MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Samankaltaiset tiedostot
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

dx=5&uilang=fi&lang=fi&lvv=2014

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

&idx=1&uilang=fi&lang=fi&lvv=2017

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

7.4 Normaalijakauma (kertausta ja täydennystä) Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96) = 0,025, P(Z -1,96) = 0,025

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Väliestimointi (jatkoa) Heliövaara 1

Mat Tilastollisen analyysin perusteet, kevät 2007

MTTTP5, luento Luottamusväli, määritelmä

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin

&idx=2&uilang=fi&lang=fi&lvv=2015

Sovellettu todennäköisyyslaskenta B

&idx=2&uilang=fi&lang=fi&lvv=2015

voidaan hylätä, pienempi vai suurempi kuin 1 %?

Harjoitus 7: NCSS - Tilastollinen analyysi

ABHELSINKI UNIVERSITY OF TECHNOLOGY

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

riippumattomia ja noudattavat samaa jakaumaa.

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta

Osa 2: Otokset, otosjakaumat ja estimointi

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Estimointi. Vilkkumaa / Kuusinen 1

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B

Testit laatueroasteikollisille muuttujille

MTTTP1, luento KERTAUSTA

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Testejä suhdeasteikollisille muuttujille

031021P Tilastomatematiikka (5 op) viikko 5

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Tilastollinen aineisto Luottamusväli

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

MTTTP1, luento KERTAUSTA

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

voidaan hylätä, pienempi vai suurempi kuin 1 %?

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

dx=2&uilang=fi&lang=fi&lvv=2015

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

r = n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

Sovellettu todennäköisyyslaskenta B

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

tilastotieteen kertaus

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Sovellettu todennäköisyyslaskenta B

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

dx=2&uilang=fi&lang=fi&lvv=2015

Mat Tilastollisen analyysin perusteet, kevät 2007

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Harjoitus 2: Matlab - Statistical Toolbox

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

10. laskuharjoituskierros, vko 14, ratkaisut

g=fi&lvv=2018&uilang=fi#parents

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO

&idx=2&uilang=fi&lang=fi&lvv=2015

Luottamusvälit. Normaalijakauma johnkin kohtaan

Parametrin estimointi ja bootstrap-otanta

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

Testit järjestysasteikollisille muuttujille

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tutkimustiedonhallinnan peruskurssi

Mat Sovellettu todennäköisyyslasku A

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut).

Transkriptio:

10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018

10.1.2019/2 2 Osaamistavoitteet https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 Opiskelija osaa käyttää opintojaksolla esiteltyjä tilastollisia menetelmiä sekä ymmärtää niihin liittyvän teorian. Hän osaa annetussa tutkimustilanteessa suorittaa tilastollisen päättelyn joko valmiiksi annettujen tai itse laskemiensa tulosten perusteella. Hän osaa valita asetettuun tutkimusongelmaan liittyen sopivan menetelmän, suorittaa tilanteeseen sopivalla ohjelmistolla kyseisen analyysin sekä tulkita saadut tulokset.

10.1.2019/3 Esim. Tampereella keväällä 2006 myynnissä olleita kerrostalohuoneistoja, aineisto http://www.sis.uta.fi/tilasto/tiltp_aineistoja/asunnot _2006.sav sivulta https://coursepages.uta.fi/mtttp1/esimerkkiaineistoj a/ Tutkimuskohteita 1) Vaikuttaako sijainti neliöhintaan? y = neliöhinta x = sijainti SPSS-harj. 1 teht. 3a

10.1.2019/4 2) Vaikuttaako huoneiden lukumäärä neliöhintaan? Miten sijainti vaikuttaa tähän riippuvuuteen? y = neliöhinta x = huoneiden lukumäärä (luokiteltuna) z = sijainti SPSS-harj. 1 teht. 3b

10.1.2019/5 3) Vaikuttaako sijainti huoneiden lukumäärään? y = huoneiden lukumäärä (luokiteltuna) x = sijainti SPSS-harj. 2 teht. 3 4) Miten huoneiston koko vaikuttaa hintaan? Miten sijainti vaikuttaa tähän riippuvuuteen? y = hinta x = neliöt z = sijainti SPSS-harj. 3 teht. 2

10.1.2019/6 3 Kurssin kotisivu https://coursepages.uta.fi/mttta1/kevat-2019/ Opetus Kurssi-info (sisältö, tentit, harjoitushyvitys) Luennot, luentorunko, kaavat, taulukot Harjoitukset, tehtävät, ohjeet (Moodle), ratkaisut Esimerkkiaineistoja Oheiskirjallisuutta Usein kysyttyä Linkkejä Palaute

10.1.2019/7 4 Kertausta Seuraaviin kohtiin 1) 8) on koottu lyhyesti olennaisimmat asiat, jotka oletetaan opintojaksolla tunnetuiksi aiempien opintojen perusteella. 1) Empiiriset jakaumat yksiulotteiset taulukot, graafiset esitykset, tunnusluvut kaksiulotteiset ristiintaulukko, pisteparvi, korrelaatiokerroin ehdolliset jakaumat riippuvuus, ehdolliset tunnusluvut, laatikkojana-kuvio toteutus SPSS:llä (tai muulla ohjelmistolla)

10.1.2019/8 2) Satunnaismuuttuja X todennäköisyysjakauma, tiheysfunktio f(x) kertymäfunktio F(x) = P(X x) E(X) = µ, Var(X) = 2 3) Todennäköisyysjakaumia X ~ N(µ, 2 ), Z = (X - µ)/ ~ N(0, 1). Jos Z ~ N(0, 1), niin merkitään F(z) = P(Z z)= (z).

