Kon Teräkset Harjoituskierros 7. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka
|
|
- Aarne Auvinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kon Teräkset Harjoituskierros 7. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka
2
3 Hammaspyörät Suunnittelustandardit Euroopassa esimerkiksi: ISO Calculation of load capacity of spur and helical gears Part 1: Basic principles, introduction and general influence factors Part 2: Calculation of surface durability (pitting) Part 3: Calculation of tooth bending strength Part 5: Strength and quality of materials Part 6: Calculation of service life under variable load USA: vastaavat AGMA standardit AGMA = American Gear Manufacturing Association
4 Hammaspyörien mitoitus Sallittu pintapaine: σ HP = σ Hlim Z NT S Hlim Z L Z V Z R Z W Z X Jossa σ Hlim on sallittu jännitys (huomioi lämpökäsittelyn ja materiaalin), S Hlim on varmuuskerroin ja Z n ovat kertoimia pinnanlaadulle, voitelulle, nopeudelle, jne. Sallittu taivutusjännitys: σ FP = σ Flim Y ST Y NT S Flim Y δrelt Y RrelT Y XR Jossa σ Flim on sallittu jännitys (huomioi lämpökäsittelyn ja materiaalin), S Flim on varmuuskerroin ja Y n ovat kertoimia hampaanmuodolle, loviluvulle, pinnanlaadulle ja koolle, jne.
5 Sallittu jännitys σ H_lim (pintapaine) Läpikarkaistu Induktio- tai liekkikarkaistu Hiiletyskarkaistu
6 Sallittu jännitys σ F_lim (taivutusjännitys) Läpikarkaistu Induktio- tai liekkikarkaistu Hiiletyskarkaistu
7
8
9 Hiiletyskarkaisu Hankala tavoite: 1. Väsymisen ja kulumisen kesto 2. Kova ja luja, kulutusta kestävä pinta. 3. Sitkeä sisus Pitää saavuttaa yhdellä käsittelyllä.
10 Teräksen pinnan hiilettäminen
11 Teräksen pinnan hiilettäminen
12 Teräksen pinnan hiilettäminen
13 Tehtävä 1. Lasketaan hiilen diffuusioon vaadittava aika Fickin 2. lain avulla: C t D 2 C 2 x Asettamalla sopivat reunaehdot, yhtälöstä voidaan ratkaista etäisyyttä vastaava konsentraatio tietyllä hetkellä. Ratkaisua varten tehdään seuraavat oletukset: teräksen alkuperäinen hiilipitoisuus C 0 x kasvaa pinnasta kohti keskiakselia alkutilanteen aika t=0 hiiletysatmosfäärin hiilipitoisuus on tasaisesti C S Yhtälölle saadaan reunaehdot: C=C 0 kun t=0 ja 0 x C=C s kun t>0 ja x = 0 C=C 0 kun x =
14 Tehtävä 1. Kyseisillä reunaehdoilla yhtälö saa muodon: C C x S C C erf jossa virhefunktioon: 2 x Dt, erf z z 2 e 0 n 2 dn on sijoitettu z Lasketaan ensin diffuusiovakio D hiilelle austeniitissa, kun D 0 on 2,3x10-5 m 2 /s, diffuusion aktivaatioenergia Q D on 148 kj/mol, T = 1223 K ja kaasuvakio on 8,31 J/mol - K x 2 Dt Qd kJ mol D 11 2 D0 exp 2,3 10 m s exp m RT 8,31J mol K 1223K s
15 9,6 h 4,4 h
16 Hiilipitoisuus (%) Tehtävä 1. 1,4 1,2 1 1,3 %C (4 h) 0,8 Skemaattinen profiili tasauksen jälkeen 0,8 %C (17 h) 0,6 0,4 0, ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 Etäisyys pinnasta (mm)
17 Rajakovuus 550 HV ~0,3 0,4 %C
18
19 Teräksen pinnan hiilettäminen - mikrorakenteet
20 Tehtävä 2. Teräksen pinta koostuu martensiitista. Martensiitin seassa saattaa olla, etenkin korkeilla hiilipitoisuuksilla jäännösausteniittia. Martensiitin hiilipitoisuus on pinnassa 0,6 %C. Pintakerros on hiiletystä seuranneen diffuusiohehkutuksen jälkeen varsin tasainen. Rajakovuutta (550 HV) vastaava hiilipitoisuus on noin 0,4 %C, joten martensiitin hiilipitoisuus laskee kohti perusaineen hiilipitoisuutta.
21 Tehtävä 2. Pinnassa mikrorakenne on siis martensiittia, jonka hiilipitoisuus laskee kohti perusaineen hiilipitoisuutta syvyyden funktiona. Syvemmällä rakenteessa martensiitin seassa alkaa esiintyä bainiittia. Bainiitin osuus rakenteessa kasvaa edettäessä syvemmälle rakenteeseen. Keskustaan on muodostunut bainiitin sekaan ferriittiä ja perliittiä.
