- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten
|
|
- Kirsi-Kaisa Penttilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Viime kerralla Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide 1 Cauchy-jakauma Ei-informatiivisista priorijakaumista Bayesilaisen mallintamisen perusteet Malli - pyrkii ennustamaan ilmiön käyttäytymistä - usein yksinkertaistaa todellisuutta - voidaan käyttää ennustamaan tulevaisuutta - voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä Slide Yksinkertaistaa koska - ilmiöstä saadut havainnot rajoitettuja - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten - yksinkertainenkin malli voi tuottaa hyödyllisiä ennusteita
2 Esimerkki Pudotetaan palloa eri korkeuksilta ja mitataan putoamisaika sekunttikellolla käsivaralla - Newtonin mekaniikka - ilmanvastus, ilmanpaine, pallon muoto, pallon pintarakenne - ilmavirtaukset Slide 3 - suhteellisuusteoria Ottaen huomioon mittaukset, kuinka tarkka malli kannattaa tehdä? On olemassa hyvin paljon tilanteita, joissa yksinkertaiset mallit hyödyllisiä ja käytännön kannalta yhtä tarkkoja kuin monimutkaisemmat! Luento Marginalisointi Marginaalijakauma nuisance parameters - "kiusaparametri" (huono termi parametreille, jotka voivat olla erittäin tärkeitä ja hyödyllisiä) Slide Normaalijakauma - ei-informatiivinen priori - konjugaattipriori - semi-konjugaattipriori Multinomijakauma - binomijakauman yleistys Moniulotteinen normaalijakauma
3 Marginalisointi - marginaalijakauma Yhteisjakauma p(θ 1, θ y) p(y θ 1, θ )p(θ 1, θ ) Marginalisointi p(θ 1 y) = p(θ 1, θ y)dθ Slide 5 p(θ 1 y) on marginaalijakauma Marginalisointi - marginaalijakauma Tavoitteena saada marginaaliposteriorijakauma kiinnostavasta tuntemattomasta suureesta - jokin mallin parametreista - joku muu ei havaittu suure kuten havainto tulevaisuudessa Periaate Slide - muodostetaan kaikkien tuntemattomien yhteisposteriorijakauma p(θ 1, θ y) p(y θ 1, θ )p(θ 1, θ ) - integroidaan tämä jakauma kaikkien niiden tuntemattomien yli, joiden arvot eivät suoraan kiinnosta meitä p(θ 1 y) = p(θ 1, θ y)dθ
4 Esimerkki marginalisoinnista - ennustava jakauma Yhteisjakauma p(ỹ, θ y) p(ỹ θ)p(θ y) Slide 7 Marginalisointi p(ỹ y) = p(ỹ y) on ennustava jakauma p(ỹ θ)p(θ y)dθ Esimerkki marginalisoinnista - ennustava jakauma Ennustava jakauma simuloinnilla Koska tässä tapauksessa p(ỹ y) = p(ỹ θ)p(θ y)dθ Slide 8 voidaan ensin poimia näytteitä θ i jakaumasta p(θ y) ja sitten näytteitä ỹ i jakaumasta p(ỹ θ), nyt ỹ i ovat jakaumasta p(ỹ y) Usein yhteisjakauma faktoroidaan ja integraali p(θ 1 y) = voidaan helposti approksimoida simuloinnilla p(θ 1 θ, y)p(θ y)dθ
