Interlaboratory Proficiency Test 08/2016

Koko: px
Aloita esitys sivulta:

Download "Interlaboratory Proficiency Test 08/2016"

Transkriptio

1 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE Interlaboratory Proficiency Test 08/2016 Gross an net calorific values in fuels Mirja Leivuori, Minna Rantanen, Riitta Koivikko, Keijo Tervonen, Sari Lanteri an Markku Ilmakunnas Finnish Environment Institute

2

3 Gross an net calorific value in fuels Mirja Leivuori, Minna Rantanen, Riitta Koivikko, Keijo Tervonen, Sari Lanteri an Markku Ilmakunnas

4

5 ABSTRACT Proftest SYKE arrange the proficiency test (PT) for measurement the gross an the net calorific value, the content of ash, carbon, nitrogen, hyrogen, moisture, sulphur an volatile matter in peat, woo pellet (not sulphur) an coal samples in September In total, there were 28 participants in the PT. Aitionally, the participants were aske to estimate/calculate the emission factor for the peat an coal samples. In total, 90 % of the participants reporte satisfactory results when the eviations of 1 30 % from the assigne values were accepte. In measurement of the gross calorific value from the peat sample 93 %, from the woo pellet sample 86 % an from the coal sample 84 % of the results were satisfactory. In measurement of the net calorific value from the peat sample 82 %, from the woo pellet 75 % an from the coal sample 85 % of the results were satisfactory. The robust mean or mean of the reporte results by the participants were use as the assigne values for measurements. The evaluation of performance was base on the which was calculate using the assigne value an the stanar eviation for proficiency assessment at 95 % confience level. The evaluation of performance was not one for the measurement of moisture in all samples, emission factor in peat samples an nitrogen in woo pellet samples. Warm thanks to all the participants of this proficiency test! Keywors: Proficiency test, interlaboratory comparison, coal, peat, woo pellet, calorific value, emission factor, ash, moisture, carbon, sulphur, nitrogen, hyrogen, volatile matter, environmental laboratories TIIVISTELMÄ Proftest SYKE järjesti syyskuussa 2016 pätevyyskokeen kalorimetrisen ja tehollisen lämpöarvon sekä tuhkan, veyn, typen, rikin, haihtuvien yhisteien ja kosteuen määrittämiseksi turpeesta, puupelletistä (ei rikkiä) ja kivihiilestä. Lisäksi osallistujilla oli mahollisuus arvioia/laskea turve- ja kivihiilinäytteien päästökerroin. Pätevyyskokeessa oli yhteensä 28 osallistujaa. Koko tulosaineistossa hyväksyttäviä tuloksia oli 90 %, kun vertailuarvosta sallittiin 1 30 % poikkeama. Kalorimetrisen lämpöarvon tuloksista oli hyväksyttäviä 93 % (turve), 86 % (puupelletti) ja 84 % (kivihiili). Tehollisen lämpöarvon tuloksille vastaavat hyväksyttävien tulosten osuuet olivat 82 % (turve), 75 % (puupelletti) ja 85 % (kivihiili). Pätevyyen arviointi tehtiin z-arvojen avulla ja niien laskemisessa käytetyn kokonaishajonnan tavoitearvot olivat välillä 1 30 %. Mittaussuureen vertailuarvona käytettiin osallistujien ilmoittamien tulosten robustia keskiarvoa tai keskiarvoa. Tulosten arviointia ei tehty testinäytteien kosteuspitoisuuen määritykselle, turpeen päästökertoimen laskennalle ja typen määritykselle puupelletistä. Kiitos pätevyyskokeen osallistujille! Avainsanat: pätevyyskoe, vertailumittaus, kalorimetrinen lämpöarvo, tehollinen lämpöarvo, päästökerroin, tuhka, kosteus, hiili, rikki, typpi, haihtuvat yhisteet ja vety, turve, puupelletti, hiili, ympäristölaboratoriot SAMMANDRAG Proftest SYKE genomföre i september 2016 en provningsjämförelse som omfattae bestämningen av kalorimetriskt och effektivt värmeväre, svavel, väte, kol, kväve, askhalt, flykthalt och fukthalt i torv, trä pellet (inte svavel) och stenkol. Det var en möjlighet att beräkna emissionfaktor i torv och stenkol prover. Totalt 28 eltagarna eltog i jämförelsen. Som referensväre för analyternas koncentration använes mest et robusta meelväret av eltagarnas resultat. Resultaten väreraes me hjälp av z-vären. I jämförelsen var 90 % av alla resultaten acceptabel, när en total eviation på 1 30 % från referensväret tilläts. Av et kalorimetriska värmeväret var 93 % acceptabla (torv), 86 % (trä pellet) och 84 % (stenkol). För resultaten av et effektiva värmeväret var 82 % (torv), 75 % (trä pellet) och 85 % (stenkol) acceptabla. Det var inte gjorts värering till fuktighalt i alla prover, beräkning av emissionfaktor i torv provet och kväve i trä pellet. Ett varmt tack till alla eltagarna i testet! Nyckelor: provningsjämförelse, kalorimetriskt och effektivt värmeväre, emissionfaktor, svavel, väte, kol, nitrogen, askhalt, flykthalt fukthalt stenkol, torv, trä pellet, miljölaboratorier

6

7 CONTENTS Abstract Tiivistelmä Sammanrag Introuction Organizing the proficiency test Responsibilities s Samples an elivery Homogeneity Feeback from the proficiency test Processing the ata Pretesting the ata Assigne values Stanar eviation for proficiency assesment an Results an conclusions Results Analytical methos Gross an net calorific value Measurement of carbon, hyrogen, nitrogen, sulphur, moisture, ash an volatile matter Measurement uncertainties of the results Estimation of emission factor Evaluation of the results Summary Summary in Finnish References APPENDIX 1 : s in the proficiency test APPENDIX 2 : Homogeneity of the samples APPENDIX 3 : Feeback from the proficiency test APPENDIX 4 : Evaluation of the assigne values an their uncertainties APPENDIX 5 : Terms in the results tables APPENDIX 6 : Results of each participant APPENDIX 7 : Results of participants an their uncertainties APPENDIX 8 : Summary of the s APPENDIX 9 : s in ascening orer APPENDIX 10 : Analytical measurements an backgroun information for calculations APPENDIX 11 : Significant ifferences in the results reporte using ifferent methos APPENDIX 12 : Results groupe accoring to the methos APPENDIX 13 : Examples of measurement uncertainties reporte by the participants Proftest SYKE CAL 08/16 5

8 6 Proftest SYKE CAL 08/16

9 1 Introuction Proftest SYKE carrie out the proficiency test (PT) for analysis of gross an net calorific value in fuels (CAL 08/2016) in September In total there were 28 participants in the PT. Gross an net calorific value, carbon, sulphur, hyrogen, nitrogen, moisture content of the analysis sample (M a ), ash content, an volatile matter (V b ) were teste in peat, woo pellet (not sulphur) an coal samples. Finnish Environment Institute (SYKE) is appointe National Reference Laboratory in the environmental sector in Finlan. The uties of the reference laboratory inclue proviing interlaboratory proficiency tests an other comparisons for analytical laboratories an other proucers of environmental information. This proficiency test has been carrie out uner the scope of the SYKE reference laboratory an it provies an external quality evaluation between laboratory results, an mutual comparability of analytical reliability. The proficiency test was carrie out in accorance with the international guielines ISO/IEC17043 [1], ISO [2] an IUPAC Technical report [3]. The Proftest SYKE has been accreite by the Finnish Accreitation Service as a proficiency testing provier (PT01, ISO/IEC 17043, The organizing of this proficiency test is inclue in the accreitation scope of the Proftest SYKE. 2 Organizing the proficiency test 2.1 Responsibilities Organizer: Proftest SYKE, Finnish Environment Institute (SYKE), Laboratory Centre Hakuninmaantie 6, FI Helsinki, Finlan Phone: proftest@environment.fi The responsibilities in organizing the proficiency test were as follows: Mirja Leivuori coorinator Riitta Koivikko substitute of coorinator Keijo Tervonen technical assistance Markku Ilmakunnas technical assistance Sari Lanteri technical assistance Partner: Minna Rantanen from Ramboll Finlan Oy (Vantaa) was participating in organizing the proficiency test as well as acting analytical expert. Proftest SYKE CAL 08/16 7

10 Subcontracting: Testing of samples Ramboll Finlan Oy (T039 accreite by FINAS, s In total 28 participants took part in this proficiency test, of which 11 were from Finlan an 17 from other countries (Appenix 1). One participant registere for the test only on 28 September 2016, which was the ealine for result reporting. As the samples are known to be well stable, the registration was accepte an the samples were elivere for them separately. In the final ata hanling the results of the late registere participant were treate as manual outliers, thus these results were not inclue in the statistical ata hanling an they have no influence to the performance evaluation of the other participants. Altogether 75 % of the participants use accreite analytical methos at least for a part of the measurements. The samples were teste at the laboratory of Ramboll Finlan Oy in Vantaa an their participant coe is 1 in the result tables. 2.3 Samples an elivery Three ifferent fuel samples were elivere to the participants: peat, woo pellet an coal samples. Gross (q V,gr, ) an net (q p,net, ) calorific value, C, S, H, N, moisture content of the analysis sample (M a ), ash content, an volatile matter (V b ) were teste in peat, woo pellet (not sulphur) an coal samples. This PT use the samples from the previous PT CAL 06/2012 [4]. The samples were homogenate an ivie again in the laboratory of Proftest SYKE. The samples were teste at the laboratory of Ramboll Finlan in Vantaa. The material for the peat sample (B1) was collecte from the Finnish marshlan. The raw material for woo pellets (B2) was nake softwoo (spruce an pine) sawust an moling shavings. The coal sample (K1) was prepare from a Russian steam coal. The sample preparation is escribe in etails in the report of the PT CAL 06/2012 [4]. In the cover letter elivere with the samples, the participants were instructe first to store the samples close for one ay after their arrival an then to measure the moisture content of the analysis sample (M a ) as the first measurement. The samples were instructe to be homogenize before measurements an to be store in a ry place at room temperature. Further, the moisture content of the analysis sample was instructe to be measure on every ay of measurements. This was important as it eliminates the influence of humiity on the measurements. The participants were also aske to report the relative humiity (%) of the measuring room as an average of the measuring ates. 8 Proftest SYKE CAL 08/16

11 The participants ha the possibility to estimate/calculate the emission factor (as receive) for peat an coal samples. For this estimation/calculation, the total moisture contents of the samples as receive (M ar ) were given: peat B %, coal K % The samples were elivere on 6 September 2016 to the participants. The samples arrive to the participants mainly on the 9 September receive the samples on 20 September The samples were requeste to be measure an to be reporte latest on 28 September One participant elivere the results one ay later. The preliminary results were elivere to the participants via ProftestWEB an on 5 October Late registere participant reporte results on 14 October 2016 an they got preliminary results via on 19 October Homogeneity Homogeneity of the samples B1, B2 an K1 was teste as uplicate eterminations from two subsamples (Appenix 2). The number of testing items was reuce as the teste materials were use in the previous PT CAL 06/2012 [4]. Accoring to the homogeneity test results, all samples were consiere homogenous. Base on the knowlege of the provier the samples have been consiere stabile uring the test. 2.5 Feeback from the proficiency test The feeback from the proficiency test is shown in Appenix 3. The comments from the participants mainly ealt with elivering elays an reporting errors with the samples. The comments from the provier are mainly focuse to the lacking conversancy to the given information with the samples. All the feeback is valuable an is exploite when improving the activities. 2.6 Processing the ata Pretesting the ata The normality of the ata was teste by the Kolmogorov-Smirnov test. The outliers were rejecte accoring to the Grubbs or Hampel test before calculating the mean. Also before the statistical calculation some outliers were rejecte in case that the results eviate from the robust mean more than 50 % or 5 times robust stanar eviation or anomalous values in the measure element value were use in the calculation. The rejection of results was partly base to the rather strict requirements for the reproucibility given in the stanars for analysis escribe in the covering letter of the samples. The uplicate results were teste using the Cochran test. If the result was reporte lower than etection limit, it was not inclue in calculations. Proftest SYKE CAL 08/16 9

