Python Libraries 1 / 14

Samankaltaiset tiedostot
Garlic yellow mosaic-associated virus

Alkuperäismateriaalit:

Oct. 21, h2p://

Integration of Finnish web services in WebLicht Presentation in Freudenstadt by Jussi Piitulainen

Genome 373: Genomic Informatics. Professors Elhanan Borenstein and Jay Shendure

Methods S1. Sequences relevant to the constructed strains, Related to Figures 1-6.

Predicting evolutionarily conserved regions (ECRs) in the Xenopus tropicalis genome using a MultiPipMaker-based bioinformatic strategy

Plasmid Name: pmm290. Aliases: none known. Length: bp. Constructed by: Mike Moser/Cristina Swanson. Last updated: 17 August 2009

MALE ADULT FIBROBLAST LINE (82-6hTERT)

FinFamily Installation and importing data ( ) FinFamily Asennus / Installation

Experimental Identification and Computational Characterization of a Novel. Extracellular Metalloproteinase Produced by Clostridium sordellii

FETAL FIBROBLASTS, PASSAGE 10

Supporting information

Eukaryotic Comparative Genomics

Supplementary Material : Baker et al. 1

HITSAUKSEN TUOTTAVUUSRATKAISUT

Bioinformatics. Sequence Analysis: Part III. Pattern Searching and Gene Finding. Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute

CS284A Representations & Algorithms for Molecular Biology. Xiaohui S. Xie University of California, Irvine

==>Download: Lakimies PDF ebook By Allan Särkilahti

Choose Finland-Helsinki Valitse Finland-Helsinki

BDD (behavior-driven development) suunnittelumenetelmän käyttö open source projektissa, case: SpecFlow/.NET.

WIFI Garage Door and Gate Opener. Internet base remote control with WIFI connection

State of the Union... Functional Genomics Research Stream. Molecular Biology. Genomics. Computational Biology

Supporting Information for

VIIKKI BIOCENTER University of Helsinki

CHEM Masters Kirsi Heino Information specialist Learning center beta

VIIKKI BIOCENTER University of Helsinki

Microsoft Lync 2010 Attendee

Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. David R. Kelley

Korkeakoulujen tietohallinto ja tutkimus: kumpi ohjaa kumpaa?

Menestyksen hinta - Nokian matkapuhelinten menestystarina napaansa tuijottavien liikemiesten ja hu

Office 2013 ja SQL Server 2012 SP1 uudet BI toiminnallisuudet Marko Somppi/Invenco Oy

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Supplementary information: Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell. exterior

Lakimies PDF. ==>Download: Lakimies PDF ebook

lpar1 IPB004065, IPB002277, and IPB Restriction Enyzme Differences from REBASE Gained in Variant Lost from Reference

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

Chapter 7. Motif finding (week 11) Chapter 8. Sequence binning (week 11)

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

Get Instant Access to ebook Kasvuyritys PDF at Our Huge Library KASVUYRITYS PDF. ==> Download: KASVUYRITYS PDF

Strain or plasmid Description a Reference or source b. 168 trpc2 Laboratory. 1A780 trpc2 sigb::spc BGSC


Collaborative & Co-Creative Design in the Semogen -projects

Use of spatial data in the new production environment and in a data warehouse

6.095/ Computational Biology: Genomes, Networks, Evolution. Sequence Alignment and Dynamic Programming

CSC:n käyttäjätunnukset - myös opiskelijoille

Home Security GSM GPRS Alarm System App Remote Control System for RFID Cards

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Opintomatkat PDF. ==>Download: Opintomatkat PDF ebook By Risto Antikainen

amkbyod-tulostaminen Huittisten ja Kankaanpään kampuksilla / BYOD printing in Huittinen and Kankaanpää campuses

Functional Genomics & Proteomics

Making diversity manageable. Miradore. Käytännön kokemuksia rahoituksen hakemisesta. Tiistai Technopolis Vapaudenaukio / Lappeenranta

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Enterprise Architecture TJTSE Yrityksen kokonaisarkkitehtuuri

