja tiivistyy sumuksi a) Kosteus suojaa kasveja kylmyydeltä. Jos ilman lämpötila alenee, ilmassa ja maassa oleva vesi ei jäädy heti. Vesi luovuttaa jäähtyessään lämpöenergiaa ympäristöön. Vesi luovuttaa lämpöä ympäristöön myös silloin, kun vesi jäätyy. Ympäristöön luovutettu lämpöenergia estää hallan tuloa. b) Avaamattoman virvoitusjuomapullon sisällä on usein höyryä, jonka paine vaikuttaa nesteen pintaan. Paine leviää tasaisesti nesteeseen ja estää kuplien muodostumisen. Kertaalleen avatun virvoitusjuomapullon sisällä on likimain normaali ilmanpaine. Se ei estä kuplien muodostumista. c) Paine-ero tasoittuu pullon sisällä olevan kaasun ja huoneilman välillä a) Kylmän lasipinnan kohdalla ilmassa oleva vesihöyry muuttuu kylläiseksi ja tiivistyy vedeksi. b) Kesällä lämpötila on korkeampi kuin talvella. Ilmaan syntyy kylmällä säällä sumua. Lämpötila on laskenut kesään verrattuna kastepisteen alapuolelle. c) Pakokaasulla ja siinä olevalla vesihöyryllä on korkea lämpötila. Pakokaasun lämpötila on suurempi kuin ulos hengitetyn ilman. Kun lämpötila on korkea, vettä voi olla paljon höyrymuodossa. Korkeassa lämpötilassa pakokaasun vesi pysyy siis höyrymuodossa. Kun pakokaasu joutuu kylmään ulkoilmaan, vesihöyry tiivistyy ja syntyy sumua, koska lämpötila on laskenut kastepisteen alapuolelle a) Vesi kiehuu vuoristossa matalammassa lämpötilassa kuin meren pinnalla. Vuoristossa on pienempi ulkoinen ilmanpaine. b) Vuoristossa vesi jäätyy pienemmässä paineessa hiukan korkeammassa lämpötilassa kuin meren pinnalla Kylmään lasin pintaan tiivistyy vettä. Ilman vesihöyry muuttuu kylmän lasin pinnalla kylläiseksi ja tiivistyy vedeksi. Kesällä lasin pinta on lämmin. Silloin tiivistymistä ei tapahdu a) Lämpimässä hengitysilmassa on kosteutta. Ikkunassa ilma kohtaa viileämmän pinnan. Silloin ilmassa oleva vesihöyry muuttuu kylläiseksi lasin pinnalla ja tiivistyy vedeksi. b) Aina kun auton pyörä kulkee lumen yli, paine sulattaa vähän lunta vedeksi, joka jäätyy uudelleen. Näin lumi litistyy vähitellen jääksi. 45

5 c) Paine terän alla aiheuttaa sen, että terän alla oleva jää sulaa vedeksi, joka kiiltää. Kun luistelija poistuu, paine pienenee normaaliksi ilmanpaineeksi ja terän jäljen kohdalle syntynyt vesi jäätyy. Silloin kiilto pienenee. TEHTÄVIEN RATKAISUJA a) Paine vaikuttaa siihen, missä muodoissa vesi voi esiintyä. Jos esimerkiksi paine on normaali ilmanpaine, vesi voi esiintyä kaasuna, höyrynä, nesteenä ja kiinteänä. 1) Vesi voi olla kiinteätä jäätä, kun lämpötila t < 0,01 C. 2) Vesi voi esiintyä nesteenä, kun lämpötila t < 74 C. Kriittistä lämpötilaa korkeammilla arvoilla ei esiinny nestettä. ) Kaasumaista ainetta kutsutaan höyryksi, jos sen lämpötila on enintään yhtä suuri kuin kyseisen aineen kriittinen lämpötila. Vesi voi esiintyä höyrynä, kun lämpötila t < 74 C. 4) Kaasun lämpötila on suurempi kuin kyseisen aineen kriittinen lämpötila. Vesi voi esiintyä kaasuna, kun lämpötila t > 74 C. b) p > 0,0061 bar c) 1) Vesi muuttuu kaasusta höyryksi ja härmistyy höyrystä kiinteäksi lämpötilan laskiessa. 2) Vesi muuttuu kaasusta höyryksi, tiivistyy höyrystä nesteeksi ja jähmettyy sitten nesteestä kiinteäksi a) Veden faasidiagrammista saadaan kyseisiä arvoja vastaava tulos. Arvot sijoittuvat faasidiagrammin höyry-alueelle. b) Hiilidioksidin faasidiagrammista saadaan kyseisiä arvoja vastaava tulos. Arvot sijoittuvat faasidiagrammin höyry-alueelle. c) Normaalipaineessa hiilidioksidi voi esiintyä kiinteänä ja höyrynä. d) Sulamispistekäyrän yli piirretyt nuolet kuvaavat sulamista ja jäätymistä. Kiehumispistekäyrän yli piirretyt nuolet kuvaavat höyrystymistä ja tiivistymistä. Sublimoitumiskäyrän yli piirretyt nuolet kuvaavat sublimoitumista ja härmistymistä. 46