22 Tehtävä 2. Matalahiilisillä teräksillä 50/50 martensiittis-bainiittinen rakenne vastaa noin 360 HV (n. 36 HRC). kovuutta. 20CrMn5
23 Tehtävä 2. Käyttökohteessa ei sallittu lainkaan ferriittis-perliittistä rakennetta. Usein hiiletyskarkaistavassa kappaleessa vaaditaan keskiakselille vähintään 50%:sti martensiittista rakennetta, jossa ei saa olla lainkaan ferriittiä tai perliittiä. Matalahiilinen martensiittis-bainiittinen rakenne muuttuu hiiletyskarkaisua seuraavassa matalan lämpötilan päästössä ( C) sitkeäksi sisustaksi. Ferriittis-perliittinen sisusta romahduttaisi materiaalin väsymisominaisuuksia esim. hammaspyörissä.
24 Päästö Lopuksi päästö matalassa lämpötilassa oc. Liian korkea päästölämpötila laskee martensiittipinnan kovuutta ja poistaa edullisen jännitystilan => ei toivottua Sisäosan matalahiilisyys vaikuttaa siihen, ettei siitä tule liian kovaa/lujaa.
25 Suojakaasut lämpökäsittelyssä
26 Muita pintakarkaisuja: -Typetys -Induktiokarkaisu -Liekkikarkaisu
27 Tehtävä 3. Arvio oheisen Fe-N tasapainopiirroksen avulla, mitä tapahtuu seosteräkselle (esimerkiksi 42CrMo4), kun uuniin johdetaan 550 C lämpötilassa ammoniakkia (NH 3 ). Miten tilanne muuttuu, jos teräs olisi seostamaton hiiliteräs?
28 Typetyskarkaisu
29 Tehtävä 3. Teräksen pinnassa ammoniakki hajoaa vapaaksi typeksi: 2NH H 3 2N 3 Typpi diffuntoituu teräkseen ja muodostaa raudan kanssa g (Fe 4 N) ja e-nitridejä (Fe 2 N ja Fe 3 N). Pintaa muodostuu ohut (n mm), erittäin kova ja kulutusta kestävä pinta. Kovan pinnan alla diffuusiokerros (n. 1 mm), joka koostuu koherenteista M-nitrideistä (M=kromi, molybdeeni, alumiini ja vanadiini). Seostamattomilla teräksillä vaarana on päästöhauraus. Pitkän hehkutusajan vuoksi teräkset ovat yleensä seostettuja, jolloin päästöhaurausriski pienenee. 2
30 Arvioi oheisen jatkuvan kuumennuksen piirroksen avulla, miten lämpökäsittely poikkeaa normaalista austenitointihehkutuksesta, kun C45E teräksen pintakerros halutaan karkaista induktiokuumennuksella. Tehtävä 4.
31 Induktiokuumennuksella kappaleen pinta voidaan karkaista hyvin nopeasti. Teräksen pintaan syntyy pyörrevirtoja, joiden vaihtelusta materiaali kuumenee. Karkaistavan materiaalin tulee olla magneettista. Saavutetaan hyvin suuria kuumennusnopeuksia (satoja C/s) nopea menetelmä. Austenitointipiirroksesta havaitaan, että faasimuutosten rajat siirtyvät korkeampiin lämpötiloihin, kun kuumennusnopeus kasvaa. Esimerkiksi homogeeninen austeniittirakenne syntyy 1 K/s kuumennusnopeudella n. 850 C:ssa. Vastaavasti 500 K/s nopeudella austeniittirakenne syntyy 1050 C:ssa. Tehtävä 4.
32 Austenitoitumisen nopeus eri mikrorakenteilla
33 Austenitoitumisen kulku ja vaikutus teräksen ominaisuuksiin
34
35 Pintakarkaisumenetelmät - induktiokarkaisu
36 Pintakarkaisumenetelmät - induktiokarkaisu
37 Pintakarkaisumenetelmät - induktiokarkaisu
38
39 Pintakarkaisumenetelmät - induktiokarkaisu
40
41
42 Pintakarkaisumenetelmät - liekkikarkaisu
43 Ensi kerralla Seuraava (ja viimeinen) viikkoharjoitus pidetään Aiheena rosterit eli ruostumattomat teräkset
Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos
Kon-67.3110 Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri
Terästen lämpökäsittelyn perusteita
Terästen lämpökäsittelyn perusteita Austeniitin nopea jäähtyminen Tasapainopiirroksen mukaiset faasimuutokset edellyttävät hiilen diffuusiota Austeniitin hajaantuminen nopeasti = ei tasapainon mukaisesti
Faasimuutokset ja lämpökäsittelyt
Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja
Kon Teräkset Harjoituskierros 6.