12 More information about the statistical hanling of the ata is available in the Guie for participant [5] Assigne values Mainly the robust mean was use as the assigne value for measurements of the test samples, when there were at least 12 results (n 12). Also the mean value an the meian value (after Grubbs or Hampel outlier test) of the ata were calculate, which were quite similar to the assigne values (Table 1). In cases, where the number of results was lower than 12, the mean value of participants results was use as the assigne value (B1, B2, K1: H, N, q p,net,, V p ; B1, B2: C ; B1,K1: EF; B1: S ). The robust mean (or mean) is not metrologically traceable assigne value. As it was not possible to have metrologically traceable assigne values, the robust means (or means) of the results were the best available values to be use as the assigne values. The reliability of the assigne value was statistically teste [2, 3]. When the robust mean was use as the assigne value, the expane measurement uncertainty was calculate using the robust stanar eviation. When the mean value was use as the assigne value, the expane measurement uncertainty was estimate base on the stanar eviation [2, 5]. When using the robust mean or mean of the participant results as the assigne value, the stanar uncertainties of the assigne values for calorific values were between 0.1 % an 0.4 %. For the other evaluate measurans the uncertainty varie from 0.4 % to 9.6 % (Appenix 4). The participants also calculate emission factors (EF) for the peat an coal samples accoring to the given total moisture contents as receive (M ar ). In this PT, ue the low number of the results an the variability between the emission factor results the performance evaluation is one only for coal sample (K1) an the performance evaluation is only inicative. The number of the nitrogen results was too low for the performance evaluation in woo pellet sample (B2, Table 1). Further, there was high variation in the results of analysis moisture (M a ), thus the results have not been evaluate, but the assigne values are presente (Table 1). After reporting the preliminary results no changes have been one for the assigne values Stanar eviation for proficiency assessment an The requirements for the reproucibility of the use stanar methos were reporte in the cover letter elivere with the samples an they were use to estimate the stanar eviation of the proficiency assessment in PT. The reproucibility require in the stanar methos was mainly fulfille for gross calorific values. The target value for the stanar eviation for the proficiency assessment (2 s pt at the 95 % confience level) was set to 1 30 % epening on the measurements. 10 Proftest SYKE CAL 08/16

13 The reliability of the assigne values was teste accoring to the criterion u pt / s pt 0.3, where u pt is the stanar uncertainty of the assigne value an s pt is the stanar eviation for proficiency assessment [3]. When testing these reliabilities the criterion was mainly fulfille an the assigne values were consiere reliable. The reliability of the target value of the stanar eviation for proficiency assessment an the corresponing was estimate by comparing the eviation for proficiency assessment (s pt ) with the robust stanar eviation or stanar eviation of the reporte results (s rob ) [3]. The criterion s rob / s pt < 1.2 was mainly fulfille. Only for hyrogen in peat sample (B1) the criterion for the reliability of the assigne value an the reliability of the stanar eviation for proficiency assessment was not totally fulfille. In this PT the number of the results was low, an thus the evaluation was compare to the evaluation of the same measuran an test material in the previous roun CAL 06/20152 [4], which confirme the appointe assigne value an stanar eviation for performance assessment. After reporting the preliminary results no changes have been one for the stanar eviation for proficiency assessment. 3 Results an conclusions 3.1 Results The summary of the results of this proficiency test is presente in Table 1. Explanations to terms use in the result tables are presente in Appenix 5.The results an the performance of each participant are presente in Appenix 6. The reporte results with their expane uncertainties (k=2) are presente in Appenix 7. The summary of the s is shown in Appenix 8 an s in the ascening orer in Appenix 9. The robust stanar or stanar eviations of the results mainly varie from 0.3 to 16.2 % (Table 1). The robust stanar or stanar eviation was lower than 2 % for 50 % of the results an lower than 6 % for 85 % of the results (Table 1, Appenix 6). The robust stanar eviation of the results was higher than 6 % for moisture (B1, K1), sulphur (B1) an for ash it was the highest 16.2 % (B2, Table 1). For nitrogen in the woo pellet sample the robust stanar eviation (58.8 %) inicate high variation within the low concentration level, an thus nitrogen was not evaluate (Table 1). The robust stanar or stanar eviations were approximately within the same range as in the previous similar proficiency test CAL 06/2015, where the eviations varie from 0.3 % to 12.1 % [6]. Proftest SYKE CAL 08/16 11

14 Table 1. The summary of the results in the proficiency test 08/2016. Measuran Sample Unit Assigne value Mean Rob. mean Meian SD rob SD rob % 2 x spt % n (all) Acc z % Ash B1 w% B2 w% K1 w% C B1 w% B2 w% K1 w% EF B1 t CO2/TJ K1 t CO2/TJ H B1 w% B2 w% K1 w% Ma, B1 w% B2 w% K1 w% N B1 w% B2 w% K1 w% qp,net, B1 J/g B2 J/g K1 J/g qv,gr, B1 J/g B2 J/g K1 J/g S B1 w% K1 w% Vb B1 w% B2 w% K1 w% Rob. mean: the robust mean, SD rob: the robust stanar eviation, SD rob %: the robust stanar eviation as percent, 2 s pt %: the stanar eviation for proficiency assessment at the 95 % confience interval, Acc z %: the results (%), where z 2, n(all): the total number of the participants. In this proficiency test the participants were requeste to report the replicate results for all measurements. The results of the replicate eterminations base on the ANOVA statistics are presente in Table 2. The international stanars relate to the measurements of fuels recommen the target values for the repeatability. In particular, in measurements of the calorific values, the requirement for the repeatability is ± 120 J/g. In this proficiency test the requirements for the repeatability of the measurements of the gross calorific value were 0.54 % for the sample B1, 0.59 % for the sample B2 an 0.42 % for the sample K1 an in measurements of the net calorific value 0.58 %, 0.64 % an 0.44 %, respectively. In each case, the obtaine repeatability of the measurement of the gross calorific value an the net calorific value was lower than the repeatability requirement (Table 2, the column s w %). The estimation of the robustness of the methos coul be one by the ratio s b /s w. The ratio s b /s w shoul not excee the value 3 for robust methos. Here, however, the robustness exceee the 12 Proftest SYKE CAL 08/16

15 value 3 in many cases (Table 2). For the gross calorific value the ratio s b /s w was 1.3 (the sample B1), 5.2 (B2) an 5.1 (K1) an for the net calorific value the ratio was 2.6, 3.7 an 6.1, respectively. For the calorific values the ratio s b /s w was mainly within the same range than in the previous similar proficiency test CAL 06/2015, with the exception of the lower ratio for the peat sample (B1) [5]. Table 2. The summary of repeatability on the basis of replicate eterminations (ANOVA statistics). Measuran Sample Unit Assigne value Mean sw sb st sw% sb% st% sb/sw Ash B1 w% B2 w% K1 w% C B1 w% B2 w% K1 w% EF B1 t CO2/TJ K1 t CO2/TJ H B1 w% B2 w% K1 w% Ma, B1 w% B2 w% K1 w% N B1 w% B2 w% K1 w% qp,net, B1 J/g B2 J/g K1 J/g qv,gr, B1 J/g B2 J/g K1 J/g S B1 w% K1 w% Vb B1 w% B2 w% K1 w% Ass.val.: assigne value; s w : repeatability stanar error; s b : between participants stanar error; s t : reproucibility stanar error. Proftest SYKE CAL 08/16 13

16 3.2 Analytical methos The participants were allowe to use ifferent analytical methos for the measurements in the PT. A questionnaire of some etaile information relate to the use analytical methos was provie along the proficiency test. The summary of the answers is shown in Appenix 10. The statistical comparison of the analytical methos was possible for the ata where the number of the results was 5. In some cases there were not enough results for statistical comparison an in those cases the comparison is base on the graphical result evaluation. The notice significant ifference is shown in Appenix 11. The use analytical methos an the results of the participants groupe by methos are shown in more etail in Appenix Gross an net calorific value The analytical methos base on ifferent stanar methos were use for the measurements in the proficiency test. The use analytical methos of the participants are shown in more etail in Appenix 12. Mostly, stanar methos were use for measurement of calorific value (EN [7], ISO 1928 [8]. Only one participant use technical speciation (CEN/TS 15400, participant 21). The participants use mostly g of sample for the measurements of the calorific value. The measurements of calorific value were one by PARR, IKA or LECO equipment (Appenix 10). In the calculations of gross calorific value (q V,gr, ), various correction factors were use. Fuse wire, ignition, aci, moisture, nitrogen an sulphur corrections were most commonly use in several ifferent combinations epening of the test material (Appenix 10). For the calculation of net calorific value (q p,net, ), ifferent combinations of correction factors were use as well epening of the test material (Appenix 10). Mainly nitrogen plus oxygen an hyrogen content was use for corrections. Base on the graphical result evaluation, clear ifferences between the use methos in gross an net calorific value measurements coul not be conclue Measurement of carbon, hyrogen, nitrogen, sulphur, moisture, ash, an volatile matter In the proficiency test the following several stanar methos or technical specifications were mainly use for measurements of ifferent parameters: Measuran Metho C, H an N EN [9], ISO [10], ASTM D 5373 [11], EN ISO [12] S EN [13], EN ISO [14], ASTM D 4239 [15] Analytical moisture content EN [16], ISO 589 [17], DIN [18], ASTM D 7582 [19], ASTM D 5142 [20], EN ISO [21], ISO [22] Ash content EN [23], ISO 1171 [24], ASTM D 7582 [19], ASTM D 5142 [20], EN ISO [25] Volatile matter EN [26], ISO 562 [27], EN ISO [28] 14 Proftest SYKE CAL 08/16

17 However, in some cases also other international an national stanars or technical speciation (e.g. CEN/TS 1503, CEN/TS , CEN/TS 15402, ASTM D 5142) or internal methos (e.g. participants 2, 9, 15, 16, 19, 20, 21) were use. Moisture content was mainly etermine gravimetrically by heating in air or N 2 atmosphere at the temperatures of C. Moisture content was measure also using TGA at the temperatures of C. Air an N 2 atmosphere was use for etermining moisture content for coal samples. One participant use nitrogen atmosphere for the woo pellet sample (Appenix 10). The ash content was etermine mainly gravimetrically by heating at the temperature 550 C (Samples B1, B2) or at the temperature 815 C (). Ash content was measure also using TGA for samples at the temperatures C, 550 C, 750 C or 815 C (Appenix 10). The statistical comparison of the analytical methos showe ifferences in the ash measurements between stanars EN an EN ISO (Appenix 11). For the other measurans no ifferences were notice. In the proficiency test also information of etection limit of nitrogen an sulphur was collecte (Appenix 10). The reporte etection limits varie from 0.01 to 0.05 w% for nitrogen an from to 0.1 w% for sulphur. 3.3 Measurement uncertainties of the results In total 76 % of the participants reporte the expane uncertainties (k=2) with their results for at least some of their results (Table 3, Appenix 13). The range of the reporte uncertainties varie between the measurements an the sample types. Several approaches were use for estimating of measurement uncertainty (Appenix 13). The most use approach was base on metho valiation ata or the internal quality ata with or without the results obtaine in proficiency test. One to three participants reporte the usage of the MUkit measurement uncertainty software for the estimation of their uncertainties [29]. The free software is available in the webpage: Generally, the use approach for estimating measurement uncertainty i not make efinite impact on the uncertainty estimates. The estimate uncertainties varie highly for all the teste measurements (Table 3). Especially, very low or high uncertainties can be consiere questionable. Also measurement uncertainty coul not be zero as one participants reporte. It was evient, that some uncertainties ha been reporte erroneously for the measurans (incluing calorific values, Appenix 13), not as relative values as the provier of this proficiency test ha requeste. Proftest SYKE CAL 08/16 15