6 4-19. Faasidiagrammissa on esitetty paine lämpötilan funktiona. Käyrästö sisältää sulamispistekäyrän, kiehumispistekäyrän ja sublimoitumiskäyrän. Kiehumispistekäyrä päättyy kriittiseen pisteeseen. Käyrät kohtaavat kolmoispisteessä. Paineen kasvaessa aineen A sulamispiste alenee ja aineen B suurenee. Aineiden A ja B sublimoitumiskäyrät käyttäytyvät samansuuntaisesti. Paineen suurentuessa lämpötila kohoaa, mutta aineen A lämpötila kohoaa nopeammin. Aineiden A ja B kiehumispistekäyrät käyttäytyvät samansuuntaisesti, mutta aineen A kriittisen pisteen paineen arvo on pienempi kuin aineen B a) Kylläisen vesihöyryn tiheys lämpötilassa 19 C on taulukkokirjan mukaan 16,0 g/m. Tästä arvosta 49 % on 0,49 16,0 g/m 8, 0 g/m. b) Veden määrä huoneilmassa on g 52 m 7, g/m. m c) Etsitään taulukosta Kylläisen vesihöyryn paine ja tiheys tiheyttä 8,0 g/m vastaava lämpötila. Kastepiste on lämpötilojen 7 C ja 8 C välillä. Kastepiste on likimain 7,5 C a) Kiehumispistekäyrä kuvaa painetta lämpötilan funktiona. Oikeanpuoleinen piirros on suurennettu osa vasemmanpuoleisesta piirroksesta origon läheltä. b) Kiehumispistekäyrä päättyy kriittiseen pisteeseen. Kriittinen piste kertoo kriittisen paineen ja kriittisen lämpötilan arvot. Piirroksen mukaan ne ovat p = 221 bar ja t = 74 C. Aineen kriittistä lämpötilaa korkeammassa lämpötilassa aine ei voi esiintyä nesteenä. Jos kaasun lämpötila on suurempi kuin sen kriittinen lämpötila, kaasua ei enää voida nesteyttää puristamalla. Kaasumaista ainetta sanotaan höyryksi, jos sen lämpötila on pienempi kuin aineen kriittinen lämpötila. Näin käsitteet höyry ja kaasu voidaan täsmentää kriittisen lämpötilan avulla. c) noin 95 C. d) p > 150 bar TESTAA, OSAATKO 1. b 2. a. b 4. c 5. c 6. c 7. a 8. abc 9. a 10. abc 47

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö

VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö VASTAUKSIA YO-KYSYMYKSIIN KURSSISTA FY2: Lämpö 1. Selitä fysikaalisesti, miksi: a) sateessa kastuneet vaatteet tuntuvat kylmältä, b) pyykit kuivuvat myös pakkasessa, c) uunista pudonneen hehkuvan hiilenpalan

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste 8 3 Paine Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste i Ilma on ainetta ja se vaatii oman tilavuutensa. Ilmalla on massa. Maapallon ympärillä on ilmakehä. Me asumme ilmameren pohjalla. Me olemme

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

KOSTEUS. Visamäentie 35 B 13100 HML

KOSTEUS. Visamäentie 35 B 13100 HML 3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvihuoneen kasvutekijät ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvien kasvuun vaikuttavat: - Lämpö - Valo - Vesi - Ilmankosteus - Hiilidioksidi - Ravinteet - Kasvin perinnölliset eli geneettiset

