NBE-C.2101 Biofysiikka
|
|
- Simo Oksanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 NBE-C.2101 Biofysiikka Luennoitsija: Ari Koskelainen puh Assistentit: Teemu Turunen, Ossi Kaikkonen Kurssin tiedotus: MyCourses Oppimateriaali: Nelson: Biological Physics Luentokalvot tulevat MyCourses-materiaaleihin Suositeltavaa oheislukemistoa: Phillips, Kondrev, Theriot: Physical Biology of the cell Kurssin suoritus: Laskuharjoituskotitehtävät (30%) Välikokeet (70%) tai tentti (70% / 100 %) Laskuharjoitukset: ma tai to Ensimmäiset harjoitukset
2 Kurssin tavoitteet 2 Antaa teoreettiset perustiedot ja työkalut, joiden avulla 1. voi ymmärtää biologisissa systeemeissä esiintyviä rakenteita ja biologisten systeemien toimintaa fysikaalisista periaatteista lähtien Keskeistä pohjatietoa kaikille bioinsinööreille, erityisesti lääketieteelliseen tekniikkaan ja bioelektroniikkaan suuntautuville 2. voi lukea ja ymmärtää biofysiikan tieteellistä kirjallisuutta 3. voi jatkaa biofysiikan ja sille läheisten alojen opiskelua esim.lääketieteellisen tekniikan (Biomedical Engineering) pääaineessa 4. lähteä biofysiikan tai sitä soveltavien alojen tutkimusryhmiin tutkimusapulaiseksi
3 Kuvassa K + -selektiivinen ionikanava: 3
4 1. Mitä on elollisen aineen fysiikka (biofysiikka, biologinen fysiikka)? Elävä systeemi Noudattaa fysiikan lainalaisuuksia Kompleksinen tutkimuskohde Fysikaaliset lainalaisuudet vs. tarkoituksenmukaisuusperiaate Biologisissa systeemeissä evoluutio on toiminut suodattimena Biofysiikan määrittely: Poikkitieteellinen tieteenala: Tieteenala, jossa sovelletaan fysiikkaa (sekä kemiaa ja matematiikkaa) biologisten prosessien ja ilmiöiden (biologisten systeemien) tutkimukseen. Fysiikka Lääketiede Fysiologia Fysikaalinen kemia Biofysiikka Molekyylibiologia Neurobiologia Biokemia
5 Esim. Synapsivälitys 5
6 6 Esim. Aineiden kuljetus soluissa Dimensiot Diffuusio Molekulaariset moottorit
7 Esim. Molekulaariset moottorit
8 Biofysiikan sovelluksia: 8 Esim. sydämentahdistin Cambridge Consultants
9 Biofysiikan sovelluksia: 9 Esim. negatiivisesti varautuneiden mikrotubulusten elektroforeesi mikrokanavat täytetty vedellä mikrokanavissa negat. pintavaraus M. G. L. van den Heuvel et al. PNAS 2007;104:
10 Tumallisen solun mitoosin fysiikkaa 10 Millaisia biofyysikolle mielenkiintoisia ja haastavia ilmiöitä/vuorovaikutuksia/prosesseja liittyy mitoosiin? (ts. Millaisia tutkimuskysymyksiä nousee mieleesi?) ei tumakalvoa tumakalvo
11 Malliajattelusta 11 Mallit ovat idealisointeja Mallit laaditaan kuvaamaan (vain) systeemin niitä ominaisuuksia, joita halutaan tutkia; yhdelle systeemille useita malleja Esim. DNA
12 Chapter 1. What the Ancients knew Kysymys: Miten elävät organismit voivat olla niin järjestyneitä?
13 Chapter 1. What the Ancients knew Kysymys: Miten elävät organismit voivat olla niin järjestyneitä? Fysikaalinen idea: Energian virtaus systeemin läpi voi synnyttää järjestystä.