Kon-67.3110 Teräkset Harjoituskierros 6. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Viikkoharjoitus #6 - kysymykset Mitä on karkaisu? Miten karkaisu suunnitellaan?
Luku 5: Diffuusio kiinteissä aineissa
Luku 5: Diffuusio kiinteissä aineissa Käsiteltävät aiheet... Mitä on diffuusio? Miksi sillä on tärkeä merkitys erilaisissa käsittelyissä? Miten diffuusionopeutta voidaan ennustaa? Miten diffuusio riippuu
Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka
Kon-67.3110 Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri ilmiöistä
Luento 4 Karkenevuus ja pääseminen. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Luento 4 Karkenevuus ja pääseminen Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Karkenevuus Honeycombe & Bhadeshia ch 8 s. 151-170 Uudistettu Miekk oja luku
Ultralujien terästen hitsausmetallurgia
1 Ultralujien terästen hitsausmetallurgia CASR-Steelpolis -seminaari Oulun yliopisto 16.5.2012 Jouko Leinonen Nostureita. (Rautaruukki) 2 Puutavarapankko. (Rautaruukki) 3 4 Teräksen olomuodot (faasit),
Luento 2 Martensiitti- ja bainiittireaktio
Luento 2 Martensiitti- ja bainiittireaktio Martensiittitransformaatiossa tapahtuvat muodonmuutokset hilassa Martensiittitransformaatiossa tapahtuvat muodonmuutokset hilassa - Martensiitti (tkk, tetragoninen)
Keskinopea jäähtyminen: A => Bainiitti
Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät
Binäärinen tasapaino, ei täyttä liukoisuutta
Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat
CHEM-C2400 MATERIAALIT SIDOKSESTA RAKENTEESEEN (5 op) Laskuharjoitus 1
CHEM-C2400 MATERIAALIT SIDOKSESTA RAKENTEESEEN (5 op) Laskuharjoitus 1 Kristallografiaa 1. Suunnan millerin indeksit (ja siten siis suunta) lasketaan vähentämällä loppupisteen koordinaateista alkupisteen
Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa
Rikasta pohjoista 10.4.2019 Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa Lapin alueen yritysten uudet teräsmateriaalit Nimi Numero CK45 / C45E (1.1191) 19MnVS6 / 20MnV6 (1.1301) 38MnV6 /
Esipuhe. Helsingissä heinäkuussa 2004 Lämpökäsittelyn toimialaryhmä Teknologiateollisuus ry
Lämpökäsittelyoppi Esipuhe Metallit ovat kiehtova materiaaliryhmä erityisesti siksi, että niiden ominaisuudet ovat muunneltavissa hyvin laajasti. Metalleja voidaan seostaa keskenään, mutta ennen kaikkea
Hakemisto. C CCT-käyrä... ks. S-käyrä CVD-pinnoitus...ks. kaasufaasipinnoitus
A A 1-lämpötila... 17 A 3-lämpötila... 17 Abrasiivinen kuluminen... 110 A cm-lämpötila... 17 Adhesiivinen kitka... 112 Adhesiivinen kuluminen... 110 ADI... ks. ausferriittinen pallografiittivalurauta Adusointi...
Harjoitus 11. Betonin lujuudenkehityksen arviointi
Harjoitus 11 Betonin lujuudenkehityksen arviointi Betonin lujuudenkehityksen arvioiminen Normaali- ja talviolosuhteet T = +5 +40 C lujuudenkehityksen nopeus muuttuu voimakkaasti, mutta loppulujuus sama
Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Luento 2 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Rauta-hiili -tasapainopiirros Honeycombe & Bhadeshia s. 30-41. Uudistettu Miekk oj s. 268-278. Rauta (Fe)
RUOSTUMATTOMAT TERÄKSET
1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja
I. Lämpökäsittely. I.1 Miksi? Pekka Niemi - Tampereen ammattiopisto. Valukappaleita lämpökäsitellään seuraavista syistä:
I. Lämpökäsittely Pekka Niemi - Tampereen ammattiopisto Kuva 284. Lämpökäsittelyhehkutus tapahtunut, uunin ovi aukaistu I.1 Miksi? Valukappaleita lämpökäsitellään seuraavista syistä: poistetaan ei-toivottuja
Fe - Nb - C ja hienoraeteräkset
Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000
Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015. Karkaisu ja päästö
1 Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015 Karkaisu ja päästö Teräs kuumennetaan austeniittialueelleen (A), josta se jäähdytetään nopeasti (sammutetaan) nesteeseen,
UDDEHOLM UNIMAX 1 (5) Yleistä. Käyttökohteet. Mekaaniset ominaisuudet. Ominaisuudet. Fysikaaliset ominaisuudet