Sosiaalisen median liiketoimintamallit ja käyttöön oton suunnitelma 9/23/2012

JYX yliopiston palvelujen keskiössä. Pekka Olsbo Julkaisukoordinaattori Jyväskylän yliopiston kirjasto

Security server v6 installation requirements

Avoimen datan liiketoimintamallit. Matti Rossi, Aalto University School of Business

Miksi Suomi on Suomi (Finnish Edition)

HY-käyttäjät HUS/HYKS käyttäjät

Mobility Tool. Demo CIMO

DXL Library ja DXL-kielen olemus. Pekka Mäkinen SoftQA Oy http/

Lab SBS3.FARM_Hyper-V - Navigating a SharePoint site

Security server v6 installation requirements

dupol.eu - smart home product comparison

Helsinki, Turku and WMT

Yksittäisasennus eli perusasennus

Windows Phone. Module Descriptions. Opiframe Oy puh Espoo

Olet vastuussa osaamisestasi

SpeechMike III sarjan sanelumikrofonien (mallit LFH3200 ja LFH3220) yhteensopivuus SpeechMagic Executive saneluohjelman kanssa

Lab A1.FARM_Hyper-V.v3

BookWhere. BookWhere-ohjelman asennus. BookWhere-konversio-ohjelmat

FP3: Research task of UTA

Table S2. S. thermophilus CRISPR spacer sequence analysis.

Osallistujaraportit Erasmus+ ammatillinen koulutus

Lausuntolomake Pvm: Standardiehdotus: ISO 2789 käännös

Koordinaattimuunnospalvelut Reino Ruotsalainen

Aineiston analyysin vaiheita ja tulkintaa käytännössä. LET.OULU.FI Niina Impiö Learning and Educational Technology Research Unit

Internet Protocol version 6. IPv6

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

Ilmakuvien georeferointi

Selvitysraportti. MySQL serverin asennus Windows ympäristöön

Telecommunication Software

.NET 2006 ja sen jälkeen

Museo 2015 järjestelmä ja Museoiden luettelointiohjeet

JHS 180 Paikkatiedon sisältöpalvelut Laajennos, liitteet 2-4. Lassi Lehto

11/17/11. Gene Regulation. Gene Regulation. Gene Regulation. Finding Regulatory Motifs in DNA Sequences. Regulatory Proteins

tgg agg Supplementary Figure S1.

Get Instant Access to ebook Satukirja PDF at Our Huge Library SATUKIRJA PDF. ==> Download: SATUKIRJA PDF

Increase of opioid use in Finland when is there enough key indicator data to state a trend?

Viral DNA as a model for coil to globule transition

9/11/2015 MOBILITY TOOL+ ERASMUS+ Learning Mobility of Individuals. M a n a g e m e n t. I s s u e. T o o l

KMTK lentoestetyöpaja - Osa 2

Lisätty todellisuus ja sen sovellukset: kiehtovaa visualisointia ja havainnollistamista

ELF Eurooppalaiset paikkatiedot yhteen. Antti Jakobsson Paikkatiedon infrastruktuurin hyödyntäminen

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

ISBD(ER) UUDISTUS Tärkeimmät muutokset Teemapäivä elektronisen aineiston luetteloinnista , Lassi Lager & Eeva Murtomaa, HYK

Valmiustaitoja biokemisteille

Älykkäämpi päätelaitteiden hallinta Juha Tujula, CTO, Enfo Oyj IBM Corporation

Autodesk Account -ohje

Transkriptio:

Python Libraries 1 / 14

Gzip, CSV https://docs.python.org/3/library/gzip.html https://docs.python.org/3/library/csv.html https://daler.github.io/pybedtools/ - PyBed tools http://biopython.org/wiki/gff_parsing 2 / 14

BioPython - a library of modules for bioinformatics BioPython Tutorial Modules for Sequence data, BLAST parsing, Multiple alignments Already installed on biocluster To installed on own computer you control use Python tool 'pip' $ pip3 install biopython 3 / 14