18 Table 3. The range of the expane measurement uncertainties (k=2, U i %) reporte by the participants. Measurement Ui %, B1 Ui %, B2 Ui %, K1 Ash C EF H ,19-10 N q-p,net, q-v,gr, S Vb Estimation of emission factor Aitionally, the participants were aske to estimate the emission factors for the peat an coal samples istribute in the proficiency test by taking into account their own net calorific values an the total moisture values as receive, which was informe in the cover letter of the samples. The calculation of the emission factor of the woo pellet sample (B2) was not one as it is a CO 2 neutral fuel. In this PT, ue the low number of the results an the variability between the emission factor results the performance evaluation is one only for coal sample (K1) an the performance evaluation is only inicative. Base on the ata it seems that some participants (e.g. participant 5) might has calculate emission factor for coal using the moisture content of the analysis sample (M a ). 4 Evaluation of the results The evaluation of the participants was base on the s, were calculate using the assigne values an the stanar eviation for performance assessments (Appenix 5). The s were interprete as follows: Criteria z 2 Performance Satisfactory 2 < z < 3 Questionable z 3 Unsatisfactory In total, 90 % from the results were satisfactory when eviations of 1 30 % from the assigne values were accepte. About 75 % of the participants use the accreite methos an 92 % of their results were satisfactory. Proftest SYKE arrange a similar proficiency test in 2015 an then 85 % of the results were satisfactory [6]. The summary of the performance evaluation is shown in Table 4. The percentage of the satisfactory results varie between 82 % an 91 % for the teste sample types (Table 4). The criteria for performance ha been mainly set accoring to the target value for reproucibility recommene in international stanars or technical specifications for measurement of the 16 Proftest SYKE CAL 08/16

19 Table 4. Summary of the performance evaluation in the proficiency test CAL 08/2016. Sample Satisfactory Accepte eviation from Remarks results (%) the assigne value (%) Peat, B In the CAL 06/15 the performance was satisfactory for 86 % of the results [6]. Woo pellet, B Difficulties in measurements for H an net calorific value in which there were < 80% satisfactory results. In the CAL 06/15 the performance was satisfactory for 82 % of the results [6]. Coal, K Goo performance. In the CAL 06/15 the performance was satisfactory for 87 % of the results [6]. calorific values an other eterminants. The reproucibility require in the stanars was fulfille for the gross calorific values. For the net calorific value increase reproucibility from the value for the gross caloric value was use. There was no criterion for reproucibility for the net calorific value in stanars methos. Peat In the previous similar proficiency test CAL 06/15 the satisfactory results of the peat sample (B1) were in total 86 % [6], thus the performance in this PT is slightly ecline (82 %, Table 4). The satisfactory results varie between 82 % (net calorific value) an 100 % (ash, N, S) for the peat sample (Table 1). In this proficiency test the number of satisfactory results of the gross values was in the same level (82 %) an the net calorific values (93 %) for the peat sample was higher than in the previous proficiency test CAL 06/15 (82 % an 86 %, respectively) [6]. The results of analysis moisture (M a ) an emission factor have not been evaluate, but the assigne values are presente (Table 1). Woo pellet In the previous similar proficiency test CAL 06/15 the satisfactory results of the woo pellet sample (B2) were in total 82 % [6], thus the performance in this proficiency test was somewhat better (85 %, Table 4). The satisfactory results varie between 73 % (H) an 95 % (Ash) for the woo pellet sample (Table 1). The number of nitrogen result was too low for the performance evaluation in peat sample (B2, Table 1). In the measurement of gross an net calorific values, 75 % an 86 %, respectively, were satisfactory when accepting eviations of 1.5 % an 1.8 % from the assigne values (Table 1). The number of satisfactory results of the gross an net calorific values for woo pellet was lower for gross calorific value an higher for the net calorific value than in the previous proficiency test CAL 06/15 (85 % an 72 % respectively) [6]. The estimation of EF was not one as it is a CO 2 neutral fuel. Also the results of analysis moisture (M a ) have not been evaluate, but the assigne value is given (Table 1). Coal In the previous similar proficiency test CAL 06/15 the satisfactory results of the coal sample (K1) were in total 87 % [6], thus the performance was enhance in this PT (91 %, Table 4). In Proftest SYKE CAL 08/16 17

20 the measurement of gross an net calorific values, 85 % an 84 % of results, respectively, were satisfactory, when accepting the eviations of 1 an 1.2 % from the assigne values (Table 1). In this proficiency test the number of satisfactory result of the gross an net calorific values were nearly in the same range than in the previous test CAL 06/15 (85 % an 81 %, respectively) [6]. The results of analysis moisture (M a ) have not been evaluate, but the assigne value is given (Table 1). 5 Summary Proftest SYKE carrie out the proficiency test (PT) for the analysis of the gross an the net calorific value as well as for content of ash, carbon, hyrogen, nitrogen, sulphur, analytical moisture content an volatile matter in fuels in September Three types of samples were elivere to the participants: peat, woo pellet (not sulphur) an coal. In total 28 participants took part in the PT. Aitionally, the participants were aske to estimate or calculate the emission factor for peat an coal samples. The robust means (or means, n<12) of the results reporte by the participants were use as the assigne values for measurements. The uncertainty for the assigne value was estimate at the 95 % confience interval an it was less than 0.5 % for calorific values an at maximum 10 % for the other measurements. The evaluation of the performance was base on the s, which were calculate using the stanar eviation for proficiency assessment at 95 % confience level. The evaluation of performance was not one for the measurement of M a in all samples, N in the woo pellet samples an EF in the peat sample. In this proficiency test 90 % of the ata was regare to be satisfactory when the result was accepte to eviate from the assigne value from 1 to 30 %. About 75 % of the participants use the accreite methos an 92 % of their results were satisfactory. In measurements of the gross calorific value from the peat, woo pellet an coal samples, 93 %, 86 % an 84 % of the results were satisfactory, respectively. In measurements of the net calorific value from the peat, woo pellet an coal samples, 82 %, 75 % an 85 % of the results were satisfactory, respectively. In general, the results were in the same range as in the previous similar Proftest SYKE proficiency test in 2015 [6], but the performance in the gross calorific value was somewhat higher an the net calorific value was somewhat lower for peat sample in the present PT. 18 Proftest SYKE CAL 08/16

21 6 Summary in Finnish Proftest SYKE järjesti syyskuussa 2016 pätevyyskokeen kalorimetrisen ja tehollisen lämpöarvon sekä tuhkan, veyn, typen, rikin, kosteuen ja haihtuvien yhisteien määrittämiseksi turpeesta, puupelletistä (ei rikkiä) ja kivihiilestä. Lisäksi osallistujilla oli mahollisuus laskea päästökerroin turve- ja kivihiilinäytteistä. Pätevyyskokeeseen osallistui yhteensä 28 laboratoriota. Osallistujien pätevyyen arviointi tehtiin z-arvon avulla ja sen laskemisessa käytetyn kokonaishajonnan tavoitearvot olivat määrityksestä riippuen välillä 1 30 %. Mittaussuureen vertailuarvona käytettiin osallistujien ilmoittamien tulosten robustia keskiarvoa tai keskiarvoa, jos tuloksia oli vähän (n<12). Tavoitearvon epävarmuus oli lämpöarvomäärityksissä alhaisempi kuin 0,5 % ja muien määritysten osalta korkeintaan 10 %. Tulosten arviointia ei tehty testinäytteien kosteuspitoisuuen määritykselle, typen määritykselle puupelletistä eikä päästökertoimen laskennalle turpeesta. Koko tulosaineistossa hyväksyttäviä tuloksia oli 90 %, kun vertailuarvosta sallittiin 1 30 % poikkeama. Noin 75 % osallistujista käytti akkreitoituja määritysmenetelmiä ja näistä tuloksista oli hyväksyttäviä 92 %. Kalorimetrisen lämpöarvon tuloksista oli hyväksyttäviä 93 % (turve), 86 % (puupelletti) ja 84 % (kivihiili). Tehollisen lämpöarvon tuloksille vastaavat hyväksyttävien tulosten osuuet olivat 82 % (turve), 75 % (puupelletti) ja 85 % (kivihiili). Hyväksyttäviä tuloksia oli lähes saman verran kuin eellisessä vastaavassa pätevyyskokeessa 6/2015 [6], mutta turvenäytteen osalta kalorimetrisen lämpöarvon menestyminen oli parempi ja tehollisen lämpöarvon menestyminen heikompi kuin eellisellä kierroksella. Proftest SYKE CAL 08/16 19

22 REFERENCES 1. SFS-EN ISO 17043, Conformity assessment General requirements for Proficiency Testing. 2. ISO 13528, Statistical methos for use in proficiency testing by interlaboratory comparisons. 3. Thompson, M., Ellison, S. L. R., Woo, R., The International Harmonize Protocol for the Proficiency Testing of Analytical Chemistry laboratories (IUPAC Technical report). Pure Appl. Chem. 78: , 4. Leivuori, M., Rantanen, M., Björklöf, K., Tervonen, K., Lanteri, S. an Ilmakunnas, M SYKE Proficiency Test 6/2012. Gross an net calorific value in fuels. Reports of Finnish Environment Institute 4/2013. ( 5. Proftest SYKE Guie for laboratories: Running proficiency test 1E2CE936D48C%7D/ Leivuori, M., Rantanen, M., Björklöf, K., Tervonen, K., Lanteri, S., Ilmakunnas, M., Proficiency test 06/2015. Gross an net calorific value in fuels. Reports of Finnish Environment Institute 37/ pp. ( 7. EN 14918, Soli Biofuels. Metho for the etermination of calorific value. 8. ISO 1928, Soli mineral fuels - Determination of gross calorific value by a bomb calorimetric metho, an calculation of net calorific value. 9. EN 15104, Soli biofuels. Determination of total content of carbon, hyrogen an nitrogen. Instrumental methos. 10. ISO 29541, Soli mineral fuels - Determination of total carbon, hyrogen an nitrogen content - Instrumental methos. 11. ASTM D 5373, Stanar Test Methos for Instrumental Determination of Carbon, Hyrogen, an Nitrogen in Laboratory Samples of Coal an Coke. 12. EN ISO 16948, Soli biofuels - Determination of total content of carbon, hyrogen an nitrogen 13. EN 15289, 2011 Soli biofuels - Determination of total content of sulphur an chlorine (withrawn). 14. EN ISO 16994, Soli biofuels - Determination of total content of sulfur an chlorine. 20 Proftest SYKE CAL 08/16

23 15. ASTM D 4239, Stanar Test Methos for Sulfur in the Analysis Sample of Coal an Coke Using High - Temperature Combustion an Infrare Absorption. 16. EN , Soli biofuels. Methos for the etermination of moisture content. Oven ry metho. Part 3: Moisture in general analysis sample (withrawn). 17. ISO 589, Har coal - Determination of total moisture. 18. DIN 51718, Determining the moisture content of soli fuels. 19. ASTM D 7582, Stanar Test Methos for Proximate Analysis of Coal an Coke by Macro Thermogravimetric Analysis. 20. ASTM D 5142, Stanar Test Methos for Proximate Analysis of the Analysis Sample of Coal an Coke by Instrumental Proceures (withrawn). 21. EN ISO 18134, Soli biofuels - Determination of moisture content - Oven ry metho - Part 3: Moisture in general analysis sample. 22. ISO 11722, Soli mineral fuels - Har coal - Determination of moisture in the general analysis test sample by rying in nitrogen. 23. EN 14775, Soli biofuels. Determination of ash content (withrawn). 24. ISO 1171, 2010 Soli mineral fuels - Determination of ash. 25. EN ISO 18122, Soli biofuels - Determination of ash content. 26. EN 15148, Biofuels, Soli fuels, Biomass, Fuels, Chemical analysis an testing, Volatile matter etermination, Gravimetric analysis (withrawn). 27. ISO 562, Har coal an coke - Determination of volatile matter. 28. EN ISO 18123, Soli biofuels -- Determination of the content of volatile matter. 29. Näykki, T., Virtanen, A. an Leito, I., Software support for the Nortest metho of measurement uncertainty evaluation. Accre. Qual. Assur. 17: Mukit website: Magnusson, B. Näykki. T., Hovin, H. an Krysell, M., Hanbook for Calculation of Measurement Uncertainty in Environmental Laboratories. NT Technical Report 537. Nortest. 31. Ellison, S., L., R. an Williams, A. (Es). (2012) Eurachem/CITAC guie: Quantifying Uncertainty in Analytical Measurement, Thir eition, ISBN ISO/IEC Guie 98-3:2008. Uncertainty of measurement - Part 3: Guie to the expression of uncertainty in measurement (GUM: 1995). Proftest SYKE CAL 08/16 21

