Mobile Sensing VI Orientation Estimation. Spring 2015 Petteri Nurmi
|
|
- Urho Manninen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mobile Sensing VI Orientation Estimation Spring 2015 Petteri Nurmi
2 Learning Objectives Understand how the orientation of device can be characterized and represented Familiarize with the most common formalisms for orientation: Euler angles, Quaternions and Directed Cosine Matrices Understand sensor fusion techniques: complementary and Kalman filtering Magnetic sensing, magnetometer basics and error sources, example applications for the magnetometer
3 Attitude Estimation and Tracking Attitude refers to the orientation of an object with respect to a given reference frame (Lecture V) Estimation: determine current orientation of device Requires calibration or noise estimation to compensate for different error sources Tracking: estimate orientation over time Requires sensor fusion, i.e., combining measurements from different sensors Previous lecture looked at forces that characterize motion along the reference frame This lecture looks at how to align measurements of different sensors along the reference frame
4 Earth s Magnetic Field Magnetic field extending from the Earth s interior to where it meets the solar wind magnetic dipole that is tilted about 10 degrees from Earth s rotational axis Varies over time, but sufficiently slowly to enable compass-based navigation Strength of the field expressed in micro Teslas (μt) (or gauss 1G = 100 μt) Between 22 μt to 67 μt depending on position Geomagnetic institutes provide detailed maps of the strength of the field at different locations
5 Earth s Magnetic Field Helsinki: Intensity: μt Declination: 8 29 Inclination: Magnetic field described by direction and magnitude (or strength) Direction expressed in terms of inclination and declination è magnetic field is a 3D vector Inclination (magnetic dip) Angle made with the horizontal by the Earth s magnetic lines Positive values indicate field is pointing downwards, negative upwards: -90 at south pole, 0 at equator, +90 at north pole Declination Angle between magnetic north and true north Varies depending on position along the Earth s surface, as well as over time
6 Global Reference Frame Global reference frame defined by Earth s magnetic field and gravity Gravity vector (0, 0, g) Magnetic field vector B * (cos σ, 0, sin σ) where B is the strength of the magnetic field and σ is the inclination Attitude estimation defined as the problem of aligning the local coordinates of the device with the global reference frame As discussed, device frame often separate from the user s reference frame Practical note: attitude estimation requires COARSE location information to determine the magnetic field parameters
7 Sensors: Magnetometer Sensor that measures the strength and direction of magnetic field in the current environment Many ways to measure the strength of the field Most common ways (magnetoresistance and Hall effect) measure changes in electric properties Sensitivity Determines the maximal possible accuracy that can be achieved with the sensor, e.g., 0.5 μt 3 Range: should be at least ±1000 μt Main uses Electronic compasses Object detection (e.g., military originally used for submarine detection)
8 Magnetometer Noise: Hard and Soft Iron Noise Theoretically, magnetic field measurements in a single location should form a perfect circle as device is rotated Permanently magnetized ferromagnetic components cause a so-called hard iron offset on magnetometers Magnets, speakers, or any other ferromagnetic objects Results in an additive bias in the magnetometer, i.e., the centre of the circle shifts Soft iron Caused by materials that distort the magnetic field, but that do not generate their own field Depends on the orientation of the material relative to the sensor and the field Perturbs the circle into an ellipse
9 Representing Attitude Attitude estimation can be seen as coordinate transformation that aligns device with global reference Transformations between coordinate systems are defined through rotations Different ways to represent the rotations Euler angles: rotation represented as a matrix that captures rotations relative to individual coordinate axes Quaternions: rotations represented as hypercomplex numbers and spherical coordinates Direction cosines: rotations represented as directional cosines that capture the angles between coordinate axes