14 Energia, lämpö ja työ Elävät organismit ja laitteet noudattavat samoja fysiikan lakeja, mutta Esim. Uimari ja pölynimuri kahdessa eri lämpötilassa T = 37 C T = 37 C T = 27 C T = 27 C
15 Mekaaninen energia Potentiaalienergia Kineettinen energia Muunnettavissa toisikseen Kitka muuntaa lämmöksi E E p kin E mgz ½mv 2 Lämpö? Vielä 1700-luvulla teoria (Benjamin Franklin): Lämpö näkymätöntä nestettä; virtauksia Kuumassa ylimäärin, kylmässä liian vähän Benjamin Thomsonin tutkimukset 1700-luvun lopulla: Kanuunan poraus Työ muuttuu lämmöksi Lämpö (neste) ei porattaessa lopu (jäähdytysveden lämmitys) Kokonaisainemäärä ei vähene (T. punnitsi kanuunan ja syntyneet metallisuikaleet) Lämmöntuotto loppuu porauksen lakatessa Syntyvä lämpö verrannollinen porausmäärään Kitka muuttaa mekaanisen energian lämmöksi. Kun lämmöksi muuntunut energia huomioidaan, kokonaisenergia säilyy.
16 Energiamuunnosprosesseja 16
17 Termodynamiikan I pääsääntö (energian häviämättömyys): du dq dw (usein merk. d U Q W, koska Q ja W eivät tilanfunktioita ja riippuvat siis prosessista) Lämpö: aineen partikkelien satunnaisliike Järjestynyt liike vs. satunnaisliike Käyttökelpoinen energia vs. käyttökelvoton energia Vapaa energia = hyötytyöhön käytettävissä oleva energia: F E TS E E kokonaisenergia, S entropia
18 Termodynamiikan II pääsääntö: Vakiolämpötilassa oleva systeemi voi spontaanisti ajaa vain prosessia, joka pienentää systeemin vapaata energiaa F. Kaksi tapaa (+ niiden yhdistelmä): 1. Kokonaisenergia E pienenee 2. Entropia S kasvaa F E TS Huom.! Prosessi voi siis edetä suuntaan, jossa entropia pienenee, kunhan kokonaisenergia laskee riittävästi. Elävät organismit vapaaenergiamuuntimia?
19 Esimerkki vapaaenergiamuuntosysteemistä:
20 Terminen energia 20 Huoneenlämmössä: Absoluuttinen lämpötila kt r 21 4,1 10 J 4,1 pn nm ~ 0,6 kcal/mol = 2,5 kj/mol = 25 mev Boltzmannin vakio 1, J/K
21 Biologiset systeemit, mikro- ja makrotason ilmiöt Elävä organismi: Avoin systeemi Vaihtaa ympäristönsä kanssa Energiaa Aineita Itsesäätelevä Itselisääntyvä Historian omaava (evoluution määräämä ) Vrt. ei-elollinen aine Tarkastelu kahdella tasolla: Mikrofysikaaliset prosessit ja ominaisuudet Stokastisia prosesseja Esimerkkejä: Kemialliset reaktiot pienillä pitoisuuksilla Yksittäisen ionikanavan virtakäyttäytyminen Makrofysikaaliset ominaisuudet Deterministinen käyttäytyminen Esimerkkejä: Kemialliset reaktiot suurilla pitoisuuksilla Solukalvon virtakäyttäytyminen
22 Mikrofysikaaliset prosessit: Kemialliset reaktiot pienillä pitoisuuksilla Reaktioon johtavat törmäykset stokastisia reagoivien molekyylien satunnaisliike reaktiotuotteiden syntynopeus Syntyneiden molekyylien lukumäärä Aika
23 Makrofysikaaliset prosessit: Kemialliset reaktiot suurilla pitoisuuksilla Esim. yksisuuntainen reaktio k A B AB Reaktiotuotteen pitoisuuden aikakäyttäytyminen riippuu lähtöainepitoisuuksista ja nopeuskertoimesta Käyttäytyminen determinististä Esimerkki: d AB dt k A B 1,0 0,8 [AB] 0,6 0,4 0,2 [A] 0 = [B] 0 = 1000, k = 10-8 [A] 0 = 1, [B] 0 > 100, k = 0,1 0, Aika
24 Esim. mikro- vs. makrofysikaalisesta prosessista: Yksittäisen ionikanavan virtakäyttäytyminen Avautuminen ja sulkeutuminen stokastisia prosesseja Ison kanavajoukon läpi kulkeva virta deterministinen suure Patch clamp rekisteröinti: Kalvojännitestep Keskiarvosignaali vastaa ison kanavajoukon käyttätymistä Solukalvon yksittäisen ionikanavan läpi kulkeva virta kalvojännitestepin aikana, monta toistoa
25 NBE-C2101 Biofysiikka 25 Nelson Chapter 2 Solujen sisustan koostumus Biomolekyylien vuorovaikutukset ja rakenne Veden ominaisuudet
26 Chapter 2. What s Inside Cells 26 Biologinen kysymys: Miten solut toteuttavat ja hoitavat niissä jatkuvasti käynnissä olevan valtavan määrän kemiallisia prosesseja ja reaktioihin osallistuvia aineita? Fysikaalisia ideoita: 1. Solukalvot järjestyvät spontaanisti rakenneosistaan ja muodostavat kompartmentteja. 2. Solut käyttävät aktiivista kuljetusta. 3. Biokemialliset prosessit ovat spesifejä (usein entsyymivälitteisiä).