Lisätiedot

RAKENNUSFYSIIKKA Kylmäsillat

RAKENNUSFYSIIKKA Kylmäsillat Kylmäsillat Kylmäsillan määritelmä Kylmäsillat ovat rakennuksen vaipan paikallisia rakenneosia, joissa syntyy korkea lämpöhäviö. Kohonnut lämpöhäviö johtuu joko siitä, että kyseinen rakenneosa poikkeaa

Lisätiedot

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine

Termiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Sääilmiöt tapahtuvat ilmakehän alimmassa kerroksessa, troposfäärissä (0- noin 15 km).

Sääilmiöt tapahtuvat ilmakehän alimmassa kerroksessa, troposfäärissä (0- noin 15 km). Sää ja ilmasto Sää (engl. weather) =ilmakehän alaosan, fysikaalinen tila määrätyllä hetkellä määrätyllä paikalla. Ilmasto (engl. climate) = pitkäaikaisten (> 30 vuotta) säävaihteluiden keskiarvo. Sääilmiöt

Lisätiedot

Esimerkkikuvia ja vinkkejä mittaukseen

Esimerkkikuvia ja vinkkejä mittaukseen Esimerkkikuvia ja vinkkejä mittaukseen Tässä on esitetty esimerkkinä paikkoja ja tapauksia, joissa lämpövuotoja voi esiintyä. Tietyissä tapauksissa on ihan luonnollista, että vuotoa esiintyy esim. ilmanvaihtoventtiilin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

MAATILAN TYÖTURVALLISUUS

MAATILAN TYÖTURVALLISUUS MAATILAN TYÖTURVALLISUUS Maatilan työturvallisuus Työturvallisuusriskien hallinta Työympäristön vaaratekijät selkokielellä Layla Ahonen ja Sarita Jylhä-Rastas Työturvallisuus Työympäristön vaaratekijät

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

, voidaan myös käyttää likimäärälauseketta

, voidaan myös käyttää likimäärälauseketta ILMAN KOSTEUS Ilma sisältää aina jonkin verran vesihöyryä. Ilman vesihöyrypitoisuudella eli kosteudella on huomattava merkitys ihmisten viihtyvyydelle ja terveydelle, erilaisten materiaalien ja esineiden

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Ekotehokas rakentaja Työmaan energian käyttö. 17.11.2014 Hannu Kauranen

Ekotehokas rakentaja Työmaan energian käyttö. 17.11.2014 Hannu Kauranen Ekotehokas rakentaja Työmaan energian käyttö 17.11.2014 Hannu Kauranen Miksi työmaalla lämmitetään Rakennusvaihe Lämmitystarve Käytettävä kalusto Maarakennusvaihe Maan sulana pito Roudan sulatus Suojaus,

Lisätiedot

Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä

Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä Vettä suodattuu maakerrosten läpi pohjavedeksi. Pysy asemalla: Pohjois-Eurooppa Kasvin soluhengityksessä vapautuu vesihöyryä. Sadevettä valuu pintavaluntana vesistöön. Pysy asemalla: Pohjois-Eurooppa Joki

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSTYMISLÄMPÖ

FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSTYMISLÄMPÖ FYSA240/3 (FYS242/3) HÖYRYNPAINE JA HÖYRYSTYMISLÄMPÖ 1 Johdanto Höyrystyminen Tarkastellaan nesteen ja kaasun, esim. veden ja ilman rajapintaa. Nesteen molekyylit ovat lämpöliikkeessä toistensa vetovoimakentässä.

Lisätiedot

WG 80 Talvipuutarhan liukuosat Talvipuutarhan kiinteät osat ks. sivu 15

WG 80 Talvipuutarhan liukuosat Talvipuutarhan kiinteät osat ks. sivu 15 7992FI WG 80 Talvipuutarhan liukuosat Talvipuutarhan kiinteät osat ks. sivu 15 Willab Garden 2017-03 TÄRKEÄÄ! Lue asennusohje kokonaan ennen kuin aloitat asennuksen! Ellei ohjeita noudateta, osat eivät

Lisätiedot

Lämpöilmiöitä. Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005

Lämpöilmiöitä. Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Lämpöilmiöitä Erilaisia lämpöilmiöitä esiintyy sekä elävässä että elottomassa luonnossa, ja myös teknologisessa ympäristössä. Ulkoilman

Lisätiedot

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA

TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA TUTKIMUS IKI-KIUKAAN ENERGIASÄÄSTÖISTÄ YHTEISKÄYTTÖSAUNOISSA IKI-Kiuas Oy teetti tämän tutkimuksen saatuaan taloyhtiöiltä positiivista palautetta kiukaistaan. Asiakkaat havaitsivat sähkölaskujensa pienentyneen,

Lisätiedot

Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 Alkudemonstraatio: Käsi lämpömittarina Laitetaan kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä.