10 Euler Angles yaw Euler s rotation theorem: any rotation can be described using three angles Yaw or heading ψ: rotation around the z-axis Pitch θ: rotation around the x-axis Roll φ: rotation around the y-axis Each rotation can be expressed in matrix form (see left) Overall rotation can be expressed as a product of the individual orientations Only meaningful is the order of the rotations is defined We follow x-convention R = R x R y R z Other conventions equally valid, but result in different rotation matrix Accordingly, we can align the device with global reference frame if the three angles can be estimated
11 Gimbal Lock Gimbal is a ring that is suspended so that it can rotate about an axis Euler angles assume changes in object s orientation behave like three gimbals aligned around different axes Gimbal lock Loss of one degree of freedom when axes of two gimbals are in parallel configuration Example 1: device is pointing up è yaw and roll axes parallel and cannot be distinguished Can also occur between yaw and pitch (device sideways) Fourth gimbal (or dimension) required to avoid problems
12 Quaternions Quaternions provide an alternative representation for describing rotations Quaternion defined as a 4-tuple (q 0, q 1, q 2, q 3 ) Consists of scalar part q 0 and vector part q = (q 1, q 2, q 3 ), Form of hyper-complex numbers, with a real (scalar) and imaginary component q = q 0 + q 1 i + q 2 j + q 3 k If q 0 = 0, q is a pure quaternion Quaternion algebra Main rule (Hamilton s equation): i 2 = j 2 = k 2 = ijk = -1 Product rule: pq = p 0 q 0 p q + p 0 q + q 0 p + p x q Complex conjugate: q* = q 0 -q 1 i -q 2 j -q 3 k Any quaternion with norm equal to one, i.e., q = 1, is called an unit quaternion
13 Quaternions The importance of quaternions stems from their relationship with rotations of vectors Any unit quaternion can be written in the form: q = q 0 + q = cos θ + q / q sin θ For any unit quaternion q and for any vector v, the operation L q (v) = q*vq can be interpreted as rotation of v through an angle 2θ about q as the axis of orientation The orientation/attitude of an object can be expressed as an unit quaternion and coordinate transformations can be achieved by rotating the quaternion As quaternions rely on four-dimensional representation, they are not vulnerable to gimbal lock
14 Quaternions and Euler Angles Given an unit quaternion q = (q 0, q 1, q 2, q 3 ), the orthogonal matrix resulting from quaternion rotation is: The quaternion can converted to Euler angles using the following equations:
15 Direction Cosine Matrix Direction cosine generally refers to the angle θ between two vectors u and v From basic linear algebra: cos θ = u v / u v In attitude estimation, direction cosines represent angles of basis vectors between coordinate systems Let e = (e i, e j, e k ) and n = (n i, n j, n k ) denote the basis vectors of two coordinate systems Define c jk = e j n k and C = [c ij ] u = Cv corresponds to representation of u in coordinate system defined by basis n Direction cosine matrices thus represent rotations through a change of basis vectors
16 Estimating Pitch and Roll Recall that pitch defined as rotation around x-axis è gravity orthogonal to the pitch axis in global coordinate frame accelerometer (and gyroscope) can be used to estimate the gravity component of the device (see Lecture V) g d = (g x, g y, g z ) denotes the gravity estimate of the device g denotes the global gravity = (0, 0, g) Pitch and roll can then be estimated by aligning the two gravity estimates (in Euler angles): g d = Rg è (g x, g y, g z ) / g d = (-sin θ, sin φ cos θ, cos θ cos φ) tan θ = (g y /g z ) tan φ = (-g x / (g y 2 + g z2 ))
17 Example: Detecting Shifts in Orientation left bottom top right Switching display orientation is one of the first use cases for tilt (and roll) sensing Can be implemented using a state machine that compares components of gravity and switches orientation whenever dominant axis changes General case: shifts in orientation can be detected by monitoring changes in pitch and roll angles Whenever combined effect exceeds a threshold, assume device orientation changed I.e., (Δ θ + Δ φ ) > ε
18 Example Application: Placement Estimation Generally pitch angles are relatively unique across different device placements Device placement can be (in many cases) identified by examining pitch-related features Pose classification (Park et al., 2012) Treat placement detection as a classification problem, and use pitch related features as input Pitch feature vector: x G = ( g x, g y, g z, (g x 2 + g y2 ), (g x 2 + g z2 ), (g y 2 + g z2 )) Four placements: bag/pocket/hand/ear SVM (and C4.5) classifiers with pitch features Performance for similar classes (e.g., bag and pocket) close to 90%, for others over 95% Accuracy depends on gravity estimation quality