24 APPENDIX 1 (1/1) APPENDIX 1: s in the proficiency test Country Bosnia-Hertsegovina Bulgary Estonia Finlan France Lithuania Republic of Irelan Republic of Korea Romania Sween Institute JP Elektroprivrea..Sarajevo, Z.D. RMU Kakanj.o.o Kakanj AES-3C Maritza East 1 EOOD; Testing Laboratory "Energy Materials" Eesti Energia Ölitööstus AS Chemical Laboratory Enefit Energiatootmine AS Tallinn University of Technology, Thermal Engineering Department Ahma ympäristö Oy, Oulu BotniaLab Oy Vaasa Ekokem Oy Ab, Riihimäki Finnsementti Oy KCL Kymen Laboratorio Oy Kuopion Energia Oy/ energiantuotanto Kymenlaakson ammattikorkeakoulu Labtium Oy, Jyväskylä Luonnonvarakeskus Kannuksen laboratorio Prosessikemia Ramboll Finlan Oy, Vantaa, Inustry an Power Plant Chemistry SOCOR Dechy France Axis Inustries Biofuel research Laboratory, Kaunas Cement testing laboratory Co Akmenes cementas Eenerry Power Lt Institute of Mine Raclamation Technology, MIRECO Intertek KIMSCO Ulsan Testing Center, South Korea Komipo, Boryeong Thermal Power Site Division The Founation of Agr. Tech. Commercialization an Transfer Air Pollution Laboratory- INCD ECOIND- Bucuresti CRH Ciment (Romania)-Punct e lucru Hoghiz Eurofins Environment testing Sween AB, Liköping SP Technical Research Institute of Sween 22 Proftest SYKE CAL 08/16

25 APPENDIX 2 (1/1) APPENDIX 2: Homogeneity of the samples As the test materials were use in the previous PT CAL 06/2012 [4], the homogeneity was teste from uplicate measurements of two samples per teste sample type. The analytical variation s an an the sampling variation s sam was calculate using one-way variance analysis. For this proficiency test, the analytical results were statistically hanle accoring to the IUPAC guielines for the treatment of homogeneity testing ata an the total stanar eviation for proficiency assessment [3, 4]. Criteria for homogeneity: s an /s h <0.5 an s sam 2 <c, where s h % = stanar eviation for testing of homogeneity s an = analytical eviation, stanar eviation of the results within sub samples s p % = stanar eviation for proficiency assessment s sam = between-sample eviation, stanar eviation of the results between sub samples c = F1 s all 2 + F2 s a 2, where s all 2 = (0.3 s h ) 2, F1 an F2 are constants of F istribution erive from the stanar statistical tables for the teste number of samples [2, 3]. Table 1. Results from the homogeneity testing of the peat (B1), pellet (B2) an coal (K1) samples. Measurements Mean sh% sp% sh san san/sh Gross calorific value, J/g Net calorific value, J/g Gross calorific value, J/g Net calorific value, J/g Gross calorific value, J/g Net calorific value, J/g Peat (B1) Is san/sh<0.5? ssam ssam 2 c Is ssam 2 <c? yes yes yes yes Pellet (B2) yes yes yes yes Coal (K1) yes yes yes yes Conclusion: In teste cases, the criteria were fulfille. Thus, all the samples coul be regare as homogenous. Proftest SYKE CAL 08/16 23

26 APPENDIX 3 (1/1) APPENDIX 3: Feeback from the proficiency test FEEDBACK FROM THE PARTICIPANTS Comments on technical execution Action / Proftest 6 The participant appreciate rapily reporte preliminary results. 8, 14 s receive the samples within one ay after the estimate elivery ay. 20 The participant informe receiving the samples on 20 th September. 14 The participant informe that the sample size was too small for parallel measurements. The participant informe that they rie sample using their own rying temperature. Proftest SYKE appreciates positive feeback. The use istributor (Posti) i not eliver the samples accoring to the agree scheule. Accoring to the istributor's (Posti) tracking system the samples arrive to the participant on 7 th September. The provier recommens to check the internal package elivery proceures. s can orer multiple samples if the informe sample size is not enough for their methos. Own sample rying protocols an temperature are allowe in the test Comments to the results Action / Proftest 17 The participants informe that they reporte some results erroneously for coal samples. The correcte results were: Ash: w% Vp: w% qv,gr,: J/g S: 0.52 The provier oes not correct the results after elivering the preliminary results. The results were hanle, when aequate, as outliers in the statistical treatment. All results were satisfactory with the exception of gross calorific value. If it ha been reporte correctly it woul have been satisfactory. The participant can re-calculate the z-scores accoring to the Guie for participants [5]. FEEDBACK TO THE PARTICIPANTS Comments 5 The participants reporte only one result instea of replicate results for emission factor in coal (K1) sample. The results have been exclue from the calculation of the assigne values. Also the participants reporte emission factor for woo pellet (B2), for which no information for the total moisture contents of the samples as receive (Mar) was given. The participants shoul follow more carefully the instructions given by the provier. Also the participants shoul check the calculating formula of emission factor. 2, 7, 8, 11, 14, 21, 27 All All For these participants the eviation of replicate measurements for some measurans an samples were high an their results were Cochran outliers. The provier recommens the participants to valiate their eviation of replicate measurements. It was evient, that some uncertainties ha been reporte erroneously for the measurans (incluing calorific values), not as relative values as the provier of this proficiency test ha requeste. Also measurement uncertainty coul not be zero as one participants reporte. The provier recommens the participants to valiate the calculation of measurement uncertainties an follow more carefully the instructions given by the provier. Some of the participants use withrawn stanars as the reference for their measurements. It is recommene that participants shoul upate the reference stanars. 24 Proftest SYKE CAL 08/16

27 APPENDIX 4 (1/1) APPENDIX 4: Evaluation of the assigne values an their uncertainties Measuran Sample Unit Assigne value Upt, % Evaluation metho of assigne value upt/spt Ash B1 w% Robust mean 0.33 B2 w% Robust mean 0.32 K1 w% Robust mean 0.20 C B1 w% Mean 0.17 B2 w% Mean 0.16 K1 w% Robust mean 0.20 EF B1 t CO2/TJ Mean K1 t CO2/TJ Mean 0.33 H B1 w% Mean 0.54 B2 w% Mean 0.38 K1 w% Mean 0.28 Ma, B1 w% Robust mean B2 w% Robust mean K1 w% Robust mean N B1 w% Mean 0.22 B2 w% Mean K1 w% Mean 0.32 qp,net, B1 J/g Mean 0.06 B2 J/g Mean 0.11 K1 J/g Mean 0.25 qv,gr, B1 J/g Robust mean 0.31 B2 J/g Robust mean 0.20 K1 J/g Robust mean 0.30 S B1 w% Mean 0.30 K1 w% Robust mean 0.21 Vb B1 w% Mean 0.17 B2 w% Mean 0.13 K1 w% Mean 0.33 U pt = Expane uncertainty of the assigne value Criterion for reliability of the assigne value u pt/s pt < 0.3, where s pt= target value of the stanar eviation for proficiency assessment u pt= stanar uncertainty of the assigne value If u pt/s pt < 0.3, the assigne value is reliable an the s are qualifie. Proftest SYKE CAL 08/16 25

28 APPENDIX 5 (1/1) APPENDIX 5: Terms in the results tables Results of each participant Measuran The teste parameter Sample The coe of the sample Calculate as follows: z = (x i - x pt )/s pt, where x i = the result of the iniviual participant x pt = the assigne value s pt = the target value of the stanar eviation for proficiency assessment Assigne value The value attribute to a particular property of a proficiency test item 2 s pt % The target value of total stanar eviation for proficiency assessment (s pt ) at the 95 % confience level s s result The result reporte by the participant (the mean value of the replicates) M Meian SD Stanar eviation SD% Stanar eviation, % n (stat) Number of results in statistical processing Summary on the s S satisfactory ( -2 z 2) Q questionable ( 2< z < 3), positive error, the result eviates more than 2 s pt from the assigne value q questionable ( -3 < z < -2), negative error, the result eviates more than 2 s pt from the assigne value U unsatisfactory (z 3), positive error, the result eviates more than 3 s pt from the assigne value u unsatisfactory (z -3), negative error, the result eviates more than 3 s pt from the assigne value Robust analysis The items of ata are sorte into increasing orer, x 1, x 2, x i,,x p. Initial values for x * an s * are calculate as: x * = meian of x i (i = 1, 2,...,p) s * = 1,483 meian of x i x * (i = 1, 2,...,p) The mean x * an s * are upate as follows: Calculate = 1.5 s *. A new value is then calculate for each result x i (i = 1, 2 p): { x * -, if x i < x * - x * i = { x * +, if x i > x * +, { x i otherwise The new values of x * an s * are calculate from: * * x xi / p s ( x i x ) 2 /( p 1) The robust estimates x * an s * can be erive by an iterative calculation, i.e. by upating the values of x * an s * several times, until the process convergences [2]. 26 Proftest SYKE CAL 08/16

29 APPENDIX 6 (1/10) APPENDIX 6: Results of each participant 1 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , EF t CO2/TJ B t CO2/TJ K H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B w% K qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) C w% B , Ma, w% B qv,gr, J/g B , Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B Ma, w% B qp,net, J/g B , qv,gr, J/g B , Proftest SYKE CAL 08/16 27

30 APPENDIX 6 (2/10) 4 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , EF t CO2/TJ B t CO2/TJ K H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B w% K qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , EF t CO2/TJ B t CO2/TJ K H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B <0, w% K Proftest SYKE CAL 08/16

31 APPENDIX 6 (3/10) 5 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% K , C w% K , Ma, w% K qv,gr, J/g K S w% K Vb w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% K , C w% B , w% K , EF t CO2/TJ K H w% B w% K Ma, w% B w% K N w% B w% K qp,net, J/g B , J/g K , qv,gr, J/g B , J/g K S w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B C w% B S w% B Proftest SYKE CAL 08/16 29

32 APPENDIX 6 (4/10) 9 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% K , C w% K , EF t CO2/TJ K H w% K Ma, w% K qp,net, J/g K , qv,gr, J/g K S w% K Vb w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B qp,net, J/g B , J/g B , qv,gr, J/g B , J/g B , Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , EF t CO2/TJ B t CO2/TJ K H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B w% K qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K S w% B w% K Proftest SYKE CAL 08/16

33 APPENDIX 6 (5/10) 12 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B Ma, w% B w% B qp,net, J/g B , J/g B , qv,gr, J/g B , J/g B , Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B Ma, w% B w% B qp,net, J/g B , J/g B , qv,gr, J/g B , J/g B , Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% K , C w% B , w% K , EF t CO2/TJ K H w% B w% K Ma, w% B w% K qp,net, J/g B , J/g K , qv,gr, J/g B , J/g K S w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% K , C w% B , w% K , EF t CO2/TJ K , H w% B w% K Ma, w% B w% K Proftest SYKE CAL 08/16 31