Lisätiedot

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:

Lisätiedot

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p). 3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Hiilidioksidista hiilihappoon, -tutkimuksia arkipäivän kemiasta

Hiilidioksidista hiilihappoon, -tutkimuksia arkipäivän kemiasta iilidioksidista hiilihappoon, -tutkimuksia arkipäivän kemiasta Kohderyhmä: Työ on suunniteltu alakoululaisille sopivalle tasolle. Työ ei ole liian vaikea ymmärtää esikoululaiselle, muttei liian helppo

Lisätiedot

VB14 ja VB21 alipainesuojat Asennus- ja huolto-ohje

VB14 ja VB21 alipainesuojat Asennus- ja huolto-ohje 0190150/1 IM-P019-05 ST Issue 1 VB14 ja VB21 alipainesuojat Asennus- ja huolto-ohje 1. Turvallisuusohjeet 2. Yleinen tuoteinformaatio 3. Asennus VB14 4. Käyttöönotto 5. Toiminta 6. Huolto VB21 7. Varaosat

Lisätiedot

Patteriverkoston paine ja sen vaikutus

Patteriverkoston paine ja sen vaikutus Patteriverkoston paine ja sen vaikutus Tämä materiaali on koottu antamaan lukijalleen valmiuksia arvioida mahdollisia ongelmia lämmitysjärjestelmässä. Esitys keskittyy paisuntajärjestelmän oleellisiin

Lisätiedot

ILMAILUTIEDOTUS. Normi poistettu ilmailumääräysjärjestelmästä 1.1.2003

ILMAILUTIEDOTUS. Normi poistettu ilmailumääräysjärjestelmästä 1.1.2003 I L M A I L U L A I T O S CIVIL AVIATION ADMINISTR ATION LENTOTURVALLISUUSHALLINTO F LI GH T SA T A U T O I T FI F E Y N L AN H R Y D ILMAILUTIEDOTUS ADVISORY CIRCULAR PL 50, 01531 VANTAA, FINLAND, Tel.

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

Vanhan kiinteistön ilmanvaihdon ongelmakohdat Ilmanvaihdon tavoite asunnoissa Ilmanvaihdon toiminta vanhoissa asuinkerrostaloissa Ongelmat

Vanhan kiinteistön ilmanvaihdon ongelmakohdat Ilmanvaihdon tavoite asunnoissa Ilmanvaihdon toiminta vanhoissa asuinkerrostaloissa Ongelmat Vanhan kiinteistön ilmanvaihdon ongelmakohdat Ilmanvaihdon tavoite asunnoissa Ilmanvaihdon toiminta vanhoissa asuinkerrostaloissa Ongelmat TARMOn ilmanvaihtoilta taloyhtiölle 28.10.2013 Päälähde: Käytännön

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus

Lisätiedot

Lämmöntalteenotto ekologisesti ja tehokkaasti

Lämmöntalteenotto ekologisesti ja tehokkaasti Hallitun ilmanvaihdon merkitys Lämmöntalteenotto ekologisesti ja tehokkaasti on ekologinen tapa ottaa ikkunan kautta poistuva hukkalämpö talteen ja hyödyntää auringon lämpövaikutus. Ominaisuudet: Tuloilmaikkuna

Lisätiedot

Betonin kuivuminen. Rudus Betoniakatemia. Hannu Timonen-Nissi

Betonin kuivuminen. Rudus Betoniakatemia. Hannu Timonen-Nissi Betonin kuivuminen Rudus Betoniakatemia Hannu Timonen-Nissi 25.1.2019 Betonin kuivuminen Betoni kuivuu hitaasti Kastunut betoni kuivuu vielä hitaammin Betoni hakeutuu tasapainokosteuteen ympäristönsä kanssa