27 What s Inside Cells 27 Eri organismien koostumus:
28 Erilaisilla eliöillä on hyvin samanlainen koostumus atomitasolla: 28 Koostumus molekyylitasolla:
29 Biologisesti tärkeiden alkuaineiden sijainti jaksollisessa järjestelmässä: 29 molekyyleissä Pieniä atomeja: Vahvat kovalenttiset sidokset Myös kaksois- ja kolmoissidoksia (esim. Si ei, vaikka 4 elektronia uloimmalla kuorella kuten C)
30 Skaaloista 30 Dimensiot aika energia: Suuruusluokkien sisäistäminen Dimensiot:
31 Biologiset makromolekyylit voivat olla tosi makroja! 31 DNA:
32 Aikaskaalat: 32 Useimmat entsyymit: Substraatti tuote: 10-3 s Jotkut entsyymit jopa 10-6 s Useat konformaatiomuutokset nopeita DNA:n kaksoiskierteen oikeneminen: ms Molekyylin osan rotaatio toisen suhteen: ns Fotoreseptorimolekyylin konfiguraatiomuutos: < ps Proteiinin elinikä voi olla vain tunteja! Sidos katkeaa
33 33 Nopeiden reaktioiden tutkimus ekstralyhyillä ( jopa < 10 fs) valopulsseilla 10 fs: valon kulkema matka m = 3 mm!
34 Energiaskaalat: 34 1 J = cal Primaarinen energialähde: aurinko Fotonin energia (500 nm): 2.5 ev 57 kcal/mol Terminen energia (25 ºC): ev 0.6 kcal/mol Keskim. energia per vapausaste molekyylissä Kovalenttinen sidos n. 100 kcal/mol C-C 83 kcal/mol Stabiili Tarvitaan entsyymejä katkaisemaan sidokset spesifiset katkaisukohdat Ei-kovalenttiset (fysikaaliset) sidokset muutama kcal/mol Terminen energia riittää katkomaan
35 Molekyylinsisäiset sidokset 35 Kovalenttiset sidokset Kemiallinen sidos Vahvoja sidoksia Biomolekyylien sidokset n kj/mol (1,7 10,4 ev) Molekyylien rakennesidoksia, suuntaavia
36 Eri atomien väliset sidokset polaarisia ryhmiä (dipolimomentti) 36 Elektronegatiivisuus Kasvaa järjestysluvun kasvaessa samassa jaksossa Kasvaa siirryttäessä ryhmässä ylöspäin Esimerkiksi: C-C: ei-polaarinen O-H: voimakkaasti polaarinen
37 Biomolekyyleissä reversiibeleitä vuorovaikutuksia välittävät sidokset Molekyylien välillä Molekyylien sisällä Ionisidokset Ionien välinen attraktio (ei suuntariippuva) Kutsutaan myös Molekyyleissä: suolasilta ( salt linkage, salt bridge ) Voima F liuoksessa: ionipari (varaukset q 1 ja q 2 etäisyydellä r) F qq Dr Vedessä r 80, tyhjössä r = 1 Hiilivety-ympäristössä (lipidi) r 2 Tyypillien ionisidos biomolekyylien välillä: COO -...NH 3 + D 1 2, r Tyhjön permittiivisyys r = riippuen, onko vettä vai muuta väliainetta ionien ympärillä
38 Ionisidoksen energia: Ytimien tasapainoetäisyys = van der Waals säteiden summa Atomien etäisyyksistä kiteessä NaCl-tyyppinen kide (FCC = face-centered cubic) Tasapainoetäisyydet useista eri ionikiteistä ja vertailemalla: Esim. NaCl KCl ja NaOH KOH Kationisäteet < vast. atomisäteet Anionisäteet > vast. atomisäteet Esim. NaCl x e = 2.79 Å (kide), mutta 2.36 Å (kaasu) Sidosenergia viemällä toinen ioni äärettömän kauas: Esim. NaCl r q1q 2 2 Dr q q E dx J J 5.31eV 498kJ mol Dr ( )
39 Koordinaatiosidokset Metallikomplekseissa Keskusatomi (usein ioni) Ligandit ympäröivät keskusatomia (symmetria) Ligandien vapaat elektroniparit keskeisiä, sitova elektronipari yhdeltä atomilta Keskusatomina yleensä siirtymäalkuaine (vajaa d-kuori) Esim 1. Hemoglobiinin hemiryhmä: 4 pyrrolirengasta Fe 2+ :lla 4 sidosta N-atomeihin
40 Fe yleensä oktaedraalisesti ligandoitu: 6 mahdollista sidossuuntaa ligandeille Porfyriinissa 4 ligandia Hemiryhmässä 1 sidos histidiiniin, 1 mahdollinen O 2 :een
BECS-C2101 Biofysiikka
BECS-C2101 Biofysiikka Luennoitsija: Ari Koskelainen ari.koskelainen@aalto.fi puh. 050-3673768 Pääassistentti: Teemu Turunen teemu.turunen@aalto.fi Kurssin tiedotus: Noppa Oppimateriaali: Nelson: Biological
BECS-C2101 Biofysiikka
BECS-C2101 Biofysiikka 1 Luento 2 16.1.2015 Solujen sisustan koostumus Biomolekyylien vuorovaikutukset ja rakenne Veden ominaisuudet Chapter 2. What s Inside Cells 2 Biologinen kysymys: Miten solut toteuttavat
Kemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
