***** O CALCULATORS I THIS ROU D *****

Samankaltaiset tiedostot
***** O CALCULATORS I THIS ROU D *****

The Viking Battle - Part Version: Finnish

The CCR Model and Production Correspondence

Capacity Utilization

***** O CALCULATORS I THIS ROU D *****

16. Allocation Models

Alternative DEA Models

Efficiency change over time

Kvanttilaskenta - 1. tehtävät

***** O CALCULATORS I THIS ROU D *****

make and make and make ThinkMath 2017

***** O CALCULATORS I THIS ROU D *****

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Toppila/Kivistö Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.

Bounds on non-surjective cellular automata

LYTH-CONS CONSISTENCY TRANSMITTER

Choose Finland-Helsinki Valitse Finland-Helsinki

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Methods S1. Sequences relevant to the constructed strains, Related to Figures 1-6.

anna minun kertoa let me tell you

812336A C++ -kielen perusteet,

Other approaches to restrict multipliers

1. Liikkuvat määreet

AYYE 9/ HOUSING POLICY

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

TM ETRS-TM35FIN-ETRS89 WTG

EUROOPAN PARLAMENTTI

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Salasanan vaihto uuteen / How to change password

RINNAKKAINEN OHJELMOINTI A,

Gap-filling methods for CH 4 data

Information on preparing Presentation

TM ETRS-TM35FIN-ETRS89 WTG

A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

MEETING PEOPLE COMMUNICATIVE QUESTIONS

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Exercise 1. (session: )

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Kvanttilaskenta - 2. tehtävät

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

4x4cup Rastikuvien tulkinta

AS Paikannus- ja navigointimenetelmät

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

TM ETRS-TM35FIN-ETRS89 WTG

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Results on the new polydrug use questions in the Finnish TDI data

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

HARJOITUS- PAKETTI A

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

TM ETRS-TM35FIN-ETRS89 WTG

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

Curriculum. Gym card

C++11 seminaari, kevät Johannes Koskinen

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Asuntoreformi 2018

Counting quantities 1-3

KMTK lentoestetyöpaja - Osa 2

21~--~--~r--1~~--~--~~r--1~

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

,0 Yes ,0 120, ,8

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Travel Getting Around

Small Number Counts to 100. Story transcript: English and Blackfoot

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

The role of 3dr sector in rural -community based- tourism - potentials, challenges

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Telecommunication Software

Rekisteröiminen - FAQ

Use of spatial data in the new production environment and in a data warehouse

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

Introduction to Mathematical Economics, ORMS1030

Green Growth Sessio - Millaisilla kansainvälistymismalleilla kasvumarkkinoille?

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

Counting quantities 1-3

Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools

4x4cup Rastikuvien tulkinta. 4x4cup Control point picture guidelines

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

Käyttöliittymät II. Käyttöliittymät I Kertaus peruskurssilta. Keskeisin kälikurssilla opittu asia?

( ,5 1 1,5 2 km

Transkriptio:

O TST OVMR 009 ROU 1 OMPLX UMRS ( o Trig) ***** O LULTORS I THIS ROU ***** SWRS ) ) ) Note: i= 1 ) Simplif completel: 3 1+ i+ 3i + 4i 3 1 i+ 3i 4i 40 n ) Given: (3+ 3 i) = r, where r and n are both integers etermine the smallest possible value of the sum r + n. ) If 40 9i = + i, compute.

O TST - OVMR 009 ROU LGR 1: YTHI G ***** O LULTORS I THIS ROU ***** SWRS ) ) ) ) Find 4 consecutive odd integers whose sum is 13 more than the largest of these integers. ) If + = 3 and = 10, find the largest possible value of. ) train travels 150 miles in w hours. If the rate of the train were increased b mph, the train would arrive at its destination in less hours. Find in terms of w.

O TST - OVMR 009 ROU 3 PL GOMTRY: RS OF RTILI R FIGURS ***** O LULTORS I THIS ROU ***** SWRS ) units ) units ) units P ) The area of PQR is 45 square units. The areas of PQS and PSR are unequal. etermine the smaller of the two areas. h Q(-4, 0) S(4, 0) R(11, 0) ) Rectangle has an area of 500 square units. and F are midpoints of two adjacent sides. etermine the area of the larger of the two regions inside created b F. I II F ) Given: quadrilateral with perpendicular diagonals and = 13, = 15, = 5, = 14 To the nearest integer, what is the perimeter of?