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin

Lisätiedot

10B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS

10B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 1B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS A. LÄMPÖLAAJENEMINEN Pituuden lämpötilakertoimen määrittäminen vesihauteen avulla 1. Työn tavoite Tutkitaan aineen

Lisätiedot

GREDDY PROFEC B SPEC II säätäminen

GREDDY PROFEC B SPEC II säätäminen GREDDY PROFEC B SPEC II säätäminen Päätin tehdä tällaisen ohjeen, koska jotkut ovat sitä kyselleet suomeksi. Tämä on vapaa käännös eräästä ohjeesta, joka on suunnattu Evoille (joka on koettu toimivaksi

Lisätiedot

KARTOITUSRAPORTTI. Asematie Vantaa 1710/

KARTOITUSRAPORTTI. Asematie Vantaa 1710/ Asematie 7 01300 Vantaa 1710/6416 26.3.2018 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 KÄYTETTY MITTAKALUSTO... 4 MITTAUSPÖYTÄKIRJA... 5 YHTEENVETO... 7 3 KOHDETIEDOT

Lisätiedot

Viikkoharjoitus 2: Hydrologinen kierto

Viikkoharjoitus 2: Hydrologinen kierto Viikkoharjoitus 2: Hydrologinen kierto 30.9.2015 Viikkoharjoituksen palautuksen DEADLINE keskiviikkona 14.10.2015 klo 12.00 Palautus paperilla, joka lasku erillisenä: palautus joko laskuharjoituksiin tai

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Keräimet asennetaan

Lisätiedot

12VF Vedenlämmitin. Asennus & Käyttöohje

12VF Vedenlämmitin. Asennus & Käyttöohje JS D24-12VF 12VF Vedenlämmitin SW Exergon Tuotenr. 13-0950 Asennus & Käyttöohje Pin:0063BT7591 VVB 12VF 090826 Käyttö- ja asennusohje Vedenlämmittimen käynnistys Vedenlämmitin käynnistyy automaattisesti

Lisätiedot

Purjelennon Teoriakurssi 2014. Sääoppi, osa 1 Veli-Matti Karppinen, VLK

Purjelennon Teoriakurssi 2014. Sääoppi, osa 1 Veli-Matti Karppinen, VLK Purjelennon Teoriakurssi 2014, osa 1 Veli-Matti Karppinen, VLK Tavoitteena Ymmärtää ilmakehässä tapahtuvia, lentämiseen vaikuttavia ilmiöitä Saada kuva siitä, miten sääennusteet kuvaavat todellista säätä

Lisätiedot

Kosteusmittausten haasteet

Kosteusmittausten haasteet Kosteusmittausten haasteet Luotettavuutta päästökauppaan liittyviin mittauksiin, MIKES 21.9.2006 Martti Heinonen Tavoite Kosteusmittaukset ovat haastavia; niiden luotettavuuden arviointi ja parantaminen

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

PULLEAT JA VALTAVAT VAAHTOKARKIT

PULLEAT JA VALTAVAT VAAHTOKARKIT sivu 1/6 PULLEAT JA VALTAVAT VAAHTOKARKIT LUOKKA-ASTE/KURSSI Soveltuu ala-asteelle, mutta myös yläkouluun syvemmällä teoriataustalla. ARVIOTU AIKA n. 1 tunti TAUSTA Ilma on kaasua. Se on yksi kolmesta

Lisätiedot

Tiedelimsa. KOHDERYHMÄ: Työ voidaan tehdä kaikenikäisien kanssa. Teorian laajuus riippuu ryhmän tasosta/iästä.

Tiedelimsa. KOHDERYHMÄ: Työ voidaan tehdä kaikenikäisien kanssa. Teorian laajuus riippuu ryhmän tasosta/iästä. KOHDERYHMÄ: Työ voidaan tehdä kaikenikäisien kanssa. Teorian laajuus riippuu ryhmän tasosta/iästä. KESTO: 15min 1h riippuen työn laajuudesta ja ryhmän koosta. MOTIVAATIO: Arkipäivän kemian ilmiöiden tarkastelu

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

Tiedelimsa. Vedestä saadaan hapotettua vettä lisäämällä siihen hiilidioksidia, mutta miten hiilidioksidi jää nesteeseen?