19 Yaw/Heading Estimation In the absence of errors, heading of the device can be solved from magnetometer measurements using: ψ = atan(h x /h y ) + D Where h x and h y are magnetometer readings and D is the declination at current location Two sources of noise: Device orientation not aligned with Earth reference frame Measurements need to be projected, or rotated, into reference frame Tilt compensation Hard and soft iron errors require calibration to be accurate Common technique is to rotate the magnetometer around different axes and to estimate shape of field In practice can be performed during sensor fusion by using complementary information from accelerometer
20 Tilt Compensation Estimating heading from magnetometer measurements requires compensating for tilt Recall that Earth s magnetic field given by the vector: B r = B * (cos σ, 0, sin σ) Tilt compensation de-rotates magnetometer measurements B p with the estimated pitch and roll R z B p = R y R x B r It can be shown that the yaw angle of the device is then given by tan ψ = -B c y / B c x where B c y and B c x are derotated and noise compensated magnetometer values Practical notes: pitch and yaw usually solved with a function ATAN2 that is restricted to -180, 180, and roll with a function ATAN that is restricted to range -90,
21 Yaw Estimation with Hard and Soft Iron Offsets Hard and soft iron offsets can be estimated as part of attitude estimation process In the absence of noise, we have: B p = R z R y R x B r (B p device measurement, B r global reference vector) Hard iron V causes additive offset: B p = R z R y R x B r + V Soft iron W causes multiplicative effect: B p = W R z R y R x B r + V It can be shown that B c = R y R x W -1 (B r - V) In other words, yaw can be estimated as before as long as the hard and soft iron offsets are removed first
22 Sensor Fusion Sensor Fusion refers to the combination of sensor data from multiple (disparate) sources Attitude estimation relies on fusion of 2-4 sensors: Inertial: accelerometer + gyroscope MARG: inertial + magnetometer MARG + barometer if altitude differences need to be separated Several algorithms, but basic idea same: Find optimal rotation to align device reference frame with global frame while compensating for noise
23 Filtering Basics Filtering algorithms generally consist of two stages Propagation: estimating next values of system state Filtering: correcting estimates based on measurements Propagation step requires a model of system dynamics which is difficult to obtain for attitude Instead, filtering techniques for attitude estimation use gyroscope to simulate system dynamics Accelerometer, gyroscope, and possibly magnetometer and other sensors used as long-term reference, i.e., provide the basis for the filtering step
24 Complementary Filtering Complementary filtering complements orientation estimates of one sensor with those of another Gyroscope highly sensitive but suffers from drift in the long-term è good for capturing short-term changes Accelerometer and magnitude accurate but have latency è good for long-term changes (Basic) Complementary Filter: θ = (1 - α) * GyroScope + α * AccMagOrientation Effectively performs low-pass filtering on accelerometer and magnetometer and high-pass filtering on gyroscope Typically 0.01 α
25 Direction Cosine Matrix (DCM) Filter DCM is a sensor fusion algorithm that is based on direction cosine representation of rotation Basic idea similar to complementary filtering, but uses nonlinear form of rotation tracking Propagation step performed using gyroscope Constraints on direction cosines used to reduce drift Filtering step performed using correction vectors that are applied on gyroscope signals Yaw compensation: GPS or magnetometer Pitch & roll compensation: accelerometer + gyroscope
26 DCM: Gyroscope Change in orientation given by: dr(t)/dt = ω(t) x r(t) Rotation rate ω(t) estimated using gyroscope ω(t) = ω gyro (t) + ω correction (t) Rotation vector r(t) tracked using numerical integration r(t) = r(0) + r(τ) x dθ(τ) The vectors r are direction cosines, i.e., q = Rv defines the rotation to global reference frame Implemented using the following propagation equation: r(t + dt) = r(t) + r(t) x dθ(t) d θ(t) = ω(t) dt Matrix form: R(t + dt) = R(t)Ω(t) where