Luento Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
Luento 0.1.017 1 Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Vetysidos Varattujen ja myös neutraalien molekyylien välillä Kaksi elektronegatiivista
REAKTIOT JA TASAPAINO, KE5 KERTAUSTA
KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat
Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen
Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.
Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä
HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET
HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET Tunnin sisältö 2. Heikot vuorovaikutukset Millaisia erilaisia? Missä esiintyvät? Biologinen/lääketieteellinen merkitys Heikot sidokset Dipoli-dipolisidos
Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit
KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä Kertausta 1.kurssista Hiilen isotoopit 1 Isotoopeilla oli ytimessä sama määrä protoneja, mutta eri määrä neutroneja. Ne käyttäytyvät kemiallisissa
Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
Alikuoret eli orbitaalit
Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia
, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan
CHEM-A1250 KEMIAN PERUSTEET kevät 2016
CHEM-A1250 KEMIAN PERUSTEET kevät 2016 Luennoitsijat Tuula Leskelä (huone B 201c, p. 0503439120) sähköposti: tuula.leskela@aalto.fi Gunilla Fabricius (huone C219, p. 0504095801) sähköposti: gunilla.fabricius@aalto.fi
KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.
KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan
6. Entropia, lämpötila ja vapaa energia
6. Entropia, lämpötila a vapaa energia 1 Luento 6 24.2.2017: Shannonin entropia M I NK P ln P 1 Boltzmannin entropia S k B ln Lämpötila Vapaa energia 2 Probleemoita: Miten DNA-sekvenssistä määräytyvän
Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.
Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine on hyvä erottaa kiinteästä aineesta, johon kuuluu myös
Luku 2: Atomisidokset ja ominaisuudet
Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja
Määritelmä, metallisidos, metallihila:
ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön
REAKTIOT JA TASAPAINO, KE5 KERTAUSTA
KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat
= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
782630S Pintakemia I, 3 op
782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus
KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka
Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai
MUUTOKSET ELEKTRONI- RAKENTEESSA
MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.
Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi
KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
Erilaisia entalpian muutoksia
Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
HEIKOT SIDOKSET. Heikot sidokset ovat rakenneosasten välisiä sidoksia.
HEIKOT SIDOKSET KEMIAN MIKRO- MAAILMA, KE2 Palautetaan mieleen (on tärkeää ymmärtää ero sisäisten ja ulkoisten voimien välillä): Vahvat sidokset ovat rakenneosasten sisäisiä sidoksia. Heikot sidokset ovat
Ionisidos ja ionihila:
YHDISTEET KEMIAA KAIK- KIALLA, KE1 Ionisidos ja ionihila: Ionisidos syntyy kun metalli (pienempi elek.neg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos on
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
KEMIA HYVÄN VASTAUKSEN PIIRTEET
BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Orgaaninen reaktio Opettava tutkija Pekka M Joensuu Orgaaniset reaktiot Syyt Pelkkä törmäys ei riitä Varaukset (myös osittaisvaraukset) houkuttelevat molekyylejä
4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
PHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
Ydinfysiikkaa. Tapio Hansson
3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10
vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
Termodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.