Tiedelimsa. Vedestä saadaan hapotettua vettä lisäämällä siihen hiilidioksidia, mutta miten hiilidioksidi jää nesteeseen? Vedestä saadaan hapotettua vettä lisäämällä siihen hiilidioksidia, mutta miten hiilidioksidi jää nesteeseen? TAUSTAA Moni ihminen lapsista aikuisiin saakka on varmasti joskus pohtinut hiilidioksidiin liittyviä

Lisätiedot

TSS21 huoltovapaa termostaattinen lauhteenpoistin Asennus- ja huolto-ohje

TSS21 huoltovapaa termostaattinen lauhteenpoistin Asennus- ja huolto-ohje 1255050/3 IM-P125-10 ST Issue 3 TSS21 huoltovapaa termostaattinen lauhteenpoistin Asennus- ja huolto-ohje 1. Turvallisuusohjeet 2. Yleinen tuoteinformaatio 3. Asennus 4. Käyttöönotto 5. Toiminta 6. Huolto

Lisätiedot

Kiiännö!! b) Fysiikan tunnilla tutkittiin lääkeruiskussa olevan ilman paineen riippuvuutta lämpötilasta vakiotilavuudessa ruiskuun kiinnitetyn

Kiiännö!! b) Fysiikan tunnilla tutkittiin lääkeruiskussa olevan ilman paineen riippuvuutta lämpötilasta vakiotilavuudessa ruiskuun kiinnitetyn FYSKKA (FY02l: 2. KURSS: Lämpö vasraa KUUTEEN (6) TEHnÄVÄÄN il KOE 21.02.2013 1. a) Suuren matkustajalentokoneen lentokorkeus maahan nähden on 10,5 km, vauhti980 km/h ja massa 310 000 kg. Laske lentokoneen

Lisätiedot

Ryömintätilaisten alapohjien toiminta

Ryömintätilaisten alapohjien toiminta 1 Ryömintätilaisten alapohjien toiminta FRAME-projektin päätösseminaari Tampere 8.11.2012 Anssi Laukkarinen Tampereen teknillinen yliopisto Rakennustekniikan laitos 2 Sisältö Johdanto Tulokset Päätelmät

Lisätiedot

Lämpötila ja lämpöenergia

Lämpötila ja lämpöenergia Matematiikan, fysiikan ja kemian opettajan kandiohjelma Didaktisen fysiikan kokeellisuus I Lämpötila ja lämpöenergia Tilanmuuttujien perushahmotus Lämpötila, paine, tasapaino Lämpötilalla tarkoitetaan

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

Keväisin, kun ulkolämpötila on noussut plussan puolelle,

Keväisin, kun ulkolämpötila on noussut plussan puolelle, Vallox 130 ilmanvaihtokone. Säädä ilmanvaihtokoneen nopeudeksi: o 1 kun asunnossa ei ole ihmisiä, esim. viikonloppureissu. Ilmanvaihtokonetta ei tule sammuttaa, vaikka asunto olisikin tyhjillään (esim.

Lisätiedot

HYDRAULIIKAN PERUSTEET JA PUMPUN SUORITUSKYKY PUMPUN SUORITUSKYVYN HEIKKENEMISEEN VAIKUTTAVAT TEKIJÄT

HYDRAULIIKAN PERUSTEET JA PUMPUN SUORITUSKYKY PUMPUN SUORITUSKYVYN HEIKKENEMISEEN VAIKUTTAVAT TEKIJÄT HYDRAULIIKAN PERUSTEET JA PUMPUN SUORITUSKYKY PUMPUN SUORITUSKYVYN HEIKKENEMISEEN VAIKUTTAVAT TEKIJÄT Hyötysuhteen heikkenemiseen vaikuttavat tekijät Pumpun hyötysuhde voi heiketä näistä syistä: Kavitaatio

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Aurinkolämmitin XP2. Käyttöopas FI

Aurinkolämmitin XP2. Käyttöopas FI Aurinkolämmitin XP2 Käyttöopas FI ID-KOODI: M-1631.2013 ID-KOODI: M-1633.2013 Swim & Fun Scandinavia info@swim-fun.com www.swim-fun.com Sivu 1 Sisällysluettelo 1. Turvallisuusohjeet 2 2. Laitteen toimintatapa