O TST - OVMR 009 ROU 4 LG 1: FTORI G ITS PPLITIO S ***** O LULTORS I THIS ROU ***** SWRS ) ) ) ) Solve for : 10+ 1 1 = 10 8 3 ) Solve for : 3 5 + 4 0= 0 4 8 16 ) The polnomial 56 + 56 can be written as the product of binomial factors of the form ( a ± b), where a and b are positive integers. etermine the maimum value of.

O TST - OVMR 009 ROU 5 TRIG: FU TIO S OF SPIL GLS ***** O LULTORS I THIS ROU ***** SWRS ) (,, ) ) ) ) In simplest form, (tan 40 + tan405 ) 3 = +. etermine the ordered triple (,, ). ) For the purpose of this question, suppose special angles denote angles belonging to the 30 0 + 90k. famil, 45 famil, 60 famil or the quadrantal famil ( ) ompute tan() given that tan() = 3cot() 1 and is not a special angle. ) In, m = m = 90, = 4, m = 30 and =. Find in simplified radical form.

O TST OVMR 009 ROU 6 PL GOMTRY: GLS, TRI GLS PRLLLS ***** O LULTORS I THIS ROU ***** SWRS ) ) ) ) The measures of the verte and base angles of an isosceles triangle are in a 4 : 3 ratio. If the verte angle is the larger of these two angles, compute the measure of an eterior angle at the base. ) regular polgon has 740 diagonals. How man degrees in an eterior angle of this polgon? ) F and is a transversal intersecting and F in points M and respectivel. P is a point between the parallel lines such that m MP= 3m PM m M P= 4m P F If m M= (7 40) and m M F = (5 ), find m P... M.. N F.. P

O TST - OVMR 009 ROU 7 TM QUSTIO S ***** LULTORS R PRMITT I THIS ROU ***** SWRS ) Given: z = 1 3i ) ) ) ) ) F) ompute: 3 6 5 z z z ) brick mason can do a job in 6 less hours than his apprentice. He and his apprentice work together for 4 hours. fter the fourth hour, the apprentice works alone and finishes the remainder of the job in three hours. If the brick mason had been able to hire k apprentices, each of whom worked at the same rate as his original apprentice, and the all worked together with him from the start, the job would have been finished in a time of one hour or less. What is the minimum possible value of k? ) Point P is located in the interior of rectangle. (No diagram given.) = 5, P = 56, P = 5 and P = 33. ompute. ) Factor completel over the integers. a 4a + a + 6a 4 3 P Q ) PQRS is a rectangle. Let and denote the areas of PQT and SRT respectivel. If m PTS = 60 and PT = tan( TPS) = 1, compute. T F) is a pentagon, = = and =. For integers d and k, m = m = m = m = d and m is 5k. ompute the largest possible value of m that is less than 1. m S R

O TST - OVMR 009 SWRS Round 1 lgebra : omple umbers ( o Trig) ) i ) 38 ) Round lgebra 1: nthing 1 81 ) 69, 71, 73, 75 ) (or 0.4) ) 5 300 w( w ) or equivalent Round 3 Plane Geometr: rea of Rectilinear Figures ) 1 ) 437.5 or 875 ) 85 Round 4 lgebra 1: Factoring and its pplications ), 8 ) ±, 5 ) 9 Round 5 Trig: Functions of Special ngles [ on-alculator Round] ) (10, 6, 3) ) 3 ) 6+ Round 6 Plane Geometr: ngles, Triangles and Parallels ) 16 ) 9 ) 40 Team Round ) 4 ) a ( a )( a + 1)( a 3) ) 13 ) + 3 ) 837 13 F) 10 13