5 Esimerkki marginalisoinnista - normaalijakauma Normaalijakaumamalli y µ, σ N(µ, σ ) µ = θ 1 ja σ = θ Usein µ kiinnostavampi Jos molemmat parametrit kiinnostavia, marginaalijakaumilla voidaan havainnollistaa yhteisjakaumaa Slide 9 Matlab-demo (esim_1.m) y = [93, 11, 1, 135, 1, 150, 118, 90, 1, 11] Normaalijakauma - viime kerralla Normaalijakaumamalli tunnetulla varianssilla σ ja θ:n priorilla N(µ 0, τ0 ), jos prioriprecision 1/τ0 pieni verrattuna data precisioniin n/σ, niin posteriorijakauma on melkein sama kuin jos τ 0 p(θ y) N(θ ȳ, σ /n) =, eli p(θ) 1 Slide Normaalijakaumamalli tunnetulla keskiarvolla ja scaled inverse-χ priori σ :lle, jos priorin vapauasteet ν 0 pieni verrattuna datan vapausasteisiin n, niin posteriorijakauma on melkein sama kuin jos ν 0 = 0, eli p(σ ) 1/σ missä v = 1 n ni=1 (y i θ) p(σ y) Inv χ (σ n, v)
6 Normaalijakauma - ei-informatiivinen priori Edellisen kalvon mukainen perustelu tai Jeffreysin priori-menetelmän (luento 3) mukaisesti normaalijakaumalla ei-informatiivinen priori p(µ, σ ) 1/σ Slide 11 Normaalijakauma - ei-informatiivinen priori Slide 1 Yhteisposteriorijakauma ( ) p(µ, σ y) σ n exp 1 n σ (y i µ) i=1 ( [ n ]) = σ n exp 1 σ (y i ȳ) + n(ȳ µ) i=1 ( = σ n exp 1 [ σ (n 1)s + n(ȳ µ) ]) missä s = 1 n 1 n (y i ȳ) i=1 ȳ ja s (ja n) ovat sufficient statistics
7 Normaalijakauma - ei-informatiivinen priori Faktoroidaan p(µ, σ y) = p(µ σ, y)p(σ y) Ehdollinen posteriorijakauma p(µ σ, y) µ σ, y N(ȳ, σ /n) sama kuin normaalijakauma tunnetulla varianssilla Slide 13 Marginaaliposteriorijakauma p(σ y) p(σ y) σ n exp ( = σ n exp ( 1 [ σ (n 1)s + n(ȳ µ) ]) dµ ) 1 (n 1)s σ (σ ) (n+1)/ exp ( σ y Inv χ (n 1, s ) (n 1)s σ ) πσ /n Normaalijakauma - ei-informatiivinen priori Slide 1 Jos µ on kiinnostava, niin marginaaliposteriori p(µ y) on kiinnostava Muuttujanvaihdos z = p(µ y) = 0 p(µ, σ y)dσ A σ, missä A = (n 1)s + n(µ ȳ) Tunnistetaan, että tulos on normalisoimaton gamma-integraali p(µ y) A n/ z (n )/ exp( z)dz 0 [(n 1)s + n(µ ȳ) ] n/ ] n(µ ȳ) [1 + (n 1)s µ y t n 1 (ȳ, s /n)
8 Normaalijakauma - posterioriprediktiivinen jakauma p(ỹ y) = p(ỹ µ, σ, y)p(µ, σ y)dµdσ tästä on helppo vetää näytteitä, vetämällä ensin näytteitä ( µ, σ ) posteriorijakaumasta ja sitten näytteitä ỹ jakaumasta N( µ, σ ) Slide 15 Posterioriorediktiivinen jakauma voidaan myös laskea tarkasti; lasketaan ensin tunnetulla varianssilla p(ỹ σ, y) = p(ỹ µ, σ, y)p(µ σ, y)dµ = N(ỹ ȳ, (1 + 1 n )σ ) tämä on skaalaa lukuunottamatta sama kuin p(µ σ, y), joten edellisen kalvon perusteella ỹ y t n 1 (ȳ, (1 + 1 n )s ) Normaalijakauma - esimerkki Simon Newcombin koe vuonna 188 mittasi valon nopeutta Matlab-demo (esim_.m) Posterioripäätelmät voivat olla ainoastaan yhtä hyviä kuin käytetty malli ja kokeet jotka datan tuottivat Slide 1
9 Normaalijakauma - konjugaattipriori Konjugaattipriorin oltava tulomuotoa p(σ )p(µ σ ) Kätevä parametrisointi on µ σ N(µ 0, σ /κ 0 ) σ Inv χ (ν 0, σ0 ) Slide 17 joka voidaan merkitä myös p(µ, σ ) = N Inv χ (µ 0, σ 0 /κ 0; ν 0, σ 0 ) Tässä muodossa µ ja σ riippuvia a priori - esim: jos σ on iso, niin µ:n priorijakaumakin on leveä Normaalijakauma - konjugaattipriori Yhteisposteriorijakauma (tehtävä 3.9) p(µ, σ y) = N Inv χ (µ n, σ n /κ n; ν n, σ n ) Slide 18 missä µ n = κ 0 κ 0 + n µ 0 + n κ 0 + n ȳ κ n = κ 0 + n ν n = ν 0 + n ν n σ n = ν 0σ 0 + (n 1)s + κ 0n κ 0 + n (ȳ µ 0)