Simple BioPython import Bio from Bio.Seq import Seq my_seq = Seq("ATGAGTACACTAGGGTAA") print(my_seq) rc = my_seq.reverse_complement() pep = my_seq.translate() print("revcom is", rc) print(pep) 4 / 14

Parsing sequence les more../data/e3q6s8.fasta >tr E3Q6S8 E3Q6S8_COLGM RNAse P Rpr2/Rpp21/SNM1 subunit domain containing protein OS MAKPKSESLPNRHAYTRVSYLHQAAAYLATVQSPTSDSTTNSSQPGHAPHAVDHERCLET NETVARRFVSDIRAVSLKAQIRPSPSLKQMMCKYCDSLLVEGKTCSTTVENASKGGKKPW ADVMVTKCKTCGNVKRFPVSAPRQKRRPFREQKAVEGQDTTPAVSEMSTGAD import sys #import Bio from Bio import SeqIO from Bio.Seq import Seq # seqfile filename = sys.argv[1] for seq_record in SeqIO.parse( filename, "fasta"): print(seq_record.id) print(repr(seq_record.seq)) print(seq_record.seq) print(len(seq_record)) tr E3Q6S8 E3Q6S8_COLGM Seq('MAKPKSESLPNRHAYTRVSYLHQAAAYLATVQSPTSDSTTNSSQPGHAPHAVDH...GAD', SingleLetterAlphabet()) MAKPKSESLPNRHAYTRVSYLHQAAAYLATVQSPTSDSTTNSSQPGHAPHAVDHERCLETNETVARRFVSDIRAVSLKAQIRPS 172

GenBank les: another sequence format LOCUS AJ240084 1905 bp DNA linear PRI 03 FEB 2000 DEFINITION Homo sapiens TRIM gene, promoter. ACCESSION AJ240084 VERSION AJ240084.1 GI:6911579 KEYWORDS T cell receptor interacting molecule; TRIM gene. SOURCE Homo sapiens (human) ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo. REFERENCE 1 AUTHORS Hubener,C., Mincheva,A., Lichter,P., Schraven,B. and Bruyns,E. TITLE Genomic organization and chromosomal localization of the human gene encoding the T cell receptor interacting molecule (TRIM) JOURNAL Immunogenetics 51 (2), 154 158 (2000) PUBMED 10663578 REFERENCE 2 (bases 1 to 1905) AUTHORS Huebener,C. TITLE JOURNAL Direct Submission Submitted (06 MAY 1999) Huebener C., Immunomodulation Laboratory, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, Heidelberg, 69120, GERMANY 6 / 14

GenBank le FEATURES Location/Qualifiers source 1..1905 /organism="homo sapiens" /mol_type="genomic DNA" /db_xref="taxon:9606" /clone_lib="rpci1,3 5 Human PAC library" gene 1..1902 /gene="trim" regulatory 1..1746 /regulatory_class="promoter" /gene="trim" 5'UTR 1747..1902 /gene="trim" 7 / 14