O TST OVMR 009 SOLUTIO KY Round 1 3 1+ i+ 3i + 4i 1+ i 3 4i i 1+ i 1+ i 1+ i + i i ) = = = 3 = = = i 1 i+ 3i 4i 1 i 3+ 4i + i 1 i 1+ i 1 i 40 40 ) = 3 (1 + i) = Note: ( ) 10 40 0 3 ( i ) = 0 10 40 0 0 40 0 3 i = 3 (1) = 0 0 0 9 = 18 r + n = 38 18 = 18 = 34. Such equivalent epressions produce larger values of r + n. ) If z = + i, then z = ( ) 40 9i= + i = + i. ut, z = + and z = ( 40) + ( 9) = 41 = 41 (9 40 41 is a Pthagorean Triple.) (1) = 40 Since z = z, we have + = 41. () = 9 quating the real parts, the imaginar parts and the absolute values, we have these three conditions:. (3) + = 41 () and have opposite signs. 1 (1) + (3) = 1, (3) (1) 1 9 = 81 and (, ) = ±, = = 1 81 81 Proof of the fact that for an comple number, z = z. z = ( + i) = + i+ i = + ( ) i Let z = + i. Then ( ) ( ) z = + = + Round = ( ) + ( ) = ( ) z = ( ) + = 4 4 + + 4 = + the transitive propert, ) Let the 4 numbers be, +, + 4 and + 6. Then: 4 + 1 = 13 + + 6 3 = 07 = 69 69, 71, 73, 75 z 4 4 + + = z. ) solving (3 ) = 10 or judicious guess and check, (, ) = (5, ) or ( 5, ). The possible values of are.5 or 0.4. The larger value is 0.4. ) Let R denote the new rate and R 1 the original rate. Since R T =, we have R = 150 and R 1 = 150 150 150 and = + w w w w learing fractions, 150w= 150( w ) + ( w)( w ) 150w= 150w 300+ w w 300 anceling, we have 300= w w= ( w w) = w w or 300. w( w )

O TST OVMR 009 SOLUTIO KY Round 3 P II 13 15 1 h I 5 9 Q(-4, 0) S(4, 0) R(11, 0) 40 41 ) QR = 15, QS = 8 and SR = 7 1 (15) h= 45 h = 6 PSR has the smaller area, 1 7 6 = 1 ) rea(i) = 1, rea(ii) = 1 7 4 = Thus, regardless of the dimensions of the rectangle, region II has an area 7/8 that of the rectangle 7 (500) = 437.5 or 875 8 ) Noting special right triangles 5-1 - 13, 3(3-4 - 5) and 9 40-41, the problem is almost done. = 165= 5 65 65 is onl slightl bigger than the perfect square 64. 8.1 = 65.61 65< 8.1 5 65< 40.5 Thus, to the nearest integer, the perimeter of is 85.

O TST - OVMR 009 SOLUTIO KY Round 4 10+ 1 1 ) ross multipling, = 3 30+ 36= 10 8 10 8 3 4 40+ 64= 4( 10+ 16) = 4( )( 8) = 0 =, 8 3 3 ) 5 + 4 0= ( 5 ) + ( 4 0) = ( 5 ) 4(5 ) = 0 ( ) = ±, 5 4 (5 ) = 0 ) 4 8 16 56 56 + = ( 4 56 16 ) ( 8 56) =( 16 1)( 8 56) = 8 ( 1 8 4 )( )( 16 4 + 1 + )( 16) = ( 8 )( 4 4 )( )( 4 )( + 1 + 1 1 + 16 + 4)( 4) ( 8 1)( 4 1)( 1 )( 1)( 1) ( 4 16)( 4)( )( ) = + + + + + + + = 9 Round 5 ) = 3 ( 3+ 1) = ( 3+ 1) ) tan() = 3cot() 1 tan () = 3 tan() ( 3+ 1) = ( 3+ 1) ( 3+ 4) = 10+ 6 3 (,, ) = (10, 6, 3) tan () + tan() 3 = (tan + 3)(tan 1) tan() = 3 (1 is etraneous since would be special, i.e. it would belong to the 45 famil.) ) m = 60, =, = 3 m = m = m = 45 =, = 3 and = 3 6 = = 6 Thus, = + = + ( 6 ) = 6 + 30 lternate solution In right, cos( ) =. m = 60 45 = 15 Thus, = 4cos(15 ) = 4cos(45 30 ) = 4( cos45 cos30 + sin 45 sin30 ) 3 1 = 4 + = 6 +

O TST - OVMR 009 SOLUTIO KY Round 6 ) 4 + (3) = 180 = 18 base angle: 54 eterior angle: 16 ) n(n 3)/ = 740 n(n 3) = 1480 Rather than tring to factor this quadratic b trial and error, guess at a value for n. If the result is too low, tr a larger value of n; if the result is too high, tr a smaller value of n. n = 35 35(3) = 110 (too low) n = 45 45(4) = 1890 (too high) Since 110 is closer to 1480, we ll start at 40 and step down until we find n. n = 40 40(37) = 1480 ingo! 360 regular polgon with 40 sides has eterior angle with 40 = 9 ) Since M and M F are corresponding angles of parallel lines, we have 7 40 = 5 = 0 m M= 100 a + b = 80 and c + d = 100 m MP= 3m PM b = 3a Thus, (a, b) = (0, 60) m M P= 4m P F c = 4d Thus, (c, d) = (80, 0) Finall, = 180 (b + c) = 180 140 = 40.. M 7-40. b c. N d. a. P F