1 (5) Yleistä Uddeholm Unimax on kromi/molybdeeni/vanadiini - seosteinen muovimuottiteräs, jonka ominaisuuksia ovat: erinomainen sitkeys kaikissa suunnissa hyvä kulumiskestävyys hyvä mitanpitävyys lämpökäsittelyssä
Esitiedot. Luento 6. Esitiedot
Esitiedot Luento 6 Miten terästen karkenevuutta voidaan parantaa? Miten päästölämpötila ja aika vaikuttavat karkaistun rakenteen mekaanisiin ominaisuuksiin? Mitä tarkoittaa päästöhauraus? 2 Esitiedot Epäselviä
Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000
Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat
Rauta-hiili tasapainopiirros
Rauta-hiili tasapainopiirros Teollisen ajan tärkein tasapainopiirros Tasapainon mukainen piirros on Fe-C - piirros, kuitenkin terästen kohdalla Fe- Fe 3 C -piirros on tärkeämpi Fe-Fe 3 C metastabiili tp-piirrosten
Raerajalujittuminen LPK / Oulun yliopisto
Raerajalujittuminen 1 Erkautuslujittuminen Epäkoherentti erkauma: kiderakenne poikkeaa matriisin rakenteesta dislokaatiot kaareutuvat erkaumien väleistä TM teräksissä tyypillisesti mikroseosaineiden karbonitridit
Teräkset Kon kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY PINTAKARKAISUT Pintakarkaisut. Typetys eli nitraus
1 Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY PINTAKARKAISUT 24.03.15 Pintakarkaisut Typetys eli nitraus Typetyskarkaisu on todellinen pintakarkaisumenetelmä, jossa atomaarinen typpi
TYÖVÄLINEIDEN KARKAISU
TYÖVÄLINEIDEN KARKAISU 12 bar 10 bar 10 bar Pakkaskarkaisu Teräksen karkaisun yhteydessä tehtävää kylmäkäsittelyä on perinteisesti kutsuttu pakkaskarkaisuksi. Pakkaskarkaisu tarkoittaa sitä että karkaisuhehkutuksen
Valurauta ja valuteräs
Valurauta ja valuteräs Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Valurauta ja valuteräs ovat raudan (Fe), hiilen (C), piin (Si) ja mangaanin (Mn) sekä muiden seosaineiden
Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla
Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat
Kon Harjoitus 4: standardit ja terästunnukset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Kon-67.3110 Harjoitus 4: standardit ja terästunnukset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Harjoitus 4 Tällä kerralla tutustutaan erilaisiin terästen nimikejärjestelmiin ja
Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit
Teräsvalut Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy Teräsvalujen raaka-ainestandardit - esitelmän sisältö Mitä valun ostaja haluaa? Millaisesta valikoimasta valuteräs
KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
Sisällysluettelo. Kierretapit 51-77. Kierretappien valintajärjestelmä ja symbolien merkitys 52-55. Metrinen kierre M 56-74
Sisällysluettelo Kierretapit 51-77 Kierretappien valintajärjestelmä ja symbolien merkitys 52-55 Metrinen kierre M 56-74 Metrinen hienokierre MF 75-76 Putkikierre (R)G 77 51 Materiaalien luokitus Materiaali-
Mak Sovellettu materiaalitiede
.106 tentit Tentti 21.5.1997 1. Rekristallisaatio. 2. a) Mitkä ovat syyt metalliseosten jähmettymisen yhteydessä tapahtuvalle lakimääräiselle alijäähtymiselle? b) Miten lakimääräinen alijäähtyminen vaikuttaa
Sisällysluettelo Kierretapit 43-67 UNC Kaikki hinnat ilman Alv.
Sisällysluettelo Kierretapit 43-67 Kierretappien valintajärjestelmä ja ikonien merkitys 44-47 Metrinen kierre M 48-61 Metrinen hienokierre MF 62-65 UNC-kierre UNC 66 Putkikierre G 67 43 Kaikki hinnat ilman
UDDEHOLM VANADIS 60. Käyttökohteet. Yleistä. Ominaisuudet. Erityisominaisuudet. Taivutuslujuus. Fysikaaliset ominaisuudet 1 (5)
1 (5) Käyttökohteet Uddeholm Vanadis 60 on runsasseosteinen jauhemetallurgisesti valmistettu pikateräs, joka sisältää kobolttia. Se sopii erittäin hyvin vaativiin kylmätyösovelluksiin, joissa vaaditaan
Luento 3. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Luento 3 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Seosaineiden liuoslujittava vaikutus ferriittiin Seosaineiden vaikutus Fe-C tasapainopiirrokseen Honeycombe