34 APPENDIX 6 (6/10) 15 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) N w% B <0, w% K qp,net, J/g B , J/g K , qv,gr, J/g B , J/g K S w% K Vb w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% K , Ma, w% K qv,gr, J/g K S w% K Vb w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B Ma, w% B qp,net, J/g B , qv,gr, J/g B , Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% K , C w% K , Ma, w% K qp,net, J/g K , qv,gr, J/g K S w% K Vb w% K Proftest SYKE CAL 08/16

35 APPENDIX 6 (7/10) 20 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% K , Ma, w% K qv,gr, J/g K Vb w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , Ma, w% B w% B w% K qv,gr, J/g B , J/g B , J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , EF t CO2/TJ B t CO2/TJ K H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B w% K qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K S w% B Proftest SYKE CAL 08/16 33

36 APPENDIX 6 (8/10) 22 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) S w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) qv,gr, J/g B , Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% K , C w% B , w% K , H w% B w% K Ma, w% B w% K N w% B w% K qp,net, J/g B , J/g K , qv,gr, J/g B , J/g K S w% K Vb w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , EF t CO2/TJ B t CO2/TJ K H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B w% K Proftest SYKE CAL 08/16

37 APPENDIX 6 (9/10) 25 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) qp,net, J/g B , J/g B , J/g K , qv,gr, J/g B , J/g B , J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , C w% B w% B , w% K , H w% B w% B w% K Ma, w% B w% B w% K N w% B w% B w% K qv,gr, J/g B , J/g B , J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) Ash w% B w% B w% K , Ma, w% B w% B w% K qv,gr, J/g B , J/g B , Proftest SYKE CAL 08/16 35

38 APPENDIX 6 (10/10) 27 Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) qv,gr, J/g K S w% B w% K Vb w% B w% B w% K Measuran Unit Sample Assigne value 2 spt % 's result M Mean SD SD% n (stat) qp,net, J/g B , qv,gr, J/g B , Proftest SYKE CAL 08/16

39 APPENDIX 7 (1/10) APPENDIX 7: Results of participants an their uncertainties In figures: The ashe lines escribe the stanar eviation for the proficiency assessment, the re soli line shows the assigne value, the shae area escribes the expane measurement uncertainty of the assigne value, an the arrow escribes the value outsie the scale. #Measuran Ash<sub></sub> 7,9 7,7 7,5 7,3 w% 7,1 6,9 6,7 6,5 6, #Measuran Ash<sub></sub> 0,45 0,40 0,35 w% 0,30 0,25 0,20 0,15 0, Proftest SYKE CAL 08/16 37

40 APPENDIX 7 (2/10) #Measuran Ash<sub></sub> 13,75 13,50 13,25 w% 13,00 12,75 12,50 12,25 12, #Measuran CC<sub></sub> w% #Measuran CC<sub></sub> w% Proftest SYKE CAL 08/16

41 APPENDIX 7 (3/10) #Measuran CC<sub></sub> w% Measuran EF 110,0 107,5 t CO2/TJ 105,0 102,5 100, Measuran EF t CO2/TJ Proftest SYKE CAL 08/16 39

42 APPENDIX 7 (4/10) #Measuran HH<sub></sub> 6,4 6,2 6,0 5,8 w% 5,6 5,4 5,2 5,0 4, #Measuran HH<sub></sub> 6,7 6,5 6,3 w% 6,1 5,9 5,7 5,5 5, #Measuran HH<sub></sub> 5,1 5,0 4,9 4,8 4,7 w% 4,6 4,5 4,4 4,3 4,2 4,1 4, Proftest SYKE CAL 08/16

43 APPENDIX 7 (5/10) #Measuran MM<sub>a,</sub> 8,1 7,9 7,7 7,5 w% 7,3 7,1 6,9 6, #Measuran MM<sub>a,</sub> 7,80 7,75 7,70 7,65 w% 7,60 7,55 7,50 7,45 7, #Measuran MM<sub>a,</sub> 4,4 4,3 4,2 4,1 4,0 w% 3,9 3,8 3,7 3,6 3,5 3, Proftest SYKE CAL 08/16 41

44 APPENDIX 7 (6/10) #Measuran NN<sub></sub> 2,1 2,0 1,9 w% 1,8 1,7 1,6 1, #Measuran NN<sub></sub> 0,100 0,075 w% 0,050 0,025 0, #Measuran NN<sub></sub> 2,6 2,5 2,4 2,3 w% 2,2 2,1 2,0 1,9 1, Proftest SYKE CAL 08/16

45 APPENDIX 7 (7/10) #Measuran q q<sub>p,net,</sub> J/g #Measuran q q<sub>p,net,</sub> J/g #Measuran q q<sub>p,net,</sub> J/g Proftest SYKE CAL 08/16 43

46 APPENDIX 7 (8/10) #Measuran q q<sub>v,gr,</sub> J/g #Measuran q q<sub>v,gr,</sub> J/g #Measuran q q<sub>v,gr,</sub> J/g Proftest SYKE CAL 08/16

47 APPENDIX 7 (9/10) #Measuran SS<sub></sub> 0,275 0,250 0,225 w% 0,200 0,175 0,150 0,125 0, #Measuran SS<sub></sub> 0,55 0,50 w% 0,45 0,40 0,35 0, #Measuran VV<sub>b</sub> w% Proftest SYKE CAL 08/16 45

48 APPENDIX 7 (10/10) #Measuran VV<sub>b</sub> w% #Measuran VV<sub>b</sub> 36,5 36,0 35,5 w% 35,0 34,5 34,0 33,5 33, Proftest SYKE CAL 08/16

49 APPENDIX 8 (1/2) APPENDIX 8: Summary of the s Measuran Sample % Ash B1 S. S S S.. S. S S S S.. S.... S S. 100 B2 S.. S S. S S. u S S S S S S. S.. S S. 94,7 K1 S.. q S S S. S. S.. S S Q S. S S S S. 89,5 C B1 S.. S S.. u.. S S. 87,5 B2 S S. S S. S... S.. U S S. 91,7 K1 S.. S S S S. S. S.. Q S... S.. S. 92,9 EF B B K1 S.. S S. S. S. S.. S S. 100 H B1 S.. S q..... S S. 85,7 B2 Q.. S q. S... S.. u S S. 72,7 K1 S.. S S. S. q. S.. S S S. 91,7 Ma, B B K N B1 S.. S S..... S S. 100 B K1 S.. S S. S... S... S S. 90,0 qp,net, B1 S. S S u.... S S S S.. u..... S. 81,8 B2 S.. S u. q.. S S S S U S u. S... S. 75,0 K1 S.. S u. S. S. S.. S S u.. S.. S. 84,6 qv,gr, B1 S. S S S.... S S S S.. u.... S S. 92,9 B2 S u. S S. u.. S S S S S S u. S.. S S S 85,7 K1 S.. S S S q. S. S.. S S u u. S S S S. 84,2 S B1 S.. S S.. S.. S S S. 100 K1 S.. S S S S. S. S.. S S. S. S. S S. 100 Vb B1 S.. S Q S S. 87,5 B2 S.. S S S..... u S. 90,0 K1 S.. S S S.. S..... S. S. S q u S. 86,7 % accreite Proftest SYKE CAL 08/16 47

50 APPENDIX 8 (2/2) Measuran Sample % Ash B1. S S S B2 S S S S ,7 K1 S S S S ,5 C B1. S S ,5 B2 S S S ,7 K1 S S S ,9 EF B B K1. S H B1. S S ,7 B2 S S S ,7 K1 S S S ,7 Ma, B B K N B1. S S B K1 U S S ,0 qp,net, B1. S ,8 B2 S S.. S ,0 K1 S S ,6 qv,gr, B1. S S S ,9 B2 S S S S S ,7 K1 S S S S ,2 S B1. S S S K1 S S S S Vb B1. S S S ,5 B2 S S S S ,0 K1 S S S S ,7 % accreite S - satisfactory (-2 < z < 2), Q - questionable (2 < z < 3), q - questionable (-3 < z < -2), U - unsatisfactory (z > 3), an u - unsatisfactory (z < -3), respectively bol - accreite, italics - non-accreite, normal - other % - percentage of satisfactory results Totally satisfactory, % in all: 90 % in accreite: 92 % in non-accreite: Proftest SYKE CAL 08/16

51 APPENDIX 9 (1/8) APPENDIX 9: s in ascening orer #Measuran Ash<sub></sub> #Measuran Ash<sub></sub> #Measuran Ash<sub></sub> Proftest SYKE CAL 08/16 49

52 APPENDIX 9 (2/8) #Measuran CC<sub></sub> #Measuran CC<sub></sub> #Measuran CC<sub></sub> Proftest SYKE CAL 08/16

53 APPENDIX 9 (3/8) Measuran EF #Measuran HH<sub></sub> #Measuran HH<sub></sub> Proftest SYKE CAL 08/16 51

54 APPENDIX 9 (4/8) #Measuran HH<sub></sub> #Measuran NN<sub></sub> #Measuran NN<sub></sub> Proftest SYKE CAL 08/16

55 APPENDIX 9 (5/8) #Measuran qq<sub>p,net,</sub> p, net, #Measuran qq<sub>p,net,</sub> p, net, #Measuran qq<sub>p,net,</sub> p, net, Proftest SYKE CAL 08/16 53

56 APPENDIX 9 (6/8) #Measuran qq<sub>v,gr,</sub> V, gr, #Measuran qq<sub>v,gr,</sub> V, gr, #Measuran qq<sub>v,gr,</sub> V, gr, Proftest SYKE CAL 08/16

57 APPENDIX 9 (7/8) #Measuran SS<sub></sub> #Measuran SS<sub></sub> #Measuran VV<sub>b</sub> b Proftest SYKE CAL 08/16 55

58 APPENDIX 9 (8/8) #Measuran VV<sub>b</sub> b #Measuran VV<sub>b</sub> b Proftest SYKE CAL 08/16

59 APPENDIX 10 (1/3) APPENDIX 10: Analytical measurements an backgroun information for calculations Reporte etails of the measurements: Measurement of (peat) (woo pellet) (coal) gross calorific value Sample amount: g g g Air rie samples: participants 1, 22, 27 participants 1, 7, 22, 24, 27, 28 participants 1, 6, 7, 9, 22, 24, 25, 27, 28 Drying in 105 C: participants 4, 25 participants 4, 8, 18, 25 participants 4, 19, 20 Other: participant 8: 108 C - - Equipment: PARR (moels 6200, 6300, 6400): participants 6, 7, 18, 22, 24, 28 LECO (moel AC350, AC600): participants 1, 25, 17, 27 IKA (moels C2000, C5000): participants 1, 4, 9, 19, 20 Other: participant 8: out of service Correction taken into account in calculations: Gross calorific value Sample s an correction factors use B1 (peat) B2 (woo pellet) K1 (coal) 1: wire, ignition, aci correction, analysis moisture 1: S x x x x x 4: wire, ignition, S, analysis moisture x x x 6: wire, ignition, S, aci correction, analysis moisture 7: wire, N, analysis moisture x x x 7: S x 9: wire, ignition, S, analysis moisture x 18: wire, ignition, S, aci correction, analysis moisture x 19: wire, aci correction x 20: wire, ignition 24: wire, S, aci correction, analysis moisture x x x 25: wire, S, aci correction x x x 25: analysis moisture 27: wire, S, N, analysis moisture x x x x 28: analysis moisture x Proftest SYKE CAL 08/16 57