27 DCM: Basis Correction and Renormalization Direction cosines assume the underlying vector space as orthogonal basis vectors Drift accumulation from gyroscope can result in orthogonality constraints being violated Renormalization applied to enforce orthogonality and compensate drift over time Basic idea is to calculate dot product of the column matrices and pull them apart equally by their error Orthogonality è dot product should be equal to zero Basis vectors should also be of unit length Normalization applied after error correction
28 Madgwick MARG Filter Quaternion based approach that treats rotation alignment as optimization problem Recall quaternion rotation operator: L q (v) = q*vq Goal then is to find a quaternion q so that L q (v) provides best possible fit with global coordinate frame Specifically: min q f(q,s,v) = q*vq s where s is an Earth reference vector Optimization problem solved using (iterative) gradient descent: Real-time tracking support provided through sensor fusion with gyroscope
29 Madgwick MARG Filter Gyroscope: Similarly to DCM, gyroscope measurements accumulated to estimates using numerical integration Sensor fusion A variant of complementary filter which uses a coefficient that adapts to current environment Gyroscope drift and magnetometer noise compensation also applied as part of the process; see original article (Madwick et al. 2011)
30 Kalman Filtering Transition matrix of the system dynamics Measurement model matrix Kalman filter is a closed-form solution for an optimal Bayes filter under linear and Gaussian equations Results in closed form equations, derivation of them out-of-scope; please see [Trawny & Roumeliotis, 2005] Uses following general form: x k = A k-1 x k-1 + q k y k = H k x k + r k White process noise N(0,Q) White measurement noise N(0,R) p(x k, x k-1 ) = N(x k A k-1 x k-1, Q) p(y k, x k ) = N(y k H k x k, R)
31 Kalman Filter PREDICT FILTER 1. Project system state X* k A k-1 X k-1 + Bu k-1 2. Project error covariance P* k A k-1 P k-1 A T k-1 + Q 1. Computer Kalman gain 2. Update estimate with measurement 3. Update error covariance Gyroscope Accelerometer Magnetometer
32 EKF Filtering In the context of attitude estimation, a so-called extended Kalman filter (EKF) is required Based on quaternions, rotation quaternion q and bias vectors of sensors define system state Non-linear model, assume state transitions and observations given by differentiable models Gyroscope measurement model ω gyro (t) = ω (t) + b + n gyro Here ω (t) is true angular velocity, b is gyroscope bias, and n gyro is a noise term Propagation step updates system state with current gyroscope values
33 EKF Filtering: Propagation Step 1. Propagate gyroscope bias 2. Estimate new turn rate as the difference of gyroscope measurement and estimated bias 3. Propagate quaternion q using the current and propagated gyroscope estimates 4. Compute state transition matrix Φ using a small angle approximation of gyroscope error Assess variance of numerical integration within a small time interval Noise covariance Q d estimated analogously 5. Compute state covariance matrix using EKF equation:
34 EKF Filter: Update Step 1. Form differentiated measurement matrix H Based on differential of the quaternion rotation 2. Compute measurement residuals R 3. Compute covariance of residual 4. Compute Kalman gain 5. Use Kalman gain to calculate a correction term 6. Update parameters Quaternion Gyro bias estimate Re-estimate turn rate, and covariance
35 Summary 1/2 Mobile devices in arbitrary orientations è attitude estimation required to align sensor measurements Magnetometer, accelerometer and gyroscope Yaw estimation using magnetometer Tilt (pitch and roll) compensation achieved using accelerometers Accuracy depends on the robustness of gravity estimation, gyroscope can be used to assist there Alignment seen as a coordinate transformation task, which can be solved by finding appropriate rotation Magnetometer (or GPS) required for solving heading Vulnerable to many sources of noise, calibration/filtering required to ensure reliability of measurements Can be used to support also other applications, e.g., positioning and object detection
36 Summary 2/2 Different ways to represent rotations: Euler angles: yaw, pitch, roll Quaternions: hyper-complex numbers Direction cosines: cosines that transform vector basis In continuous tracking, sensor fusion required to increase reliability of estimates Complementary filtering: linear combination of gyroscope and magnetometer + acc. estimates DCM filtering: simple to implement non-linear gyro tracking Madgwick: Quaternion-based optimization Kalman filtering: generic technique which provides closed form equations for filtering