Corthal, Thaloy ja Stellite
Corthal, Thaloy ja Stellite KOVAHITSAUSTÄYTELANGAT KORJAUS JA KUNNOSSAPIDON AMMATTILAISILLE SOMOTEC Oy Tototie 2 70420 KUOPIO puh. 0207 969 240 fax. 0207 969 249 email: somotec@somotec.fi internet: www.somotec.fi
± 0,020 ± 0,035 ± 0,040 Q8 ± 0,056 Q9 ± 0,080 Q10 ± 0,025 ± 0,035 ± 0,045 Q8 ± 0,060 Q9 ± 0,090 Q10 ± 0,035 ± 0,045 ± 0,063 Q9 ± 0,090 Q10
M QUALIY CLASSES CLASSES LAATUTOLERANSSIT TOLERANCES JAKOVIRHEET PITCH ERROR M L00 Q Q Q -0,0-0,0-0,0 ± 0,00 ± 0,00 ± 0,0 ± 0,00 ± 0,0 ± 0,00 Q -0,0 ± 0,0 ± 0,0 Q -0, ± 0,0 ± 0,00 Q -0, ± 0,0 ± 0, M L00
Mak Materiaalitieteen perusteet
Mak-45.310 tentit Mak-45.310 Materiaalitieteen perusteet 1. välikoe 24.10.2000 1. Vertaile ionisidokseen ja metalliseen sidokseen perustuvien materiaalien a) sähkönjohtavuutta b) lämmönjohtavuutta c) diffuusiota
± 0,020 ± 0,035 ± 0,040 Q8 ± 0,056 Q9 ± 0,080 Q10 ± 0,025 ± 0,035 ± 0,045 Q8 ± 0,060 Q9 ± 0,090 Q10 ± 0,035 ± 0,045 ± 0,063 Q9 ± 0,090 Q10
QUALIY CLASSES CLASSES LAATUTOLERANSSIT TOLERANCES JAKOVIRHEET PITCH ERROR L00 CLASSES ± 0,00 ± 0,00 ± 0,00 L000 CLASSES ± 0,00 ± 0,00 ± 0,00 L00 CLASSES ± 0,00 L000 CLASSES ± 0,00 ± 0,0 ± 0,00 ± 0,0 QUALIY
UDDEHOLM ORVAR SUPREME 1 (6) Yleistä. Käyttökohteet. Työkalun suorituskykyä parantavat ominaisuudet
1 (6) Yleistä Käyttökohteet Uddeholm Orvar Supreme on kromi/molybdeeni/vanadiini -seosteinen teräs, jonka ominaisuuksia ovat: hyvä lämpökuormituksen ja termisen väsymisen kestävyys suuri lujuus korkeissa
Kaikki hinnat ilman Alv.
Kaikki hinnat ilman Alv. 56 Sisällysluettelo Kierretapit... 57-84 Kierretappien valintajärjestelmä ja ikonien merkitys... 58-61 Metrinen kierre M... 62-77 Metrinen hienokierre MF... 78-81 UNC-kierre UNC...
Terästen lämpökäsittelyt
Terästen lämpökäsittelyt Teräkseen halutaan käyttötarkoituksen mukaan erilaisia ominaisuuksia. Jossain tapauksessa teräksestä tehdyn kappaleen tulee olla kovaa ja kulutusta kestävää, joskus taas sitkeää
Murtumismekanismit: Väsyminen
KJR-C2004 Materiaalitekniikka Murtumismekanismit: Väsyminen 11.2.2016 Väsyminen Väsyminen on dynaamisen eli ajan suhteen aiheuttamaa vähittäistä vaurioitumista. Väsymisvaurio ilmenee särön, joka johtaa
Korkealämpötilaprosessit
Korkealämpötilaprosessit Pyrometallurgiset lämpökäsittelyprosessit 16.10.2017 klo 8-10 SÄ114 Tutustua sulametallurgisia vaiheita seuraaviin lämpökäsittelyprosesseihin - Erityisesti raudan ja teräksen valmistus
VARIDRILL TÄYSKOVA- METALLIPORAT
VARIDRILL TÄYSKOVA- METALLIPORAT VARIDRILL TÄYSKOVAMETALLIPORAT MYÖS LÄPIJÄÄHDYTTEISET VariDrill 3xD...4-9 VariDrill 3xD Weldon kiinnitteiset...10-13 VariDrill 5xD... 14-19 VariDrill 5xD Weldon kiinnitteiset...20-23
Metallit 2005. juha.nykanen@tut.fi
Metallit 2005 juha.nykanen@tut.fi Kertaus Luento 2 Raudan valmistus Teräksen valmistus Standardit Teräksen mikrorakenteet (ferriitti, perliitti, bainiitti, martensiitti) 2 Karkaisu ja päästö Muutama vuosi
UDDEHOLM VANADIS 4 EXTRA. Työkaluteräksen kriittiset ominaisuudet. Käyttökohteet. Ominaisuudet. Yleistä. Työkalun suorituskyvyn kannalta
1 (6) Työkaluteräksen kriittiset ominaisuudet Ohjeanalyysi % Toimitustila C 1,4 Si 0,4 Mn 0,4 Cr 4,7 Mo 3,5 pehmeäksihehkutettu noin 230 HB V 3,7 Työkalun suorituskyvyn kannalta käyttökohteeseen soveltuva
UDDEHOLM DIEVAR 1 (7) Yleistä. Ominaisuudet. Suulakepuristustyövälineet. Kuumataontatyövälineet. Työvälineensuorituskykyä parantavat ominaisuudet
1 (7) Yleistä Uddeholm Dievar on suorituskykyinen kromi/molybdeeni/ vanadiini- seosteinen kuumatyöteräs, jolla on erittäin hyvä kestävyys kuumahalkeilua, yksittäisiä suuria halkeamia, kuumakulumista ja
CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet
CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin
Lastuavat työkalut A V A 2007/2008
Lastuavat työkalut 2007/2008 Jyrsimiä Poranteriä Kierretappeja Maailmanlaajuisesti lastuavia työkaluja Pyöriviä viiloja YG-1 CO., LTD. SISÄLLYSLUETTELO Poranterät pikateräksestä ja kovametallista 2-38