10.1.2019/9 Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z z ) =. Vastaavalla tavalla z /2 siten, että P(Z z /2 ) = /2. Esim. z 0,05 = 1,64, koska (1,64) = 0,9495 z 0,025 = 1,96, koska (1,96) = 0,9750 z 0,005 = 2,58, koska (2,58) = 0,9951 Studentin t-jakauma P(t df t,df ) =, P(t df t /2,df ) = /2 Esim. t 0,05, 10 = 1,812, t 0,05, 30 = 1,697 t 0,01, 10 = 2,764, t 0,01, 30 = 2,457

10.1.2019/10 4) X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta X 1, X 2,, X n on satunnaisotos N(µ, 2 ):sta tarkoittaa, että jokainen X i ~ N(µ, 2 ) ja X i :t ovat riippumattomia. 5) Otossuure, otosjakauma Esim. Otossuure X ~ N(µ, 2 /n), jos satunnaisotos normaalijakaumasta.

10.1.2019/11 6) Estimointi Estimointi on populaation tuntemattoman parametrin arviointia otossuureen avulla. Voidaan myös muodostaa väli (luottamusväli), jolla arvioidaan tuntemattoman parametrin olevan. Estimaattori otossuure, jolla estimoidaan tuntematonta parametria. Estimaatti on estimaattorin arvo. Harhaton estimaattori Estimaattorin keskivirhe (= estimaattorin keskihajonta)

10.1.2019/12 7) Testaus Tilastollinen hypoteesi väite populaatiosta, usein populaation jakauman parametrista. Hypoteesin testaus on väitteen tutkimista otoksen perusteella. Asetetaan nollahypoteesi (H 0 ) ja vaihtoehtoinen hypoteesi (H 1 ). Testisuure on otossuure, jota käytetään hypoteesin tutkimisessa.

10.1.2019/13 Testisuureen jakauma tunnetaan nollahypoteesin ollessa tosi. Otoksesta lasketun testisuureen arvon perusteella nollahypoteesi hyväksytään tai hylätään kiinnitetyllä riskitasolla. p-arvo on pienin riskitaso, jolla H 0 voidaan hylätä.

10.1.2019/14 8) Joitain testaustilanteita H 0 : = 0 Prosenttiosuuden tutkiminen Z-testillä, kaava (5.3) MTTTP5 Esim. Ystäväsi väittää, että suomalaisista on 10% vasenkätisiä. Tutkit asiaa ja valitset satunnaisesti 400 suomalaista, joista vasenkätisiä on 47. Uskotko ystäväsi väitteen? H 0 : = 10 H 1 : > 10

10.1.2019/15 Jos Ho tosi, Otoksesta laskettu z:n arvo on Pienin riskitaso, jolla H 0 voidaan hylätä yksisuuntaisessa testissä, on P(Z > 1,17) = 1 (1,17) = 1 0,8790 = 0,121. Uskotaan siis ystävän väite.

10.1.2019/16 Jos valitaan 5 %:n riskitaso, niin yksisuuntaisessa testissä kriittinen arvo on z 0,05 = 1,64 (koska (1,64) = 0,9495) ja kaksisuuntaisessa testissä z 0,05/2 = 1,96 (koska (1,96) = 0,975).

10.1.2019/17 H 0 : µ 1 = µ 2 Riippumattomien otosten t-testi odotusarvojen yhtäsuuruuden testaamiseksi, kaava (5.5) MTTTP5

10.1.2019/18 Esim 1.4.3. Testi lasten kehityshäiriön tunnistamiseen Suoritusajat testissä ryhmittäin Normaali 204, 218, 197, 183, 227, 233, 191 Kehityshäiriö 243, 228, 261, 202, 343, 242, 220, 239 H 0 : = K H 1 : < K

10.1.2019/19 = 204 + + 191 = 1453 = 204 2 + + 191 2 = 303737 SS N = 303737 7 (1453/7) 2 = 2135,714 = 243 + + 239 = 1978 = 243 2 + + 239 2 = 501692 SS K = 501692 8 (1978/8) 2 = 12631,5

10.1.2019/20 -t 0,01;13 = -2,65 < t hav. < -2,16 = -t 0,025;13 H 0 voidaan hylätä 2,5 %:n riskitasolla, mutta ei 1%:n riskitasolla.

SPSS-tulos 10.1.2019/21

10.1.2019/22

10.1.2019/23 Luentorungon luvussa 1 http://www.sis.uta.fi/tilasto/mttta1/kevat2019/luent orunko.pdf#page=3 lyhyt kertaus olennaisimmista asioista, jotka oletetaan opintojaksolla tunnetuiksi aiempien opintojen perusteella. Tarvittaessa kertaukseen ja tietojensa täydentämiseen voi käyttää kurssien MTTTP1 (https://coursepages.uta.fi/mtttp1/syksy-2018/ ) MTTTP5 (https://coursepages.uta.fi/mtttp5/syksy-2018/ ) materiaaleja.