Lisätiedot

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet Näin lisäeristät 4 Sisäpuolinen lisäeristys Tuotteina PAROC extra ja PAROC-tiivistystuotteet Tammikuu 202 Sisäpuolinen lisälämmöneristys Lisäeristyksen paksuuden määrittää ulkopuolelle jäävän eristeen

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

Vesi, veden ominaisuudet ja vesi arjessa

Vesi, veden ominaisuudet ja vesi arjessa Vesi, veden ominaisuudet ja vesi arjessa AIHE: S3: Lähiympäristön ja sen muutosten havainnointi (OPS 2014) IKÄLUOKKA: 2. vuosiluokka TAVOITTEET: Opetuskokonaisuudelle asetettu yleinen tavoite on tutustua

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

SISÄILMAN LAATU. Mika Korpi

SISÄILMAN LAATU. Mika Korpi SISÄILMAN LAATU Mika Korpi 2.11.2016 Sisäilman määritelmä Sisäilma on sisätiloissa hengitettävä ilma, jossa ilman perusosien lisäksi saattaa olla eri lähteistä peräisin olevia kaasumaisia ja hiukkasmaisia

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

LISÄERISTÄMINEN. VAIKUTUKSET Rakenteen rakennusfysikaaliseen toimintaan? Rakennuksen ilmatiiviyteen? Energiankulutukseen? Viihtyvyyteen?

LISÄERISTÄMINEN. VAIKUTUKSET Rakenteen rakennusfysikaaliseen toimintaan? Rakennuksen ilmatiiviyteen? Energiankulutukseen? Viihtyvyyteen? Hankesuunnittelu Suunnittelu Toteutus Seuranta Tiiviysmittaus Ilmavuotojen paikannus Rakenneavaukset Materiaalivalinnat Rakennusfysik. Suun. Ilmanvaihto Työmenetelmät Tiiviysmittaus Puhdas työmaa Tiiviysmittaus

Lisätiedot

Hiilidioksidista hiilihappoon, -tutkimuksia arkipäivän kemiasta

Hiilidioksidista hiilihappoon, -tutkimuksia arkipäivän kemiasta iilidioksidista hiilihappoon, -tutkimuksia arkipäivän kemiasta Kohderyhmä: Työ on suunniteltu yläkoululaisille. Tiedelimun valmistus on alakoululaisia ja yläkoululaisia varten suunniteltu vierailu työ.

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

Alumiinirungon/Eristyskatto

Alumiinirungon/Eristyskatto 7970FI Alumiinirungon/Eristyskatto Kattolipan runko 8 Willab Garden 2016.05 3 2 4 TÄRKEÄÄ! Lue asennusohjeet läpi ennen kuin aloitat asentamisen! Jos ohjeita ei noudateta, elementti ei toimi parhaalla

Lisätiedot

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

Jäähdytysnesteen täyttö. Jäähdytysnesteen täytön edellytykset. Työskentely ajoneuvon jäähdytysjärjestelmän parissa VAROITUS!

Jäähdytysnesteen täyttö. Jäähdytysnesteen täytön edellytykset. Työskentely ajoneuvon jäähdytysjärjestelmän parissa VAROITUS! Jäähdytysnesteen täytön edellytykset Jäähdytysnesteen täytön edellytykset Työskentely ajoneuvon jäähdytysjärjestelmän parissa VAROITUS! Käytä suojavarusteita, kun työskentelet ajoneuvon jäähdytysjärjestelmän

Lisätiedot

Mistä tiedämme ihmisen muuttavan ilmastoa? Jouni Räisänen, Helsingin yliopiston fysiikan laitos

Mistä tiedämme ihmisen muuttavan ilmastoa? Jouni Räisänen, Helsingin yliopiston fysiikan laitos Mistä tiedämme ihmisen muuttavan ilmastoa? Jouni Räisänen, Helsingin yliopiston fysiikan laitos 19.4.2010 Huono lähestymistapa Poikkeama v. 1961-1990 keskiarvosta +0.5 0-0.5 1850 1900 1950 2000 +14.5 +14.0