60 APPENDIX 10 (2/3) Correction taken into account in calculations: Net calorific value (literature value in brackets) Sample B1 (peat) B2 (woo pellet) K1 (coal) 1 N+O, H N+O, H N+O, H 4 N+O, H N+O N+H 6 H 7 N+O, H N+O, H 9 H 18 N+O (43+0,1%), H (6,2) 19 N+O, H calculate, N+O (ISO 17247), H (ISO 1928) 22 N+O, H N+O, H 24 N+O, H N+O, H 25 N+O, H N+O, H N+O, H 28 H Methos use in ash an moisture measurements: Measurement Metho C (peat) (woo pellet) (coal) Ash content (ashing Gravimetric 550 parts 1, 4, 22, 25, 27 parts 1, 4, 7, 22, 24, 25, 27 temperature C) 815 parts 1, 4, 7, 9, 17, 20, 22, 24, 25, 27 TGA: part parts 18, part part 8 part 19 Moisture content of analysis sample, M a (temperature C) Air: parts 1, 4, 22, 25, 27 parts 1, 4, 7, 18, 22, 24, 25, 27 parts 4, 7, 17, 20, 24, 27 N 2 atmosphere: part 28 parts 1, 6, 9, 19, 22, 25 Gravimetric: 103 part parts 1, 4, 22, 25, 27 parts 1, 4, 7, 22, 25, 27 parts 1, 4, 7, 20, parts 9, 17, 24, part 22 TGA: 105 parts 18, 19 part part 28 Relative humiity of analyzing room (%) part 1: 41,5, part 4: 20-30, part 6: 26, part 7: 40, part 9: 50, part 17: 51,6, part 18: 48, part 19: 60, part 20: 55, part 22: 27, part 24: 50, part 25: 49,6, part 27: 42, part 28: Proftest SYKE CAL 08/16

61 APPENDIX 10 (3/3) CHN-measurements carrie out by: Sample B1 B2 K1 Air rie samples: parts 4, 22, 25 parts 4, 7, 22, 24, 25, 28 parts 1, 4, 6, 7, 9, 22, 24, 25 Drying in 105 C: part 1 part 1 Other: Detection limits in nitrogen an sulphur measurements: Detection limit for N (w%) Detection limit for S (w%) Calculations of Emission factor (EF) 1 : We have use the equation base on the ecision 2007/589/EC ( ). If no, escribe how? (peat) (woo pellet) (coal) Yes: parts 1, 4, 22, 25 parts 22, 28 parts 1, 4, 7, 9, 19, 22, 25 No: part 4: the oler version from part 4: the oler version from part 6: part on t use this inex in practice 1 In the cover letter the provier gave the participants the possibility to calculate the EF-value using the proceure presente in the EC irective an using the total moisture content as presente in the letter. Later it was obtaine, that the EC irective is not giving the etaile equation for calculation of EFvalues. Therefore, some national guies for the equation of EF value calculation have been prouce. As a result from this, the Energy Market Authority in Finlan has mae the guieline for the calculation of emission factor for fossile fuels as follows: EF = (C/100) (1 M ar /100)/Q net.ar, where EF emission factor, g CO 2 /MJ C carbon content as ry, % M ar total moisture as receive, % Q net.ar net calorific value as receive, MJ/kg ( Proftest SYKE CAL 08/16 59

62 APPENDIX 11 (1/1) APPENDIX 11: Significant ifferences in the results reporte using ifferent methos Boxplot figures: In the box the upper an lower limit inclue 50 % of the results. The ashe vertical line in the mile of the box is the meian of the results. The vertical lines above an uner the box escribe the limits of 80 % of the results. The black ots escribe the highest an smallest results within the center 90 % of the results. Metho n Mean (w%) SD (w%) Metho EN ,12 Metho 2247 EN ISO ,05 n= number of results, SD= stanar eviation 60 Proftest SYKE CAL 08/16

63 APPENDIX 12 (1/10) APPENDIX 12: Results groupe accoring to the methos The explanations for the figures are escribe in the Appenix 9. The results are shown in ascening orer. #Measuran Ash<sub></sub> 7,9 7,7 7,5 7,3 w% 7,1 6,9 6,7 6,5 6, EN ISO 1171 EN ISO Other metho #Measuran Ash<sub></sub> 0,45 0,40 0,35 w% 0,30 0,25 0,20 0,15 0, EN ASTM D 5142 EN ISO Other metho Proftest SYKE CAL 08/16 61

64 APPENDIX 12 (2/10) #Measuran Ash<sub></sub> 13,75 13,50 13,25 w% 13,00 12,75 12,50 12,25 12, EN ISO 1171 ASTM D 7582 ASTM D 5142 Other metho #Measuran CC<sub></sub> w% EN EN ISO #Measuran CC<sub></sub> w% EN ASTM D 5373 EN ISO Other metho 62 Proftest SYKE CAL 08/16

65 APPENDIX 12 (3/10) #Measuran CC<sub></sub> w% EN ISO ASTM D 5373 Measuran EF 110,0 107,5 t CO2/TJ 105,0 102,5 100,0 0 5 Equation base on EU 601/2012 Other metho Measuran EF t CO2/TJ Equation base on EU 601/2012 Other metho Proftest SYKE CAL 08/16 63

66 APPENDIX 12 (4/10) #Measuran HH<sub></sub> 6,4 6,2 6,0 5,8 w% 5,6 5,4 5,2 5,0 4,8 0 5 EN EN ISO #Measuran HH<sub></sub> 6,7 6,5 6,3 w% 6,1 5,9 5,7 5,5 5, EN ASTM D 5373 EN ISO #Measuran HH<sub></sub> 5,1 5,0 4,9 4,8 4,7 w% 4,6 4,5 4,4 4,3 4,2 4,1 4, EN ISO ASTM D Proftest SYKE CAL 08/16

67 APPENDIX 12 (5/10) #Measuran MM<sub>a,</sub> 8,1 7,9 7,7 7,5 w% 7,3 7,1 6,9 6, EN EN ISO Other metho #Measuran MM<sub>a,</sub> 7,80 7,75 7,70 7,65 w% 7,60 7,55 7,50 7,45 7, EN ASTM D 5142 EN ISO Other metho #Measuran MM<sub>a,</sub> 4,4 4,3 4,2 4,1 4,0 w% 3,9 3,8 3,7 3,6 3,5 3, EN ISO 589 DIN ASTM D 7582 ASTM D 5142 ISO Other metho Proftest SYKE CAL 08/16 65

68 APPENDIX 12 (6/10) #Measuran NN<sub></sub> 2,1 2,0 1,9 w% 1,8 1,7 1,6 1,5 0 5 EN EN ISO #Measuran NN<sub></sub> 0,100 0,075 w% 0,050 0,025 0, EN EN ISO #Measuran NN<sub></sub> 2,6 2,5 2,4 2,3 w% 2,2 2,1 2,0 1,9 1, EN ISO ASTM D Proftest SYKE CAL 08/16

69 APPENDIX 12 (7/10) #Measuran q q<sub>p,net,</sub> J/g EN #Measuran q q<sub>p,net,</sub> J/g EN ISO 1928 Other metho #Measuran q q<sub>p,net,</sub> J/g EN ISO 1928 Proftest SYKE CAL 08/16 67

70 APPENDIX 12 (8/10) #Measuran q q<sub>v,gr,</sub> J/g EN Other metho #Measuran q q<sub>v,gr,</sub> J/g EN ISO 1928 Other metho #Measuran q q<sub>v,gr,</sub> J/g EN ISO 1928 ASTM D Proftest SYKE CAL 08/16

71 APPENDIX 12 (9/10) #Measuran SS<sub></sub> 0,275 0,250 0,225 w% 0,200 0,175 0,150 0,125 0, EN ASTM D 4239 EN ISO Other metho #Measuran SS<sub></sub> 0,55 0,50 w% 0,45 0,40 0,35 0, EN ASTM D 4239 EN ISO Other metho #Measuran VV<sub>b</sub> w% EN EN ISO Other metho Proftest SYKE CAL 08/16 69

72 APPENDIX 12 (10/10) #Measuran VV<sub>b</sub> w% EN EN ISO Other metho #Measuran VV<sub>b</sub> 36,5 36,0 35,5 w% 35,0 34,5 34,0 33,5 33, ISO 562 Other metho 70 Proftest SYKE CAL 08/16

73 APPENDIX 13 (1/5) APPENDIX 13: Examples of measurement uncertainties reporte by the participants In figures, the presente expane measurement uncertainties are groupe accoring to the metho of estimation at 95 % confience level (k=2). The expane uncertainties were estimate mainly by using the internal quality control (IQC) ata. The use proceures in figures below are istinguishe e.g. between using or not using the MUkit software for uncertainty estimation [29, 30] or using a moelling approach base [31, 32]. #Measuran Ash<sub></sub> Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Other proceure #Measuran Ash<sub></sub> 8 Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Other proceure Proftest SYKE CAL 08/16 71

74 APPENDIX 13 (2/5) #Measuran CC<sub></sub> Uncertainty, Ui % IQC ata only from synthetic control sample an/or CRM (X chart), no MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata an the results obtaine in proficiency tests, MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. #Measuran CC<sub></sub> 5 4 Uncertainty, Ui % IQC ata only from synthetic control sample an/or CRM (X chart), no MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Measuran EF 8 6 Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. 72 Proftest SYKE CAL 08/16

75 APPENDIX 13 (3/5) #Measuran HH<sub></sub> 10 8 Uncertainty, Ui % IQC ata only from synthetic control sample an/or CRM (X chart), no MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. #Measuran MM<sub>a,</sub> a, Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Other proceure #Measuran NN<sub></sub> Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Proftest SYKE CAL 08/16 73

76 APPENDIX 13 (4/5) #Measuran qq<sub>p,net,</sub> p, net, 5 4 Uncertainty, Ui % IQC ata only from synthetic control sample an/or CRM (X chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. #Measuran qq<sub>p,net,</sub> p, net, Uncertainty, Ui % Metho 6 IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. No uncertainty estimation Other proceure #Measuran qq<sub>p,net,</sub> p, net, Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. 74 Proftest SYKE CAL 08/16

77 APPENDIX 13 (5/5) #Measuran qq<sub>v,gr,</sub> V, gr, 5 4 Uncertainty, Ui % IQC ata only from synthetic control sample an/or CRM (X chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. #Measuran qq<sub>v,gr,</sub> V, gr, Uncertainty, Ui % Metho 6 IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Other proceure #Measuran qq<sub>v,gr,</sub> V, gr, Uncertainty, Ui % IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), MUkit software. IQC ata from both synthetic sample (X-chart) an routine sample replicates (R- or r%-chart), no MUkit software. IQC ata an the results obtaine in proficiency tests, MUkit software. IQC ata an the results obtaine in proficiency tests, no MUkit software. Data obtaine from metho valiation, no MUkit software. Using the moelling approach. Other proceure Proftest SYKE CAL 08/16 75

78

79

80 PROFICIENCY TEST SYKE 08/2016 ISBN (PDF) ISSN (online) SYKE FINNISH ENVIRONMENT INSTITUTE

Interlaboratory Proficiency Test 07/2017

Interlaboratory Proficiency Test 07/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 35 2017 Interlaboratory Proficiency Test 07/2017 Gross an net calorific values in fuels Mirja Leivuori, Minna Rantanen, Riitta Koivikko, Keijo Tervonen, Sari

Lisätiedot

Interlaboratory Proficiency Test 07/2018

Interlaboratory Proficiency Test 07/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 28 2018 Interlaboratory Proficiency Test 07/2018 Gross an net calorific values in fuels Mirja Leivuori, Minna Rantanen, Eliisa Hatanpää, Riitta Koivikko, Keijo

Lisätiedot

Interlaboratory Proficiency Test 6/2014

Interlaboratory Proficiency Test 6/2014 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 1 2015 Interlaboratory Proficiency Test 6/2014 Gross and net calorific values in fuels Mirja Leivuori, Minna Rantanen, Katarina Björklöf, Keijo Tervonen, Sari Lanteri

Lisätiedot

Interlaboratory Proficiency Test 06/2015

Interlaboratory Proficiency Test 06/2015 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 37 2015 Interlaboratory Proficiency Test 06/2015 Gross and net calorific values in fuels Mirja Leivuori, Minna Rantanen, Katarina Björklöf, Keijo Tervonen,

Lisätiedot

Proficiency Test SYKE 4/2011

Proficiency Test SYKE 4/2011 9 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 2012 Proficiency Test SYKE 4/2011 Cross and net calorific values in fuels Mirja Leivuori, Minna Rantanen, Kaija Korhonen-Ylönen, Katarina Björklöf and Markku