37 References Kuipers, J. B., Quaternions and Rotation Sequences, Geometry, Integrability and Quantization, Coral Press, 2000, Pedley, M., Tilt Sensing Using a Three-Axis Accelerometer, Freescale Semiconductor Application Note, 2013 Ozyagcilar, T., Implementing a Tilt-Compensated ecompass using Accelerometer and Magnetometer Sensors, Freescale Semiconductor Application Note AN428, 2012 Park, Jun-geun.; Patel, A.; Curtis, D.; Ledlie, J. & Teller, S., Online Pose Classification and Walking Speed Estimation using Handheld Devices, Proceedings of the 14th ACM International Conference on Ubiquitous Computing (Ubicomp), 2012 Madgwick, S. O. H.; Harrison, A. J. L. & Vaidyanathan, R., Estimation of IMU and MARG orientation using a gradient descent algorithm, Proceedings of the IEEE International Conference on Rehabilitation Robotics, IEEE, 2011, 1-7 Trawny, N. & Roumeliotis, S. I., Indirect Kalman Filter for 3D Attitude Estimation Department of Computer Science & Engineering, University of Minnesota, 2005 Sabatini, A. M., Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing, IEEE Transactions on biomedical engineering, 2006, 53,
38 References Lenz, J. & Edelstein, A. S., Magnetic Sensors and their applications, Sensors, 2006, 6, Chung, J.; Donahoe, M.; Schmandt, C.; Kim, I.-J.; Razavai, P. & Wiseman, M. Indoor location sensing using geo-magnetism, Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys), ACM, 2011, Eisenman, S. B.; Miluzzo, E.; Lane, N. D.; Peterson, R. A.; Ahn, G.-S. & Campbell, A. T., BikeNet: A mobile sensing system for cyclist experience mapping, TOSN, 2009, 6 Caruso, M. J., Applications of Magnetic Sensors for Low Cost Compass Systems, Proceedings of the IEEE Position Location and Navigation Symposium, IEEE, 2000, Li, B.; Gallagher, T.; Dempster, A. G. & Rizos, C., How feasible is the use of magnetic field alone for indoor positioning?, Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2012 Skvortzov, V. Y.; Lee, H.-K.; Bang, S. & Lee, Y., Application of Electronic Compass for Mobile Robot in an Indoor Environment, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2007,
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
Kvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus
AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Kvanttilaskenta - 2. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
Mobile Sensing V Motion Analysis. Spring 2015 Petteri Nurmi
Mobile Sensing V Motion Analysis Spring 2015 Petteri Nurmi 31.3.2015 1 Learning Objectives Understand the basic motion related forces, their relationships, and how they can be sensed Why the accelerometer
Tracking and Filtering. Petteri Nurmi
Tracking and Filtering Petteri Nurmi 4.4.2014 1 Questions What are state space models? Why are they relevant in position tracking? What is a Bayesian optimal filter? Which two steps form the filter? What
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Toppila/Kivistö 10.01.2013 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla 0-6 pistettä.
..23 Vastaa kaikkin neljään tehtävään, jotka kukin arvostellaan asteikolla -6 pistettä. Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (a) Lineaarisen kokonaislukutehtävän
Tracking and Filtering. Petteri Nurmi
Tracking and Filtering Petteri Nurmi 19.11.2016 1 Questions What are state space models? Why are they relevant in position tracking? What is a Bayesian optimal filter? Which two steps form the filter?
Indoor Localization II Location Systems. Petteri Nurmi Autumn 2015
Indoor Localization II Location Systems Petteri Nurmi Autumn 2015 6.11.2015 1 Learning Objectives What are the main dimensions for categorizing location systems? Which are main error sources for indoor
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
Mat Seminar on Optimization. Data Envelopment Analysis. Economies of Scope S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Mat-2.4142 Seminar on Optimization Data Envelopment Analysis Economies of Scope 21.11.2007 Economies of Scope Introduced 1982 by Panzar and Willing Support decisions like: Should a firm... Produce a variety
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Position Estimation Using an Inertial Measurement Unit Without Tracking System
Position Estimation Using an Inertial Measurement Unit Without Tracking System Johnny Leporcq School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology.