KJR-C2004 materiaalitekniikka. Harjoituskierros 2
KJR-C2004 materiaalitekniikka Harjoituskierros 2 Pienryhmäharjoitusten aiheet 1. Materiaaliominaisuudet ja tutkimusmenetelmät 2. Metallien deformaatio ja lujittamismekanismit 3. Faasimuutokset 4. Luonnos:
UDDEHOLM CALDIE 1 (6) Yleistä. Ominaisuudet. Fysikaaliset ominaisuudet. Käyttökohteet. Puristuslujuus. Lohkeilunkestävyys. Kylmätyöstösovellukset
1 (6) Yleistä Uddeholm Caldie on kromi/molybdeeni/vanadiini seosteinen teräs, jonka ominaisuuksia ovat erittäin hyvä lohkeilun- ja halkeilun kestävyys hyvä kulumiskestävyys suuri kovuus (> 60 HRC) korkeassa
UDDEHOLM VANADIS 10. Työvälineteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työvälineen suorituskyvyn kannalta
1 (6) Työvälineteräksen kriittiset ominaisuudet Työvälineen suorituskyvyn kannalta käyttökohteeseen soveltuva kovuus hyvä kulumiskestävyys hyvä sitkeys estämään työvälineen ennenaikainen rikkoutuminen
SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA.
1 HITSAVONIA PROJEKTI Teemapäivä 13.12.2005. DI Seppo Vartiainen Savonia-amk/tekniikka/Kuopio SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1. Hitsiaine
Ferriittisten ruostumattomien terästen hitsattavuus ja hitsialueen muovattavuus
Ferriittisten ruostumattomien terästen hitsattavuus ja hitsialueen muovattavuus Severi Anttila Oulun yliopiston terästutkimuskeskus,konetekniikan osasto, Materiaalitekniikan laboratorio Johdanto Ferriittiset
Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset
Kon-67.3401 Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Säteilyhaurastuminen Reaktoripaineastia ja sisukset 12/3/2015 3
UDDEHOLM VANCRON 40 1 (6) Työkaluteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työkalun suorituskyvyn kannalta
1 (6) Työkaluteräksen kriittiset ominaisuudet Työkalun suorituskyvyn kannalta Monissa kylmätyösovelluksissa työkalut on pintakäsitelty kiinnileikkautumisen ja adhesiivisen kulumisen estämiseksi. Ennenaikaisen
UDDEHOLM VANADIS 6. Työkaluteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työkalun suorituskyvyn kannalta
1 (7) Työkaluteräksen kriittiset ominaisuudet Työkalun suorituskyvyn kannalta käyttökohteeseen soveltuva kovuus hyvä kulumiskestävyys hyvä sitkeys estämään työkalun ennenaikainen rikkoutuminen Hyvä kulumiskestävyys
Mekaaniset ominaisuudet
Mekaaniset ominaisuudet Kertaus Jäykkyys E Lujuus Myötö- Murto- Muokkauslujittuminen Sitkeys 2 2 Esimerkkejä Golf-maila Keinonivel Hammaspyörä 3 3 Esimerkki: Golf-maila Golf-mailalta vaadittavat ominaisuudet
Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto
Kon-67.3110 Harjoitus 8: Ruostumattomat teräkset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto EN AISI/SAE Tyyppi 1.4021 1.4301 1.4401 1.4460 304L 201 316LN 321H EN vs AISI/SAE tunnukset
Luku 2. Kemiallisen reaktion tasapaino
Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan
Teräs metalli. Teräksen kiteinen rakenne
Teräs metalli Teräs on raudan ja hiilen seos, jonka hiilipi toisuus on pienempi kuin 2 %. Tätä suurem man hiilipitoisuuden omaavat seokset luoki tellaan valuraudoiksi. Teräkset sisältävät ta vallisesti
KON-C3002. Tribologia. Kosketusjännitykset
KON-C300 Tribologia Kosketusjännitykset 0.05.08 Kosketusjännitykset Esitys poikkeaa KOS-kirjan luvun.8 esitystavasta Tässä seurataan pääosin Tribologia-kirjan (Kivioja et al., 6p, 00, luvut 3. 3.4) esitystapaa
Lujat termomekaanisesti valssatut teräkset
Lujat termomekaanisesti valssatut teräkset Sakari Tihinen Tuotekehitysinsinööri, IWE Ruukki Metals Oy, Raahen terästehdas 1 Miten teräslevyn ominaisuuksiin voidaan vaikuttaa terästehtaassa? Seostus (CEV,
B.1 Johdatus teräkseen
B.1 Johdatus teräkseen 1 B.1.1 Terästen valmistus B.1.1.1 Terästen valmistus raakaraudasta Masuunissa valmistettu raakarauta sisältää 4-5 % hiiltä. Teräksissä pitoisuus on tavallisimmin alle 1 % ja yleisissä
Nostureita on monenlaisia, akseleista puhumattakaan. Uddeholmin teräkset akseleihin