10 Normaalijakauma - konjugaattipriori Ehdollinen jakauma p(µ σ, y) µ σ, y N(µ n, σ /κ n ) = N ( κ0 µ σ 0 + n ȳ σ κ 0 + n, σ σ 1 κ 0 σ + n σ ) Slide 19 Marginaalijakauma p(σ y) σ y Inv χ (ν n, σ n ) Marginaalijakauma p(µ y) µ y t νn (µ µ n, σ n /κ n) Normaalijakauma - semikonjugaattipriori Usein käytetty semikonjugaattipriori µ σ N(µ 0, τ0 ) σ Inv χ (ν 0, σ0 ) missä µ ja σ a priori riippumattomia Slide 0 Ehdollinen jakauma p(µ σ, y) µ σ, y N(µ n, τ n ) missä µ n = 1 µ τ0 0 + n ȳ σ 1 τ 0 + n ja τn = 1 1 σ τ 0 + n σ
11 Normaalijakauma - semikonjugaattipriori Marginaalijakauma p(σ y) n p(σ y) τ n N(µ n, µ 0, τ0 )Inv χ (σ ν 0, σ0 ) N(y i µ n, σ ) i=1 Ei suljettua muotoa, mutta voidaan laskea numeerisesti Slide 1 Myöhemmin opitaan kuinka Markov-ketju Monte Carlolla voidaan helposti poimia näytteitä yhteisposteriorijakaumasta tässä semikonjugaattiprioritapauksessa Multinomijakauma Multinomijakauma on binomijakauman yleistys kun mahdollisia lopputuloksia useampi kuin kaksi Sopii yksinkertaiseksi malliksi esimerkiksi vaaligalluppeihin Jos y on vektori jossa eri lopputulosten havaitut lukumäärät, niin Slide p(y θ) k j=1 θ y j j, missä k j=1 θ j = 1 ja k j=1 y j = n
12 Multinomijakauma Konjugaattipriori on Beta-priorin moniulotteinen yleistys Dirichlet-jakauma missä k j=1 θ j = 1 p(θ α) k j=1 θ α j 1 j, Slide 3 Posteriorijakauma on Dirichlet(α + y) Priori vastaa k j=1 α j havaintoa, joista α j havaintoa lopputulosten luokasta j Uniformi priori jos α j = 1 kaikille j Esimerkki harjoituksissa Moniulotteinen normaalijakauma Havainnot moniulotteisia ja yhteisjakauman oletetaan olevan normaalijakautunut Likelihood y µ, N(µ, ) Slide missä µ on d:n pituinen vektori ja on d d kokoinen symmetrinen ja positiividefiniitti varianssimatriisi ( ) p(y µ, ) n/ exp 1 n (y i µ) T 1 (y i µ) i=1 ( = n/ exp 1 ) tr( 1 S 0 ) missä S 0 = n (y i µ)(y i µ) T i=1
13 Moniulotteinen normaalijakauma - konjugaattipriori Konjugaattipriori Marginaalijakauma p(µ y) Inv Wishart ν0 ( 1 0 ) µ N(µ 0, /κ 0 ) Slide 5 µ y t νn d+1(µ n, n /(κ n (ν n d + 1))) Moniulotteinen normaalijakauma - ei-informatiivinen priori Moniulotteinen Jeffreysin priori p(µ, ) (d+1)/ Marginaalijakauma p(µ y) µ y t n d ( µ, S/(n(n d))) Slide
14 Moniulotteinen normaalijakauma - ei-konjugaattiset priorit* Oikeissa ongelmissa Jeffreysin priori ja Inv-Wishart-priori toimivat usein hyvin huonosti Useita ei-konjugaattisia vaihtoehtoja Slide 7 Kirjan esimerkki: myrkyllisyyskoe Dose, x i Number of Number of (log g/ml) animals, n i deaths, y i Slide Logistinen regressio logit(θ i ) = α + βx i Likelihood p(y i α, β, n i, x i ) [logit 1 (α + βx i )] y i [1 logit 1 (α + βx i )] n i y i Posteriori n p(α, β y, n, x) p(α, β) p(y i α, β, n i, x i ) i=1
15 Loppuhuomioita Harvoille malleille sujettu muotoinen posteriorijakauma, mutta ei haittaa koska voimme käyttää - normaalijakauma-approksimaatiota (luku ) - hierarkisia malleja (luku 5) - simulaatioita (luku 11) Slide 9 - variaatiolaskentaa* Yhteenveto yksinkertaisten mallien käsittelystä Kirjoita likelihood, jätä θ:sta riippumattomat termit pois Valitse priori Kirjoita posteriori Tee karkea arvio θ:lle Slide 30 Poimi näytteitä posteriorijakaumasta Poimi näytteitä prediktiivestä jakaumasta