Lisätiedot

Proficiency Test SYKE 6/2013

Proficiency Test SYKE 6/2013 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 2 2014 Proficiency Test SYKE 6/2013 Gross and net calorific in fuels Mirja Leivuori, Minna Rantanen, Katarina Björklöf, Keijo Tervonen, Sari Lanteri and Markku

Lisätiedot

SYKE Proficiency Test 5/2009

SYKE Proficiency Test 5/2009 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 2 2010 SYKE Proficiency Test /2009 Gross and net calorific value in fuels Mirja Leivuori, Irma Mäkinen, Minna Rantanen, Minna Salonen, Kaija Korhonen and Markku

Lisätiedot

SYKE Proficiency Test 5/2010

SYKE Proficiency Test 5/2010 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 4 2011 SYKE Proficiency Test 5/2010 Gross and net calorific values in flues Mirja Leivuori, Minna Rantanen, Kaija Korhonen-Ylönen and Markku Ilmakunnas Finnish

Lisätiedot

SYKE Proficiency Test 6/2012

SYKE Proficiency Test 6/2012 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 4 2013 SYKE Proficiency Test 6/2012 Gross and net calorific values in fuels Mirja Leivuori, Minna Rantanen, Katarina Björklöf, Keijo Tervonen, Sari Lanteri and

Lisätiedot

Interlaboratory Proficiency Test 07/2016

Interlaboratory Proficiency Test 07/2016 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 36 016 Interlaboratory Proficiency Test 07/016 Chlorophyll a, oxygen, salinity, SiO, TIC and TOC in natural waters Riitta Koivikko, Mirja Leivuori, Teemu Näykki,

Lisätiedot

Interlaboratory Proficiency Test 01/2018

Interlaboratory Proficiency Test 01/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 10 2018 Interlaboratory Proficiency Test 01/2018 Swimming pool water analysis Mirja Leivuori, Sami Tyrväinen, Mika Sarkkinen, Riitta Koivikko, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test 06/2018

Interlaboratory Proficiency Test 06/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 1 018 Interlaboratory Proficiency Test 06/018 Cholophyll a, oxygen, salinity, Sio, TIC and TOC in natural waters Mirja Leivuori, Riitta Koivikko, Mika Sarkkinen,

Lisätiedot

Interlaboratory Proficiency Test 01/2017

Interlaboratory Proficiency Test 01/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 11 2017 Interlaboratory Proficiency Test 01/2017 Swimming pool water analysis Mirja Leivuori, Sami Tyrväinen, Mika Sarkkinen, Riitta Koivikko, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test 01/2019

Interlaboratory Proficiency Test 01/2019 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 14 2019 Interlaboratory Proficiency Test 01/2019 Swimming pool water analysis Mirja Leivuori, Sami Tyrväinen, Mika Sarkkinen, Riitta Koivikko, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test 13/2017

Interlaboratory Proficiency Test 13/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 8 2018 Interlaboratory Proficiency Test 13/2017 Oil hydrocarbons in water and soil Riitta Koivikko, Jari Nuutinen and Markku Ilmakunnas Finnish Environment

Lisätiedot

Interlaboratory Proficiency Test 04/2017

Interlaboratory Proficiency Test 04/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 5 7 Interlaboratory Proficiency Test /7 Metals in natural waters Mirja Leivuori, Riitta Koivikko, Timo SaraAho, Teemu Näykki, Keijo Tervonen, Sari Lanteri,

Lisätiedot

Interlaboratory Proficiency Test 01/2016

Interlaboratory Proficiency Test 01/2016 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 16 2016 Interlaboratory Proficiency Test 01/2016 Swimming pool water analysis Mirja Leivuori, Sami Tyrväinen, Teemu Näykki, Riitta Koivikko, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test 03/2018

Interlaboratory Proficiency Test 03/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 11 218 Interlaboratory Proficiency Test 3/218 Alkalinity, ph, nutrients and conductivity in natural waters Mirja Leivuori, Riitta Koivikko, Mika Sarkkinen,

Lisätiedot

Interlaboratory Proficiency Test 06/2016

Interlaboratory Proficiency Test 06/2016 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 6 Interlaboratory Proficiency Test 6/6 Metals in water and sediment Mirja Leivuori, Riitta Koivikko, Timo Sara-Aho, Teemu Näykki, Keijo Tervonen, Sari Lanteri,

Lisätiedot

Interlaboratory Proficiency Test 13/2018

Interlaboratory Proficiency Test 13/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 16 219 Interlaboratory Proficiency Test 13/218 Leaching behavior test for solid waste material: One stage batch leaching test Riitta Koivikko, Mirja Leivuori,

Lisätiedot

Interlaboratory Proficiency Test 05/2017

Interlaboratory Proficiency Test 05/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 22 2017 Interlaboratory Proficiency Test 05/2017 Radon in ground water Katarina Björklöf, Reko Simola, Mirja Leivuori, Keijo Tervonen, Sari Lanteri and Markku

Lisätiedot

LYTH-CONS CONSISTENCY TRANSMITTER

LYTH-CONS CONSISTENCY TRANSMITTER LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are

Lisätiedot

Interlaboratory Proficiency Test NW 2/2014

Interlaboratory Proficiency Test NW 2/2014 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 15 2014 Interlaboratory Proficiency Test NW 2/2014 Alkalinity, ph, nutrients and conductivity in natural waters Mirja Leivuori, Kaija Korhonen-Ylönen, Teemu Näykki,

Lisätiedot

Interlaboratory Proficiency Test 02/2015

Interlaboratory Proficiency Test 02/2015 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 17 2015 Interlaboratory Proficiency Test 02/2015 a-chlorophyll, colour, conductivity, nutrients, ph and turbidity in natural waters Mirja Leivuori, Teemu Näykki,

Lisätiedot

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

Interlaboratory Proficiency Test 05/2015

Interlaboratory Proficiency Test 05/2015 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 33 2015 Interlaboratory Proficiency Test 05/2015 Radon in ground water Katarina Björklöf, Reko Simola, Mirja Leivuori, Keijo Tervonen, Sari Lanteri, Markku

Lisätiedot

Interlaboratory Proficiency Test 03/2016

Interlaboratory Proficiency Test 03/2016 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 18 2016 Interlaboratory Proficiency Test 03/2016 Alkalinity, ph, nutrients and conductivity in natural waters Mirja Leivuori, Riitta Koivikko, Teemu Näykki,

Lisätiedot

Interlaboratory Proficiency Test 09/2014

Interlaboratory Proficiency Test 09/2014 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 5 2015 Interlaboratory Proficiency Test 09/2014 Oil hydrocarbons in water and soil Jari Nuutinen, Riitta Koivikko, Mirja Leivuori and Markku Ilmakunnas Finnish

Lisätiedot

Interlaboratory Proficiency Test 06/2019

Interlaboratory Proficiency Test 06/2019 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 25 2019 Interlaboratory Proficiency Test 06/2019 Radon in ground water Katarina Björklöf, Reko Simola, Mirja Leivuori, Keijo Tervonen, Sari Lanteri and Markku

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

Proficiency Test SYKE 11/2011

Proficiency Test SYKE 11/2011 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 0 Proficiency Test SYKE /0 PCB compounds in soil Jari Nuutinen, Kaija Korhonen-Ylönen, Mirja Leivuori and Markku Ilmakunnas Finnish Environment Institute REPORTS

Lisätiedot

Interlaboratory Proficiency Test 05/2018

Interlaboratory Proficiency Test 05/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 8 Interlaboratory Proficiency Test 5/8 Metals in natural waters and soil Mirja Leivuori, Riitta Koivikko, Timo SaraAho, Teemu Näykki, Keijo Tervonen, Sari Lanteri,

Lisätiedot

Interlaboratory Proficiency Test 04/2019

Interlaboratory Proficiency Test 04/2019 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 5 9 Interlaboratory Proficiency Test /9 Metals in natural water and sediment Mirja Leivuori, Riitta Koivikko, Timo Sara-Aho, Teemu Näykki, Keijo Tervonen, Sari

Lisätiedot

Interlaboratory Proficiency Test 08/2014

Interlaboratory Proficiency Test 08/2014 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 7 5 Interlaboratory Proficiency Test 8/ Metals and mercury in waters Mirja Leivuori, Riitta Koivikko, Timo SaraAho, Teemu Näykki, Katarina Björklöf, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test NW 4/2014

Interlaboratory Proficiency Test NW 4/2014 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 6 014 Interlaboratory Proficiency Test NW 4/014 Oxygen, a-chlorophyll, salinity, SiO, TIC and TOC in natural waters Mirja Leivuori, Teemu Näykki, Mika Sarkkinen,

Lisätiedot

Proficiency Test SYKE 10/2011

Proficiency Test SYKE 10/2011 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 11 12 Proficiency Test SYKE /11 Heavy metals in surface waters Mirja Leivuori, Kaija KorhonenYlönen, Timo SaraAho, Teemu Näykki, Keijo Tervonen, Sari Lanteri and

Lisätiedot

Asiakaspalautteen merkitys laboratoriovirheiden paljastamisessa. Taustaa

Asiakaspalautteen merkitys laboratoriovirheiden paljastamisessa. Taustaa Asiakaspalautteen merkitys laboratoriovirheiden paljastamisessa Paula Oja, TtT Laboratorio, Oulun yliopistollinen sairaala Potilasturvallisuustutkimuksen päivät 26. 27.1.2011 1 Taustaa Laboratorion tulee

Lisätiedot

Interlaboratory Proficiency Test 02/2019

Interlaboratory Proficiency Test 02/2019 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 23 2019 Interlaboratory Proficiency Test 02/2019 Chlorophyll a, colour, conductivity, nutrients, ph and turbidity in natural waters Riitta Koivikko, Mirja Leivuori,

Lisätiedot

Interlaboratory Proficiency Test 10/2016

Interlaboratory Proficiency Test 10/2016 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 8 7 Interlaboratory Proficiency Test /6 Metals in waste water and recycled material Mirja Leivuori, Riitta Koivikko, Timo SaraAho, Teemu Näykki, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test 08/2017

Interlaboratory Proficiency Test 08/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 6 17 Interlaboratory Proficiency Test 8/17 Domestic water measurements Katarina Björklöf, Mirja Leivuori, Mika Sarkkinen, Timo Sara-Aho, Keijo Tervonen, Sari

Lisätiedot

Interlaboratory Proficiency Test 02/2017

Interlaboratory Proficiency Test 02/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 4 7 Interlaboratory Proficiency Test /7 Chlorophyll a, colour, conductivity, nutrients, ph and turbidity in natural waters Mirja Leivuori, Riitta Koivikko,

Lisätiedot

Proficiency Test SYKE 9/2012

Proficiency Test SYKE 9/2012 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 8 2013 Proficiency Test SYKE 9/2012 Oil hydrocarbons in water and soil Kaija Korhonen-Ylönen, Jari Nuutinen, Mirja Leivuori and Markku Ilmakunnas Finnish Environment

Lisätiedot

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories MITTATEKNIIKAN KESKUS CENTRE FOR METROLOGY AND ACCREDITATION Julkaisu J3/2000 MASS COMPARISON M3 Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories Kari

Lisätiedot

Interlaboratory Proficiency Test 10/2018

Interlaboratory Proficiency Test 10/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 9 Interlaboratory Proficiency Test /8 Metals in waste water and compost Mirja Leivuori, Riitta Koivikko, Timo SaraAho, Teemu Näykki, Aija Pelkonen, Keijo Tervonen,

Lisätiedot

Interlaboratory Proficiency Test 08/2015

Interlaboratory Proficiency Test 08/2015 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 6 Interlaboratory Proficiency Test 8/5 Metals in waste water and sludge Riitta Koivikko, Mirja Leivuori, Teemu Näykki, Timo SaraAho, Keijo Tervonen, Sari Lanteri,