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Olet vastuussa osaamisestasi
Olet vastuussa osaamisestasi Ohjelmistoammattilaisuuden uudet haasteet Timo Vehmaro 02-12-2015 1 Nokia 2015 Mitä osaamista tulevaisuudessa tarvitaan? Vahva perusosaaminen on kaiken perusta Implementaatio
Returns to Scale Chapters
Return to Scale Chapter 5.1-5.4 Saara Tuurala 26.9.2007 Index Introduction Baic Formulation of Retur to Scale Geometric Portrayal in DEA BCC Return to Scale CCR Return to Scale Summary Home Aignment Introduction
Indoor Localization I Introduction and Positioning Algorithms Petteri Nurmi
Indoor Localization I Introduction and Positioning Algorithms Petteri Nurmi 29.10.2015 1 About the course Advanced course: networking and services subprogramme (also well suited for algorithms, data analytics,
MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)
MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe
Alternatives to the DFT
Alternatives to the DFT Doru Balcan Carnegie Mellon University joint work with Aliaksei Sandryhaila, Jonathan Gross, and Markus Püschel - appeared in IEEE ICASSP 08 - Introduction Discrete time signal
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Integration of Finnish web services in WebLicht Presentation in Freudenstadt 2010-10-16 by Jussi Piitulainen
Integration of Finnish web services in WebLicht Presentation in Freudenstadt 2010-10-16 by Jussi Piitulainen Who we are FIN-CLARIN University of Helsinki The Language Bank of Finland CSC - The Center for
LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet
LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50
toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous
Tuula Sutela toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous äidinkieli ja kirjallisuus, modersmål och litteratur, kemia, maantiede, matematiikka, englanti käsikirjoitukset vuoden
,0 Yes ,0 120, ,8
SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
Metsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a
, Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum
WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum
TM ETRS-TM35FIN-ETRS89 WTG
VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please
WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing. 13.10.2010 Jan Nyman, jan.nyman@posintra.fi
WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing 13.10.2010 Jan Nyman, jan.nyman@posintra.fi Background info STOK: development center for technology related to building automation
Positioning Algorithms. Petteri Nurmi
Positioning Algorithms Petteri Nurmi 19.1.2012 1 Questions How triangulation works and where it is still used? How trilateration works? How can distances be measured? How multilateration differs from trilateration?
Curriculum. Gym card
A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
( ,5 1 1,5 2 km
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km
DIGITAL MARKETING LANDSCAPE. Maatalous-metsätieteellinen tiedekunta
DIGITAL MARKETING LANDSCAPE Mobile marketing, services and games MOBILE TECHNOLOGIES Handset technologies Network technologies Application technologies INTRODUCTION TO MOBILE TECHNOLOGIES COMPANY PERSPECTIVE
Positioning Algorithms. Petteri Nurmi
Positioning Algorithms Petteri Nurmi 19.1.2012 1 Questions What are the main positioning algorithms and how they work? Which two main factors influence positioning errors? What is dilution of precision?