GenBank le ORIGIN 1 ccaaaaattt ccagtcctga aaccctttct ctttccaatg tcctctgtaa gctcgagttg 61 tgggcatcta ctttgcccat attccaaggt cttgcttagg taacctctgt agtcctttct 121 tgagcctagg acttctactt ttcttaccag ttaccctctt tcaggaccaa agctcaactc 181 ctcaaggcca taactaggcc ctctcctctc aaactgattt atcaggtgcc cgaatcttcc 241 tgaatgtctg ggattcaact tttcagcagt cttcctccct acgttccatc taattctaag 301 atgaaacctt ctgattcttt gttgtcctct gatccctaca tgaacctgag gctgctgttc 361 cctgaagtct tgttctgtca gcatccaggc ctgcttcata aaacctgtca ctctgctaat 421 ggttagcggc tgaacaaaga gtcctctggc caaataagtt tagaaaaact ctgataaaaa 481 tattatttgg gtttcctttt cgcaggactt acctaagcct ttaatatgca tctacggagg 541 taaaaataaa gctatatatt ttttccaaag atatttgttg aagaaacatt tgtcttctgc 601 gtttcttaaa ggccgagtgt tctatggaac atactttaaa aaaccctttt aaagaagctt 661 agaccagaga atctccaagg tctctttcag ttttacagcc tctgagtcaa cgattcacca 721 aaaaatattt tggggggaag tgattgaagt ggaaaaattt gttagtgttt agccagcttt 781 gtccaaagga taagatgcac tgtattttgc ttactaggga gttattttct ataatggaag 841 acaaagaaag cacaagacac ccatggtttt gtttgttcaa tcactgagag taagtctcaa 901 ttattgagac ttacgatgtg ccggtgtgct taattctagt tatgaaattt taataatgaa 961 taatatagat tctattcctt atatgagttt ccaaaagcat tgtccagaac atctatatta 1021 aaatatctta tcatatacaa tatatgtaat ttaaaatgca ctcagaaaat ctgcttgtta 1081 aaatgcagat tctagtgctt caccctaaat agtctaattt agacgggccc aggattttaa 1141 actagcatct tatagcatac ttatgtacac caacatgtaa gaactgctgc tattaagatt 1201 ctgggatggt ggttgagaac aggagcttgt tgtcaggtgg ctctagattg gacagagaaa 1261 ctcatactga taaggtgagg attgtcagga aataaggcag gcatctagcc tcgcattaag 1321 atgaggtata gaaggcaact gatacatact aagtgctcaa aaaatattaa ctccctgtcc 1381 tccatcatgg ctcaagaaaa tacaacagct gagcacaccc acgggttgct tactatttac

Now parse GenBank import sys #import Bio from Bio import SeqIO from Bio.Seq import Seq # seqfile filename = sys.argv[1] for seq_record in SeqIO.parse( filename, "genbank"): print(seq_record.id) print(repr(seq_record.seq)) print(seq_record.seq) print(len(seq_record)) python bp_parse_gbk.py../data/aj240084_trim.gbk AJ240084.1 Seq('CCAAAAATTTCCAGTCCTGAAACCCTTTCTCTTTCCAATGTCCTCTGTAAGCTC...ATG', IUPACAmbiguousDNA()) CCAAAAATTTCCAGTCCTGAAACCCTTTCTCTTTCCAATGTCCTCTGTAAGCTCGAGTTGTGGGCATCTACTTTGCCCATATTC 1905 9 / 14

Parse features from GenBank le See documentation on SeqIO here and the tutorial #!/usr/bin/env python3 import sys import Bio from Bio import SeqIO from Bio.Seq import Seq filename = sys.argv[1] for seq_record in SeqIO.parse( filename, "genbank"): print(seq_record.id) for feature in seq_record.features: print("\t",feature.type,feature.location) print("\t",feature.type,feature.location.start, feature.location.end, f 10 / 14

An even simpler fasta parser to dictionary from Bio import SeqIO handle = open("example.fasta", "ru") record_dict = SeqIO.to_dict(SeqIO.parse(handle, "fasta")) handle.close() print record_dict["gi:12345678"] #use any record ID 11 / 14

Convert le formats From GenBank to Fasta from Bio import SeqIO input_handle = open("cor6_6.gb", "rt") output_handle = open("cor6_6.fasta", "w") sequences = SeqIO.parse(input_handle, "genbank") count = SeqIO.write(sequences, output_handle, "fasta") output_handle.close() input_handle.close() Or even more simply from Bio import SeqIO count = SeqIO.convert("cor6_6.gb", "genbank", "cor6_6.fasta", "fasta") print("converted %i records" % count) 12 / 14

Other BioPython modules Pairwise Alignment Parsing (BLAST, FASTA, HMMER) Multiple Alignment Parsing Database access (local, fast indexed files; Remote databases via Web) Some Graphics drawing support 13 / 14

GFF parsing http://biopython.org/wiki/gff_parsing 14 / 14