Nostureita on monenlaisia, akseleista puhumattakaan. Uddeholmin teräkset akseleihin Uddeholmin teräkset kestävät kaikenlaista kuormaa Akselit ovat tärkeitä koneenosia varsinkin nostureissa. Akseleiden
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma HAMMASPYÖRÄN HAMPAAN TÄYTEHITSAUS REPAIR WELDING A SPROCKET OF A GEARWHEEL Lappeenrannassa 27.04.2012 Leevi Paajanen
Valurautojen lämpökäsittelyt. SVY opintopäivät Kaisu Soivio
Valurautojen lämpökäsittelyt SVY opintopäivät 3.2.2017 Kaisu Soivio Moventas lyhyesti Moventas on yksi johtavista tuulivoimavaihteiden valmistajista Ensimmäinen tuulivoimavaihde toimitettu 1980, asennuskanta
UDDEHOLM BURE 1 (5) Yleistä. Käyttökohteet. Ominaisuudet. Mekaaniset ominaisuudet. Fysikaaliset ominaisuudet
1 (5) Yleistä Uddeholm Bure on kromi/molybdeeni/vanadiini - seosteinen teräs, jonka ominaisuuksia ovat: hyvä kulumiskestävyys korkeissakin lämpötiloissa hyvä sitkeys hyvä kuumalujuus ja terminen väsymislujuus
Metallurgian perusteita
Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria
HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma Severi Iso-Markku HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA Työn tarkastajat:
UDDEHOLM CHIPPER/VIKING. Yleistä. Ominaisuudet. Käyttökohteet. Fysikaaliset ominaisuudet. Käyttökohteet: Vetolujuus. Rakenne 1 (6)
1 (6) Yleistä Lämpökäsitellyn kangen tyypillinen mikrorakenne Uddeholm Chipper/Viking on öljyyn-, ilmaan- ja tyhjiöön karkeneva teräs, jonka ominaisuuksia ovat: hyvä mitanpitävyys lämpökäsittelyssä hyvä
Mekaaniset ominaisuudet
Mekaaniset ominaisuudet Yleisimmät mekaaniset ominaisuudet Kimmokerroin (E) jäykkyys Lujuus (σ) Kovuus 2 2 Jännitys σ = F/A ε = l/l σ = Eε 3 3 Kimmokerroin (E) Kuvaa materiaalin jäykkyyttä Syntyy atomien
FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi
FERRIITTISET RUOSTUMATTOMAT TERÄKSET www.polarputki.fi Polarputken valikoimaan kuuluvat myös ruostumattomat ja haponkestävät tuotteet. Varastoimme saumattomia ja hitsattuja putkia, putkenosia sekä muototeräksiä.
Valujen lämpökäsittely
Valujen lämpökäsittely Lämpökäsittelyillä muutetaan materiaalin ominaisuuksia, lujuutta, sitkeyttä ja työstettävyyttä. Lämpökäsiteltävyyden ja lämpökäsittelyn käytön suhteen materiaalit voidaan jakaa ryhmiin
Terästen lämpökäsittely
Teemu Häkkilä Terästen lämpökäsittely Esimerkkinä puukonterien lämpökäsittely Opinnäytetyö CENTRIA-AMMATTIKORKEAKOULU Tuotantotalouden koulutusohjelma Kesäkuu 2017 TIIVISTELMÄ OPINNÄYTETYÖSTÄ Centriaammattikorkeakoulu
Vaurioiden tyypilliset syyt
Vaurioituminen II Vaurioiden tyypilliset syyt 18.9.2013 2 Loppumurtuma Hauras tai sitkeä murtuma Ei juurisyy, vaan viimeinen vaihe pitkässä tapahtumaketjussa. 18.9.2013 3 Väsyminen (Fatigue) 1998 Eschede
Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1
Puukkoteräkset Juha Perttula www.terastieto.com Juha Perttula, Puukkoteräkset 1 Sisällysluettelo Esipuhe 3 1. Rauta ja teräs 4 Meteoriittirauta 4, Meteoriittiraudan testasus 5, Malmista takoraudaksi ja
CCT -diagrammi. Austeniitti. Lämpötila. Martensiitti. Aika Hiiliekvivalentti kasvaa (CEV=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15) Hitsattavuus huononee
CCT -diagrammi Lämpötila Austeniitti Martensiitti Enemmän seosaineita (C, Mn, Cr, Mo, B ) kriittinen jäähtymisnopeus pienempi Aika Hiiliekvivalentti kasvaa (CEV=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15) Hitsattavuus
Vanha käsityöammatti. Bodycote Lämpökäsittely. Toimintaa 26 maassa
Lämpökäsittely Bodycote Lämpökäsittely Yli 190 toimipistettä eri puolilla maailmaa Bodycote on maailman johtavin yritys lämpökäsittelyalalla. Lämpökäsittely on keskeinen osa asiakkaittemme valmistusketjua
Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma
Murtumismekaniikka II Transitiokäyttäytyminen ja haurasmurtuma Kertauskysymyksiä: Miksi säröt ovat vaarallisia? Miksi säröllinen kappale ei murru pienellä jännityksellä? Mikä on G? Yksikkö? Mikä on K?