Lisätiedot

Interlaboratory Proficiency Test 10/2017

Interlaboratory Proficiency Test 10/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 7 8 Interlaboratory Proficiency Test /7 Metals in waste water and sludge Mirja Leivuori, Riitta Koivikko, Timo SaraAho, Teemu Näykki, Keijo Tervonen, Sari Lanteri,

Lisätiedot

Proficiency Test SYKE 8/2013

Proficiency Test SYKE 8/2013 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 4 2014 Proficiency Test SYKE 8/2013 Radon in ground water Katarina Björklöf, Reko Simola, Kaija Korhonen-Ylönen, Keijo Tervonen, Sari Lanteri and Markku Ilmakunnas

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

Interlaboratory Comparison Test 15/2018

Interlaboratory Comparison Test 15/2018 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 25 218 Interlaboratory Comparison Test 15/218 Soil improver maturity test Liisa Maunuksela, Aija Pelkonen, Katarina Björkjöf, Markku Ilmakunnas, Mirja Kartio

Lisätiedot

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY T197/M15/2016 Liite 1 / Appendix 1 Sivu / Page 1(5) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY KAAKKOIS-SUOMEN AMMATTIKORKEAKOULU OY, TKI JA PALVELUT, KYMILABS SOUTH-EASTERN FINLAND

Lisätiedot

Proficiency Test SYKE 8/2012

Proficiency Test SYKE 8/2012 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 0 Proficiency Test SYKE 8/0 Volatile organic compounds in water and soil Kaija Korhonen-Ylönen, Jari Nuutinen, Mirja Leivuori and Markku Ilmakunnas Finnish Environment

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY T197/M17/2019 Liite 1 / Appendix 1 Sivu / Page 1(5) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY KAAKKOIS-SUOMEN AMMATTIKORKEAKOULU OY, TKI JA PALVELUT, KYMILABS SOUTH-EASTERN FINLAND

Lisätiedot

Laboratorioiden välinen vertailumittaus 15/2016

Laboratorioiden välinen vertailumittaus 15/2016 SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 34 2016 Laboratorioiden välinen vertailumittaus 15/2016 AOX määritys vesistä Mirja Leivuori, Riitta Koivikko, Keijo Tervonen, Sari Lanteri ja Markku Ilmakunnas Suomen

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Proficiency Test SYKE 8a/2010

Proficiency Test SYKE 8a/2010 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 0 Proficiency Test SYKE a/0 Volatile organic compounds in water and soil Kaija Korhonen-Ylönen, Jari Nuutinen, Mirja Leivuori and Markku Ilmakunnas Finnish Environment

Lisätiedot

Interlaboratory comparison 11/2017

Interlaboratory comparison 11/2017 REPORTS OF THE FINNISH ENVIRONMENT INSTITUTE 1 2018 Interlaboratory comparison 11/2017 Bacterial toxicity test using bioluminescent bacteria Johanna Järvistö, Katarina Björklöf and Markku Ilmakunnas Finnish

Lisätiedot

Laboratorioiden välinen vertailumittaus 02/2016

Laboratorioiden välinen vertailumittaus 02/2016 SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 19 2016 Laboratorioiden välinen vertailumittaus 02/2016 Trihalometaanit vedestä Riitta Koivikko, Jari Nuutinen ja Markku Ilmakunnas Suomen ympäristökeskus TIIVISTELMÄ

Lisätiedot

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts TEST REPORT Nro VTT-S-04515-08 19.5.008 Air tightness and strength tests for Furanflex exhaust air ducts Requested by: Hormex Oy TEST REPORT NRO VTT-S-04515-08 1 () Requested by Order Hormex Oy Linnanherrankuja

Lisätiedot

Metsäbiomassaan perustuvien nestemäisten biopolttoaineiden ilmastovaikutukset

Metsäbiomassaan perustuvien nestemäisten biopolttoaineiden ilmastovaikutukset Metsäbiomassaan perustuvien nestemäisten biopolttoaineiden ilmastovaikutukset FORESTENERGY2020 tutkimusohjelman tutkijaseminaari, VTT, 4.6.2012 Sampo Soimakallio VTT Technical Research Centre of Finland

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi

Lisätiedot

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012

Lisätiedot

Laboratorioiden välinen vertailumittaus

Laboratorioiden välinen vertailumittaus SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 14 2011 Laboratorioiden välinen vertailumittaus AOX-määritys Kaija Korhonen-Ylönen, Mirja Leivuori, Olli Järvinen, Keijo Tervonen, Sari Lanteri, Markku Ilmakunnas ja

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 12.12.2 1 () Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11 12

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 18.2.219 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 1 17 2 17 3 17 4 17 5 17 6 17 7 17

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source GWh / kk GWh / month Sähköntuotannon polttoaineet ja CO2-päästöt 24.4.219 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 5 4 3 2 1 1 17 2 17 3 17 4 17 5 17 6 17 7 17 8

Lisätiedot

Proficiency Test SYKE 3/2011

Proficiency Test SYKE 3/2011 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 22 2011 Proficiency Test SYKE 3/2011 Metals in water and sludge Mirja Leivuori, Kaija KorhonenYlönen, Timo SaraAho, Teemu Näykki, Keijo Tervonen, Sari Lanteri and

Lisätiedot

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0 T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred

Lisätiedot

Laboratorioiden välinen pätevyyskoe 3/2013

Laboratorioiden välinen pätevyyskoe 3/2013 SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 23 13 Laboratorioiden välinen pätevyyskoe 3/13 BOD 7, COD Cr, COD Mn, kiintoaine, Na ja TOC jätevesistä Katarina Björklöf, Kaija Korhonen-Ylönen, Teemu Näykki, Marketta

Lisätiedot

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY EUROFINS LABTIUM OY

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY EUROFINS LABTIUM OY T025/A33/2018 Liite 1 / Appendix 1 Sivu / Page 1(10) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY EUROFINS LABTIUM OY Tunnus Code Laboratorio Laboratory Osoite Address www www T025 n laboratorio

Lisätiedot

Results on the new polydrug use questions in the Finnish TDI data

Results on the new polydrug use questions in the Finnish TDI data Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen

Lisätiedot

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Puhe ja kieli, 27:4, 141 147 (2007) 3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Soile Loukusa, Oulun yliopisto, suomen kielen, informaatiotutkimuksen ja logopedian laitos & University

Lisätiedot

SYKE Proficiency Test 4/2009

SYKE Proficiency Test 4/2009 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 28 2009 SYKE Proficiency Test 4/2009 Metals in waters and soils Mirja Leivuori, Kaija Korhonen, Olli Järvinen, Teemu Näykki, Timo SaraAho, Keijo Tervonen, Sari

Lisätiedot

Proficiency Test SYKE 2/2013

Proficiency Test SYKE 2/2013 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 13 Proficiency Test SYKE 2/13 Chlorophyll a, colour, conductivity, nutrients, ph and turbidity in natural waters Kaija Korhonen-Ylönen, Teemu Näykki, Mirja Leivuori,

Lisätiedot

Laboratorioiden välinen pätevyyskoe 01/2015

Laboratorioiden välinen pätevyyskoe 01/2015 SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 12 2015 Laboratorioiden välinen pätevyyskoe 01/2015 Uima-allasvesimääritykset Mirja Leivuori, Sami Tyrväinen, Teemu Näykki, Katarina Björklöf, Riitta Koivikko, Keijo

Lisätiedot

SYKE Proficiency Test 3/2010

SYKE Proficiency Test 3/2010 REPORTS OF FINNISH ENVIRONMENT INSTITUTE 1 11 SYKE Proficiency Test 3/ Metals in waters and sediment Mirja Leivuori, Kaija Korhonen,Timo SaraAho, Teemu Näykki, Olli Järvinen, Keijo Tervonen, Sari Lanteri

Lisätiedot

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5. ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel Kalle Lehto, Aalto-yliopisto 5.5.2011 Otaniemi ReFuel a three year research project (2009-2011) goal utilize the

Lisätiedot

7.4 Variability management

7.4 Variability management 7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product

Lisätiedot

Capacity utilization

Capacity utilization Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure

Lisätiedot

Laboratorioiden välinen pätevyyskoe 3/2012

Laboratorioiden välinen pätevyyskoe 3/2012 SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 18 12 Laboratorioiden välinen pätevyyskoe 3/12 BOD 7, COD Cr, COD Mn, kiintoaine, Na ja TOC jätevesistä Kaija Korhonen-Ylönen, Mirja Leivuori, Teemu Näykki, Marketta

Lisätiedot

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4) Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:

Lisätiedot

Accommodation statistics

Accommodation statistics Transport and Tourism 2013 Accommodation statistics 2013, February Nights spent by foreign tourists in Finland down by 2.5 per cent in February 2013 The number of recorded nights spent by foreign tourists

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Metsälamminkankaan tuulivoimapuiston osayleiskaava VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

Oheisena toimitamme turve-, kivihiili- ja puupellettinäytteet lämpöarvon määrittämiseksi. Pätevyyskokeeseen osallistuu 25 laboratoriota.

Oheisena toimitamme turve-, kivihiili- ja puupellettinäytteet lämpöarvon määrittämiseksi. Pätevyyskokeeseen osallistuu 25 laboratoriota. 1.9.2015 Lämpöarvoa polttoaineista mittaavat yritykset ja laboratoriot Kirje 15.6.2015 - näytteet Oheisena toimitamme turve-, kivihiili- ja puupellettinäytteet lämpöarvon määrittämiseksi. Pätevyyskokeeseen

Lisätiedot

Statistical design. Tuomas Selander

Statistical design. Tuomas Selander Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis

Lisätiedot

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50

Lisätiedot

SELL Student Games kansainvälinen opiskelijaurheilutapahtuma

SELL Student Games kansainvälinen opiskelijaurheilutapahtuma SELL Student Games kansainvälinen opiskelijaurheilutapahtuma Painonnosto 13.5.2016 (kansallinen, CUP) Below in English Paikka: Nääshalli Näsijärvenkatu 8 33210 Tampere Alustava aikataulu: Punnitus 12:00-13:00

Lisätiedot

Social and Regional Economic Impacts of Use of Bioenergy and Energy Wood Harvesting in Suomussalmi

Social and Regional Economic Impacts of Use of Bioenergy and Energy Wood Harvesting in Suomussalmi Social and Regional Economic Impacts of Use of Bioenergy and Energy Wood Harvesting in Suomussalmi Green Cities and Settlements 18.2.2014 Ville Manninen Writers Project group Sirpa Korhonen, Anna Mari

Lisätiedot

Laboratorioiden välinen pätevyyskoe 7/2010

Laboratorioiden välinen pätevyyskoe 7/2010 SUOMEN YMPÄRISTÖKESKUKSEN RAPORTTEJA 2 2011 Laboratorioiden välinen pätevyyskoe 7/20 Ravinteet, ph ja sähkönjohtavuus jätevesistä sekä happimääritys rannikko- ja jätevesistä Kaija Korhonen, Mirja Leivuori,

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 23.1.218 1 () Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11

Lisätiedot

make and make and make ThinkMath 2017

make and make and make ThinkMath 2017 Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve

Lisätiedot

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Pätevyyskokeeseen NW 07/2016 osallistuvat laboratoriot. Oheisena toimitamme näytteet pätevyyskokeeseen NW 07/2016.

Pätevyyskokeeseen NW 07/2016 osallistuvat laboratoriot. Oheisena toimitamme näytteet pätevyyskokeeseen NW 07/2016. 10.5.2016 Pätevyyskokeeseen NW 07/2016 osallistuvat laboratoriot Viite: Kirje 14.3.2016 Pätevyyskoe NW 07/2016 Luonnonvesi II Oheisena toimitamme näytteet pätevyyskokeeseen NW 07/2016. 1 Yhteystiedot Yhteyshenkilöt:

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 3.6.217 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 1 2 3 4 5 6 7 8

Lisätiedot