Team Round O TST - OVMR 009 SOLUTIO KY ) 3 6 5 z z z = 1 5 1 5 6+ 8+ 10 + + 3 6 3 6 1 z z z = z = z = z z = 1 3i 3= 3i z = 4+ 1 = 4 ) Let 1 denote the rate at which the brick mason works, i.e. the fraction of the job he does in 4 (4+ 3) one hour. Then + = 1 4( + 6) + 7 = + 6 5 4 = ( 8)( + 3) = 0 + 6 = 8 Thus, the mason and apprentice take 8 hours and 14 hours respectivel to complete the job. ssume a minimum of apprentices are needed 5 1 1 (1) (1) 1 8 7 98 + = 1.5 min = 13 14 14 8 8 5 33 [ 1 apprentices and 1 brick mason take T hours to finish 1 1 T 6T T+ 1 T = 1 + = 1 7T + 48T = 56 8 14 8 7 P 5- T = 56/55 > 1 ] ) 5 + P = 33 + 56 P = 3600 P = 60 ( Refer to note on ontest 1 Round.) Using Heron s formula, rea( P) = 55(30)()(3) = 3 11 10 = 330 1 rea( P) = 84(8)(3)(4) = 3 7 = 1344 Let = =. 5 1 1 rea(rectangle) = 5 = 1674 + + (5 ) = 1674 + 6 6 = 1674 = = ) Hoping to take advantage of a binomial of the form ( a c) thinking of Pascal s triangle: 4 3 a 4a + a + 6a = 4 3 a 4 a + (6 5) a + (10 4) a + (1 5+ 4) 56 +, where c is a constant and 1 1 1 1 1 1 3 3 1 1 4 6 4 1 4 3 Regrouping, we have ( a 4a + 6a 4a + 1) 5( a + a + 1) + 4 4 = ( a 1) 5( a 1) + 4= (( 1) )(( ) ) a 1 a 1 4 = ( 1 1)( 1 1)( 1 )( a + a a + a 1 ) = a ( a )( a + 1)( a 3) 837 13

Team Round continued O TST - OVMR 009 SOLUTIO KY ) From the diagram at the right, we see that = sin 45 and sin 75 sin 45 sin 45 PTS: = ST = TRS: sin15 1 ST sin 75 ST = = sin15 sin 45 sin15 = sin 45 = tan15sin 45 sin 75 cos15 1 PQ( ) sin 45 1 1 = = 1 ( ) = tan15sin 45 = SR tan15 = 3 = + 3 F) 4d + 5k = 540 d = (540 5k)/4 = (135 k) k/4 k must be a multiple of 4. k = 4t m = 0t d = m = m = m = m = (540 0 t) / 4 = 135 5t m = (180 0t)/ = 90 10t m = (135 5t) (90 10t) = 45 + 5t m 90 10t 18 t = = m 45+ 5t 9+ t Tring values of t we get the following ordered pairs: (1, 8/5) (, 14/11) (3, 1). This is a decreasing sequence and t = 4 d 1 10 13 d d lternate solution #1: 5d + 5k = 540 d = 540 5 k = 135 5 k. 4 4 Since d must be an integer, k must be divisible b 4. Since m = 5k < 180, k < 36. Therefore k = 4, 8, 1, 16,, 3. The chart below indicates as k increases the required ratio decreases and the largest value less than 1 is highlighted. k d ( m ) m m 1 ( ) m ( ) Ratio 4 130 0 80 50 8/5 8 15 40 70 55 14/11 1 10 60 60 60 1 16 115 80 50 65 10/13 S P 45 45 75 15 1 5k 45 45 15 75 Q T R d lternate solution #: **** 4d + 5k = 540 d must be a multiple of 5. For to be a triangle, 0 < 5k < 180 or 0 < k < 36. Substituting in ****, we have 90 < d < 135. trial and error (and the fact that d is a multiple of 5), we test 130, 15, 10,. These results are contained in the table above, referencing the second column as the ke field.