1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0
Luento 9 11.3.016 1 Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0 Sähköstaattiset
P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
Siirtymämetallien erityisominaisuuksia
Siirtymämetallien erityisominaisuuksia MATERIAALIT JA TEKNOLOGIA, KE4 Sivuryhmien metallien kemiaa: Jaksojen (vaakarivit) 4 ja 5 sivuryhmien metalleista käytetään myös nimitystä d-lohkon alkuaineet, koska
Solun Kalvot. Kalvot muodostuvat spontaanisti. Biologiset kalvot koostuvat tuhansista erilaisista molekyyleistä
Solun Kalvot (ja Mallikalvot) Biologiset kalvot koostuvat tuhansista erilaisista molekyyleistä Biokemian ja Farmakologian erusteet 2012 Kalvot muodostuvat spontaanisti Veden rakenne => ydrofobinen vuorovaikutus
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko
Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen
Aro Esansaari Määttä Pinola Tikkanen. Käsikirja. Lääketieteelliseen Teoria. Kandiakatemia
Aro Esansaari Määttä Pinola Tikkanen Käsikirja Lääketieteelliseen Teoria Kandiakatemia Käsikirja: Teoria Tulen pitämään vanhempieni arvoisena sitä, joka on opettanut minulle tämän taidon, ja jakamaan hänen
Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman
Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys
LIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
1-12 R1-R3. 21, 22 T4 Tutkielman palautus kurssin lopussa (Työ 2 ja Työ 3), (R4-R6) Sopii myös itsenäiseen opiskeluun Työ 4 R7 - R8
I Aineet ympärillämme 1 Kemia on 1x75 min tai 1-12 R1-R3 Kemia 1 kurssiin tutustumisen voi aloittaa Pohditehtävällä, jonka jälkeen opiskelijat tekevät ryhmissä yhden tehtävistä R1-R3 (tietokoneet). Oheismateriaali:
Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0
Luento 9 17.3.017 1 Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0 Sähköstaattiset
Biofysiikka, Luento
Biofysiikka, Luento 4 3..017 1 Diffuusio eri geometrioissa ja sovelluksia Varattujen partikkelien diffuusio (elektrodiffuusio) Johdatus matalien Reynolds-lukujen maailmaan Aikariippuvat diffuusioprosessit
Erilaisia entalpian muutoksia
Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli
TASASUUNTAUS JA PUOLIJOHTEET
TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan
L7 Kaasun adsorptio kiinteän aineen pinnalle
CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1
Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla
Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa
ATOMIN JA IONIN KOKO
ATOMIN JA IONIN KOKO MATERIAALIT JA TEKNOLOGIA, KE4 Alkuaineen sijainti jaksollisessa järjestelmässä ja koko (atomisäde ja ionisäde) helpottavat ennustamaan kuinka helposti ja miten ko. alkuaine reagoi
Chem-C2400 Luento 2: Kiderakenteet Ville Jokinen
Chem-C2400 Luento 2: Kiderakenteet 11.1.2019 Ville Jokinen Oppimistavoitteet Metalli-, ioni- ja kovalenttinen sidos ja niiden rooli metallien ja keraamien kiderakenteissa. Metallien ja keraamien kiderakenteen
Molaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
DNA:n informaation kulku, koostumus
DNA:n informaation kulku, koostumus KOOSTUMUS Elävien bio-organismien koostumus. Vety, hiili, happi ja typpi muodostavat yli 99% orgaanisten molekyylien rakenneosista. Biomolekyylit voidaan pääosin jakaa
Voima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
8. Chemical Forces and self-assembly
8. Chemical Forces and self-assembly Biologinen kysymys: Miten voi hyvin sekoittuneessa liuoksessa oleva molekulaarinen moottori tehdä hyötytyötä? Eikö sen tarvitsisi olla sellaisten kompartmenttien rajalla,
Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?
Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä
Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 28.9.2015 / T. Paloposki / v. 01 Tämän päivän ohjelma: Tilanyhtälöt (kertaus) Termodynamiikan 1. pääsääntö (energian häviämättömyyden laki)
Johdantoa/Kertausta. Kemia on elektronien liikkumista/siirtymistä. Miksi?