WSX445 KEVYTTÄ KONEISTUSTA UUDEN SUKUPOLVEN TASOJYRSIMELLÄ KAKSIPUOLEISILLA KÄÄNTÖTERILLÄ
WSX445 KEVYTTÄ KONEISTUSTA UUDEN SUKUPOLVEN TASOJYRSIMELLÄ KAKSIPUOLEISILLA KÄÄNTÖTERILLÄ Uusi kaksipuolinen Z -geometria, jossa yhdistyvät positiivisen ja negatiivisen kääntoterän parhaat ominaisuudet.terävä
Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com
Ferriittiset ruostumattomat teräkset ja niiden hitsaus May 12, 2011 www.outokumpu.com Ruostumattomat teräkset Ferriittisten ominaisuudet Ferriittisten hitsaus 2 12.5.2011 Hannu-Pekka Heikkinen Ruostumaton
Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):
CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion
WIDIA-HANITA TUOTTEET
WIDIA-HANITA TUOTTEET JÄLLEENMYYJÄNÄ: WIDIA-Hanita tuotteet VariMill...3-4 VariMill pallopäiset jyrsimet...5 Yleisjyrsimet...6-9 Viimeistelyjyrsimet... 10-11 Jyrsimet alumiinille...12-13 Rouhintajyrsin...14
MEKAANINEN AINEENKOETUS
MEKAANINEN AINEENKOETUS KOVUUSMITTAUS VETOKOE ISKUSITKEYSKOE 1 Kovuus Kovuus on kovuuskokeen antama tulos! Kovuus ei ole materiaaliominaisuus samalla tavalla kuin esimerkiksi lujuus tai sitkeys Kovuuskokeen
Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1
Puukkoteräkset Juha Perttula www.terastieto.com Juha Perttula, Puukkoteräkset 1 Sisällysluettelo Esipuhe 3 1. Rauta ja teräs 4 Meteoriittirauta 4, Malmista takoraudaksi ja teräkseksi 6, Valurauta 6, Valuraudan
Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2%
Cr > 10,5% C < 1,2% Mikä on ruostumaton teräs? Rautaseos, johon on seostettu 10,5 % kromia ja 1,2 % hiiltä. Seostuksen ansiosta ruostumattomaan teräkseen muodostuu korroosiolta suojaava sekä itsekorjautuva
Korkeiden lämpötilojen teräkset
Timo Kauppi Korkeiden lämpötilojen teräkset Kirjallisuustutkimus Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja B. Raportit ja selvitykset 12/2013 Korkeiden lämpötilojen teräkset Timo Kauppi Korkeiden
Metallit 2005. juha.nykanen@tut.fi
Metallit 2005 juha.nykanen@tut.fi Käsitetesti 2 Suomugrafiittivalurauta (EN-GJL) Mikrorakenne vaihtoehdot jäähtymisnopeuden mukaan Grafiitti + ferriitti Grafittii + sementiitti + perliitti Grafiitti +
y + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
Teräksen ominaisuuksien räätälöinti
Antti Järvenpää 2012 1 Teräksen ominaisuuksien räätälöinti Antti Järvenpää Oulun yliopisto / Oulun Eteläisen Instituutti FMT-tutkimusryhmä 1 Antti Järvenpää 2012 2 1. Johdanto 2. Lämmönlähteet Sisältö
= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
Erittäin lyhyt HSS-pora,TiN-kärki
Erittäin lyhyt HSS-pora,TiN-kärki Ominaisuudet // Edut Poran A022 edut verrattuna erittäin lyhyeen vakioporaan: Testeissä on saavutettu jopa 33% parempi tuottavuus. Elinikä on merkittävästi pidempi. Kaikki