16 Impedanssi Tomografia (EIT) -käänteisongelma Päättellään johtavuusjakauma impedanssimittauksista Ongelman tiedetään olevan vaikeasti kääntyvä 1 Slide Simuloitu potentiaalikenttä putkessa Relative change in U Electrode 15 Injection Potentiaalierot vierekkäisissä elektrodeissa 8 Käänteisongelman approksimaatio Bayesilaisella MLP-verkolla Slide Relative potentials Injection Electrode EIT-mittaus PCA-projektio Bayesilainen PCA-hajotelma Rekonstruktio 18 0 MLP
exp Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli
Luento 3 Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide Cauchy-jakauma Ei-informatiivisista priorijakaumista *-merkatut kalvot
S Bayesilaisen mallintamisen perusteet
S-114.2601 Bayesilaisen mallintamisen perusteet Laajuus: 5 op, L Opettajat: TkT Aki Vehtari, DI Simo Särkkä Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit
p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma
Viime kerralla Marginalisointi Marginaalijakauma Posteriorijakauman faktorointi Ehdollinen posteriorijakauma Slide 1 Posteriorijakaumasta simulointi Normaalijakauma - tuntematon keskiarvo ja varianssi
exp p(y θ) = 1 2πσ θ)2 2σ 2(y y N(θ, σ 2 ) Luento 3 Normaalijakauma (Gaussian) Normaalijakauma tunnetulla varianssilla
Luento 3 Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-malli Exponentiaalinen malli Slide 1 Cauchy-jakauma Lisää konjugaattiprioreista Ei-informatiivisista priorijakaumista
Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.
Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali
Viime kerralla. Luento 6. Normaalijakauma-approksimaatio - moodi. - havaittu informaatio
Viime kerralla Normaalijakauma-approksimaatio - moodi - havaittu informaatio Suurten otosten teoria - asymptoottinen normaalius ja konsistenttisuus Slide 1 - vastaesimerkkejä Bayesilaisen päättelyn frekvenssiarviointi
θ 1 θ 2 θ n y i1 y i2 y in Luento 6 Hierarkkinen malli Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model
Luento 6 Johdatus hierarkkisiin malleihin - joskus myös termillä multilevel model Vaihtokelpoisuus (exchangeability) Slide 1 Hierarkkinen malli Esimerkki: sydäntautien hoidon tehokkuus - sairaalassa j
Posteriorijakauman normaalijakauma-approksimaatio. Usein posteriorijakauma lähestyy normaalijakaumaa kun n
Luento 5 Päättely suurten otosten tapauksessa, n - normaalijakauma-approksimaatio - suurten otosten teoria - asymptoottinen normaalius ja konsistenttisuus - vastaesimerkkejä Slide 1 Bayesilaisen päättelyn
Pikajohdatus bayesilaiseen tilastoanalyysiin ja monimuuttuja-analyysiin
ja monimuuttuja-analyysiin Loppuseminaari: Terveydenhuollon uudet analyysimenetelmät (TERANA) Aki Vehtari AB HELSINKI UNIVERSITY OF TECHNOLOGY Department of Biomedical Engineering and Computational Science
Bayesilainen päätöksenteko / Bayesian decision theory
Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena
Mitä on bayesilainen päättely?