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change
TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo
TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,
1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä
OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum
BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
UNCITRAL EMERGENCE CONFERENCE 13.12.2016 Session I: Emerging Legal Issues in the Commercial Exploitation of Deep Seabed, Space and AI BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys
Strict singularity of a Volterra-type integral operator on H p
Strict singularity of a Volterra-type integral operator on H p Santeri Miihkinen, University of Helsinki IWOTA St. Louis, 18-22 July 2016 Santeri Miihkinen, University of Helsinki Volterra-type integral
Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat
7.80.4 Asiakasnumero: 3000359 KALLE MANNINEN KOVASTENLUODONTIE 46 51600 HAUKIVUORI Toimitusosoite: KUMMANNIEMENTIE 5 B 51720 RAHULA Viitteenne: Henna-Riikka Haikonen Viitteemme: Pyry Niemi +358400874498
C470E9AC686C
INVENTOR 17 VALUOSAN SUUNNITTELU http://help.autodesk.com/view/invntor/2017/enu/?guid=guid-b3cd4078-8480-41c3-9c88- C470E9AC686C About Mold Design in Inventor Mold Design provides integrated mold functionality
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
Use of spatial data in the new production environment and in a data warehouse
Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
AS Paikannus- ja navigointimenetelmät
AS-84.3127 Paikannus- ja navigointimenetelmät Ratkaisut 5. 1. yökoneeseen vaakasuoraan asennettu kiihtyvyysanturi mittaa maan vetovoiman sini komponenttia. a=g*sin(x 1 ) ässä a on kallistuskulman x 1 aiheuttama
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
Särmäystyökalut kuvasto Press brake tools catalogue
Finnish sheet metal machinery know-how since 1978 Särmäystyökalut kuvasto Press brake tools catalogue www.aliko.fi ALIKO bending chart Required capacity in kn (T) in relation to V-opening. V R A S = plates
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA LKTONKKA. välikoe 3.0.2006. Saat vastata vain neljään tehtävään!. Laske jännite U. = =4Ω, 3 =2Ω, = =2V, J =2A, J 2 =3A + J 2 + J 3 2. Kondensaattori on aluksi varautunut jännitteeseen
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana
ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana Taustaa KAO mukana FINECVET-hankeessa, jossa pilotoimme ECVETiä
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Enterprise Architecture TJTSE Yrityksen kokonaisarkkitehtuuri
Enterprise Architecture TJTSE25 2009 Yrityksen kokonaisarkkitehtuuri Jukka (Jups) Heikkilä Professor, IS (ebusiness) Faculty of Information Technology University of Jyväskylä e-mail: jups@cc.jyu.fi tel:
make and make and make ThinkMath 2017
Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.
T287/M03/2017 Liite 1 / Appendix 1 Sivu / Page 1(5) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD. Tunnus Code Laboratorio Laboratory Osoite Address www www T287
MALE ADULT FIBROBLAST LINE (82-6hTERT)
Double-stranded methylation patterns of a 104-bp L1 promoter in DNAs from male and female fibroblasts, male leukocytes and female lymphoblastoid cells using hairpin-bisulfite PCR. Fifteen L1 sequences
Digitally signed by Hans Vadbäck DN: cn=hans Vadbäck, o, ou=fcg Suunnittelu ja Tekniikka Oy, email=hans.vadback@fcg.fi, c=fi Date: 2016.12.20 15:45:35 +02'00' Jakob Kjellman Digitally signed by Jakob Kjellman
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
HITSAUKSEN TUOTTAVUUSRATKAISUT
Kemppi ARC YOU GET WHAT YOU MEASURE OR BE CAREFUL WHAT YOU WISH FOR HITSAUKSEN TUOTTAVUUSRATKAISUT Puolitetaan hitsauskustannukset seminaari 9.4.2008 Mikko Veikkolainen, Ratkaisuliiketoimintapäällikkö
Yhtiön nimi: - Luotu: - Puhelin: - Fax: - Päiväys: -
Positio Laske Kuvaus 1 MAGNA 32-1 N Tuote No.: 98117 Huom.! Tuotteen kuva voi poiketa todellisesta tuotteesta The pump is of the canned rotor type, i.e. pump and motor form an integral unit without shaft
Rakennukset Varjostus "real case" h/a 0,5 1,5
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto
VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto Tämän viestinnän, nykysuomen ja englannin kandidaattiohjelman valintakokeen avulla Arvioidaan viestintävalmiuksia,
TU-C2030 Operations Management Project. Introduction lecture November 2nd, 2016 Lotta Lundell, Rinna Toikka, Timo Seppälä
TU-C2030 Operations Management Project Introduction lecture November 2nd, 2016 Lotta Lundell, Rinna Toikka, Timo Seppälä Welcome to the course! Today s agenda Introduction to cases and schedule/ Timo Seppälä