Lisätiedot

Työkoneohjaamoiden pölynhallinta STHS koulutuspäivät 28.01.2015. Matti Lehtimäki

Työkoneohjaamoiden pölynhallinta STHS koulutuspäivät 28.01.2015. Matti Lehtimäki Työkoneohjaamoiden pölynhallinta STHS koulutuspäivät 28.01.2015 Matti Lehtimäki Ohjaamojen pölynhallintaan liittyviä hankkeita VTT Oy:ssä Työkoneiden ohjaamoilmastoinnin kehittäminen (TSR 1991) ohjaamoilmanvaihdon/ilmastoinnin

Lisätiedot

KOULUN ILMANVAIHTO. Tarvittava materiaali: Paperiarkkeja, tiedonkeruulomake (liitteenä). Tarvittavat taidot: Kirjoitustaito

KOULUN ILMANVAIHTO. Tarvittava materiaali: Paperiarkkeja, tiedonkeruulomake (liitteenä). Tarvittavat taidot: Kirjoitustaito KOULUN ILMANVAIHTO Tavoitteet: Oppilaat tiedostavat ikkunoiden vaikutuksen koulun energiatehokkuuteen/ energiankulutukseen. Ikkunoilla on suuri vaikutus siihen, miten koulussa lämmitetään ja miten ilmanvaihto

Lisätiedot

SÄHKÖLÄMMITTIMET PEHMEÄÄ LÄMPÖÄ KOTIIN

SÄHKÖLÄMMITTIMET PEHMEÄÄ LÄMPÖÄ KOTIIN SÄHKÖLÄMMITTIMET PEHMEÄÄ LÄMPÖÄ KOTIIN RAUTAKESKO 1 Mukavaa lämpöä - miten ja miksi? Lämpö on yksi ihmisen perustarpeista. Lämpöä tarvitaan asuinhuoneissa: kotona ja vapaa-ajanasunnoissa, mökeillä, puutarhassa,

Lisätiedot

PUTKITUKIEN UUSINTA UUTTA

PUTKITUKIEN UUSINTA UUTTA PUTKITUKIEN UUSINTA UUTTA Powered by TCPDF (www.tcpdf.org) Estää kylmäsiltojen muodostumisen luotettavasti PET-muovista valmistetut ympäristöystävälliset ja kevyet kantavat lohkot Itseliimautuva kiinnitys

Lisätiedot

YLEISTIETOA LÄMPÖPUMPUISTA

YLEISTIETOA LÄMPÖPUMPUISTA YLEISTIETOA LÄMPÖPUMPUISTA Eksergia.fi Olennainen tieto energiatehokkaasta rakentamisesta Päivitetty 12.1.2015 SISÄLTÖ Yleistä lämpöpumpuista Lämpöpumppujen toimintaperiaate Lämpökerroin ja vuosilämpökerroin

Lisätiedot

Länsiharjun koulu 4a

Länsiharjun koulu 4a Länsiharjun koulu 4a Kuinka lentokone pysyy ilmassa? Lentokoneen moottori Helsinki-Vantaan lentokentällä. Marius Kolu Olimme luonnossa ja tutkimme kuvia. Jokaisella ryhmällä heräsi kysymyksiä kuvista.

Lisätiedot

Seosten erotusmenetelmiä

Seosten erotusmenetelmiä Seosten erotusmenetelmiä KEMIAA KAIKKIALLA, KE1 Kemiassa on usein tarve erottaa niin puhtaita aineita kuin myös seoksia toisistaan. Seoksesta erotetaan sen komponentteja (eli seoksen muodostavia aineita)

Lisätiedot

EDISTYKSELLINEN PUTKEN TUKI NOPEAA ASENNUSTA JA KONDENSAATION HALLINTAA VARTEN AF/ARMAFLEX -TUOTTEEN KANSSA

EDISTYKSELLINEN PUTKEN TUKI NOPEAA ASENNUSTA JA KONDENSAATION HALLINTAA VARTEN AF/ARMAFLEX -TUOTTEEN KANSSA EDISTYKSELLINEN PUTKEN TUKI NOPEAA ASENNUSTA JA KONDENSAATION HALLINTAA VARTEN AF/ARMAFLEX -TUOTTEEN KANSSA Powered by TCPDF (www.tcpdf.org) Varma Euroclass B/BL-s3,d0 ja suuri vesihöyryn siirtymiskestävyys

Lisätiedot