Metodifestivaali 29.5.2009 Aki Vehtari AB TEKNILLINEN KORKEAKOULU Lääketieteellisen tekniikan ja laskennallisen tieteen laitos Esityksen sisältö Miksi? Epävarmuuden esittäminen Tietämyksen päivittäminen
P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
Binomi Jacob Bernoulli ( ), Bayes ( ) Normaali de Moivre ( ), Laplace ( ), Gauss ( )
Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
5.7 Uskottavuusfunktioon perustuvia testejä II
5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa
2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö
Tentin materiaali. Sivia: luvut 1,2, , ,5. MacKay: luku 30. Gelman, 1995: Inference and monitoring convergence
Tentin materiaali Sivia: luvut 1,2,3.1-3.3,4.1-4.2,5 MacKay: luku 30 Gelman, 1995: Inference and monitoring convergence Gelman & Meng, 1995: Model checking and model improvement Kalvot Harjoitustyöt Tentin
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia Tehtäväsarja I 1. Jatkoa Harjoitus 8A tehtävään 3. Muodosta odotusarvolle µ approksimatiivinen
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Luento 11. Muutama hyödyllinen Monte Carlo-menetelmä. Muutama hyödyllinen Monte Carlo-menetelmä. Mitä muuta hyödyllistä Gelman et al kirjasta löytyy
Luento 11 Muutama hyödyllinen Monte Carlo-menetelmä Mitä muuta hyödyllistä Gelman et al kirjasta löytyy Kertaus koko kurssiin - tenttiinlukuohjeet Slide 1 Muutama hyödyllinen Monte Carlo-menetelmä Hylkäyspoiminta
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
Log-tiheydet - yli- ja alivuotojen välttämiseksi laskenta usein suoritettava log-tiheyksillä
Luento 7 Yleistä laskennasta mm. (luvut 10 ja 12) - karkea estimointi - posteriorimoodit - kuinka monta simulaationäytettä tarvitaan Monte Carlo (luku 11) Slide 1 - suora simulointi - hiladiskretointi
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - odotettu hyöty tai kustannus (expected utility or cost)
Viime kerralla Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - kuinka monta riippuvaa simulaationäytettä tarvitaan - joitakin perus-mcmc-menetelmien parannuksia Slide 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Uskottavuuden ominaisuuksia
Luku 9 Uskottavuuden ominaisuuksia 9.1 Tyhjentävyys T yhjentävyys (Fisher 1922) luonnehtii täsmällisesti havaintoihin sisältyvän informaation kvantitatiivisesti. Parametrin θ estimaatti T(x) on tyhjentävä
Tämän luvun sisältö. Luku 5. Estimointiteorian perusteita. Perusjakaumat 1-ulotteisina (2) Perusjakaumat 1-ulotteisina
Tämän luvun sisältö Luku 5. T-6. Datasta tietoon, syksy professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto.. Luku käydään läpi kahdella luennolla. Perusjakaumat -ulotteisina Yleistys
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1)
5. ESTIMOINTITEORIAN PERUSTEITA 5.1. Perusjakaumat 1-ulotteisina Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) Siksi tarvitaan todennäköisyyslaskentaa
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
Tilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
4.2.2 Uskottavuusfunktio f Y (y 0 X = x)
Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,
Luku 5. Estimointiteorian perusteita
1 / 61 Luku 5. Estimointiteorian perusteita T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 10.11.2011 2 / 61 Tämän luvun sisältö Luku käydään
p(y θ, M) p(θ M)dθ p(θ y, M) = p(y M) Luento 10 Marginaaliuskottavuus Bayes-tekijä Mallin odotettu hyöty DIC (Deviance Information Criterion)
Luento 10 Bayes-tekijä Mallin odotettu hyöty DIC (Deviance Information Criterion) Mallin valinta Slide 1 Marginaaliuskottavuus Bayesin kaava missä p(θ y, M) = p(y M) = p(y θ, M)p(θ M) p(y M) p(y θ, M)
Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely)
Gaussiset prosessit derivaattahavainnoilla regressio-ongelmassa (valmiin työn esittely) Ohjaaja: TkT Aki Vehtari Valvoja: Prof. Harri Ehtamo Kandidaattiseminaari 21 1.11.21 Esityksen rakenne Tausta Derivaattahavaintojen
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
S-114.600 Bayesilaisen mallintamisen perusteet
S-114.600 Bayesilaisen mallintamisen perusteet Laajuus: 2 ov Opettajat: TkT Aki Vehtari, DI Toni Tamminen Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin
Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)
Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
Bayesiläinen tilastollinen vaihtelu
Bayesiläinen tilastollinen vaihtelu Janne Pitkäniemi FT, dos. (biometria), joht. til. tiet Suomen Syöpärekisteri Hjelt-instituutti /Helsingin yliopisto Periaatteet Tilastollinen vaihtelu koskee perusjoukon
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017
Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät Ratkaisuehdotuksia
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 14..2017 Ratkaisuehdotuksia 1. Olkoon θ positiivinen parametri, ja asetetaan 2θ 1 y exp y 2 /θ), kun y > 0 fy; θ) = 0, muuten
Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia keskenään
Viime kerralla Johdatus hierarkisiin malleihin Vaihtokelpoisuus Slide 1 Hierarkinen malli Esimerkki: sydäntautien hoidon tehokkuus Jos oletetaan, että sairaaloissa on eroja, kaikki potilaat eivät ole vaihtokelpoisia
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia
Tilastotieteen aihehakemisto
Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Bayesläiset tilastolliset mallit
Luku 9 Bayesläiset tilastolliset mallit Lasse Leskelä Aalto-yliopisto 8. lokakuuta 07 9. Priorijakauma ja posteriorijakauma Bayesläisen tilastollisen päättelyn lähtökohtana on päivittää satunnaisilmiöön
Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1
Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
Tilastollinen päättely, 10 op, 4 ov
Tilastollinen päättely, 0 op, 4 ov Arto Luoma Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede 3304 TAMPEREEN YLIOPISTO Syksy 2006 Kirjallisuutta Garthwaite, Jolliffe, Jones Statistical Inference,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä
Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Antti Penttinen Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Metodifestivaalit Jyväskylän yliopisto 21.5.2013 Suunnitelma
Bayesilaisen mallintamisen perusteet kurssin sisältö
S-114.2601 Bayesilaisen mallintamisen perusteet Laajuus: 5 op, L Opettajat: Dos. TkT Aki Vehtari, DI Jarno Vanhatalo Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset
edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof.
Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes 11.06.2012 Ohjaaja: TkT Arto Klami Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL
Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1
Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Bayesilaisen mallintamisen perusteet
Bayesilaisen mallintamisen perusteet Johdanto Yksiparametrisia malleja Moniparametrisia malleja Slide 1 Päättely suurten otosten tapauksessa ja bayesilaisen päättelyn frekvenssiominaisuudet Hierarkiset
Kaksisuuntainen varianssianalyysi. Heliövaara 1
Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Laskennallinen data-analyysi II
Laskennallinen data-analyysi II Patrik Hoyer Epävarmuuden mallintaminen 16 17.4.2008 LDA II, osa 3: epävarmuuden mallintaminen Luennot (16.4 ja 17.4) - ongelma, menetelmät, esimerkkejä (kalvot verkossa