Johdantoa/Kertausta MATERIAALIT JA TEKNOLOGIA, KE4 Mitä on kemia? Kemia on elektronien liikkumista/siirtymistä. Miksi? Kaikissa kemiallisissa reaktioissa tapahtuu energian muutoksia, jotka liittyvät vanhojen
Nesteen sisäinen kitka ja diffuusio
Nesteen sisäinen kitka ja diffuusio 1 Luento.1.016 (oppikirjan luku 4) Nesteen sisäinen kitka Satunnaiskävelyilmiöitä Diffuusio Diffuusio kalvon läpi Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen
PUOLIJOHTEISTA. Yleistä
39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa
Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat
T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
Atomi. Aineen perusyksikkö
Atomi Aineen perusyksikkö Aine koostuu molekyyleistä, atomeista tai ioneista Yhdiste on aine joka koostuu kahdesta tai useammasta erilaisesta atomista tai ionista molekyylit rakentuvat atomeista Atomit
L7 Kaasun adsorptio kiinteän aineen pinnalle
CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle Oppimistavoitteet
Lämpö- eli termokemiaa
Lämpö- eli termokemiaa Endoterminen reaktio sitoo ympäristöstä lämpöenergiaa. Eksoterminen reaktio vapauttaa lämpöenergiaa ympäristöön. Entalpia H kuvaa systeemin sisäenergiaa vakiopaineessa. Entalpiamuutos
8. Chemical Forces and self-assembly
Luento 10 24.3.2017 1 Kemiallinen potentiaali Sähkökemiallinen potentiaali Kemiallisen reaktion suunta Reaktiokoordinaatti Entsymaattisten reaktioiden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla
Chapter 7. Entropic forces at work
Chapter 7. Entropic forces at work 1 Luento 8 4.3.2016 Osmoottinen paine Pintajännitys Tyhjennysvuorovaikutus MIKSI? Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla
Luento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
Reaktiolämpö KINEETTINEN ENERGIA POTENTIAALI- ENERGIA
POTENTIAALI- ENERGIA KINEETTINEN ENERGIA Reaktiolämpö REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa
- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)
KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:
Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan
Chem-C2400 Luento 4: Kidevirheet Ville Jokinen
Chem-C2400 Luento 4: Kidevirheet 18.1.2019 Ville Jokinen Oppimistavoitteet Liukoisuus (käsiteltiin luennolla 3) 0D, pistemäiset kidevirheet: (liukoisuus), vakanssit 1D, viivamaiset kidevirheet: dislokaatiot
dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
EPIONEN Kemia 2015. EPIONEN Kemia 2015
EPIONEN Kemia 2015 1 Epione Valmennus 2014. Ensimmäinen painos www.epione.fi ISBN 978-952-5723-40-3 Painopaikka: Kopijyvä Oy, Kuopio Tämän teoksen painamiseen käytetty paperi on saanut Pohjoismaisen ympäristömerkin.
Orgaanisten yhdisteiden rakenne ja ominaisuudet
Orgaanisten yhdisteiden rakenne ja ominaisuudet 1 2 KOVALENTTISET SIDOKSET ORGAANISISSA YHDISTEISSÄ 3 4 5 6 7 Orgaanisissa molekyyleissä hiiliatomit muodostavat aina neljä kovalenttista sidosta Hiiliketju
kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
Oulun yliopisto. Luonnontieteellinen koulutusala. Fysiikan tutkinto-ohjelma. Fysiikka, filosofian maisteri, 120 op. 1 of
1 of 12 15.12.2015 17:38 Oulun yliopisto Luonnontieteellinen koulutusala Fysiikan tutkinto-ohjelma Fysiikka, filosofian maisteri, 120 op 2 of 12 15.12.2015 17:38 Pääaine: Fysiikka Vuosi/lukukausi 1. syksy
KEMIAN MIKROMAAILMA, KE2 VESI
VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen
1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?
Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?
9. JAKSOLLINEN JÄRJESTELMÄ
9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,
Kemian opiskelun avuksi
Kemian opiskelun avuksi Ilona Kuukka Mukana: Petri Järvinen Matti Koski Euroopan Unionin Kotouttamisrahasto osallistuu hankkeen rahoittamiseen. AINE JA ENERGIA Aine aine, nominatiivi ainetta, partitiivi
1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 Vastuuopettaja Muut opettajat Yliopistonlehtori Minna Nieminen, Huone B 201d (vastaanottoajat: sovittaessa) puh. 050 343 8187, sähköposti: Minna.Nieminen@aalto.fi