Johdanto Internetin reititykseen. Ethernet
|
|
- Timo-Pekka Mäki
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Johdanto Internetin reititykseen Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Luvut 2-3 Huiteman kirjassa) Internet-1 Ethernet Most widespread LAN technology Shared medium: Carrier sense multiple access with collision detection (CSMA/CD) Host 1 Host 2 Host 3 Host 4 Shared Ethernet segment Everyone receives everyone s traffic! Limited length! Supports broadcast Internet-2 1
2 Interconnecting Ethernet segments with repeaters Repeaters repeats traffic of one segment on the other segment Host 1 Host 2 Host 3 Host 1 Host 2 Host 3 Host 4 Repeater Host 5 Hub Still everyone receives everyone s traffic! Limited number of repeaters! Hubs are multi-port repeaters Internet-3 Bridges learn where devices are and forward packets only to the segment where the destination is Prior to discovery bridges/switches pass all traffic between segments Host 1 Host 2 Host 3 Host 4 Bridge/switch Host 5 Broadcast traffic sent to all devices Allows different speeds in different segments Network size not physically limited Internet-4 2
3 Example Host 1 Host 2 Host 3 Host 4 Switch Host 1 Host 2 Host 3 Host 4 Switch Host 1 has a packet to send to Host 4 The switch receives the packet and learns that Host 1 is on interface 1 The switch does now know Host 4 The packet is sent on all interfaces Host 4 has a packet to send to Host 1 The switch receives the packet and learns that Host 4 is on interface 4 The switch now knows that Host 1 is on interface 1 The packet is sent on interface 1 Internet-5 A spanning tree connects all segments without loops Spanning tree protocol Only one possible path between two devices -> loops are impossible Some bridges are redundant Redundant bridge 1 Note that the packet from host 1 to host 2 must be sent via two bridges, not one! 2 Bridge Bridge Active bridge Bridge Bridge Internet-6 3
4 A router allows the shortest paths to be used Host 1 Host 3 Ethernet 1 Router Bridge Ethernet ATM 2 A router operates on the network layer can interconnect networks of different technology (ATM, Ethernet, Frame relay, FDDI, ) Host 2 Internet-7 Routed IP Routed IP vs. switched Ethernet Switched Ethernet Interworking between network Works with Ethernets technologies Complex, expensive Simple, cheap, less layers One route per destination All destinations use the same shorter routes spanning tree load distribution longer routes congestion on the tree Address allocation Fixed addresses Hierarchical address space Flat address space Internet-8 4
5 Issues to be addressing for use of Ethernet in WANs Avoid broadcasting of packets to an unknown destination Forwarding table size (flat topology) Use the shortest path instead of a spanning tree Use all available links for load balancing Limit use of broadcasting Faster convergence (rapid spanning tree) Peering, policies, address hierarchy Do we re-invent IP when these are implemented in Ethernet? Internet-9 Internet Architecture Principles End-to-end principle by Dave Clark Hop-by-hop control vs. InX.25 Intelligence in the network Error and flow control on each hop End-to-end control In IP Intelligence in end station Error and flow control in end station The network can not be trusted The user must in any case check for errors ÿnetwork control is redundant Error checking and flow control by TCP in the end stations No state information in the network The network is not aware of any connections Packets routed independently If a link fails, another route is used Same principle as in distributed systems Internet-10 5
6 Internet connects different types of networks Each with different framing, addressing, Interconnection based on translation Mapping through a gateway Never perfect Internet Architecture Principles IP over everything Translation still needed in many cases E.g. signaling interworking, IPv4 to IPv6 mapping by Vinston Cerf Interconnection based on overlay Approach used by IP Single protocol over all underlying networks Simple to adapt to new technologies Define framing or encapsulation Define address resolution: IPaddress ÿ network address Unique IP-address Internet-11 Internet Architecture Principles IP over everything HTTP, FTP, IMAP, SMTP,... TCP, UDP,... IP IEEE-802, ATM, X.25,... Internet-12 6
7 Internet Architecture Principles Connectivity is its own reward The value of a network increases in proportion to the square of the number of nodes on the network (Robert Metcalf's law) Be liberal with what you receive, conservative with what you send try to make your best to understand what you receive maximum adherance to standard when sending Snowballing effect keeps all interested in connectivity thus keeps adhering to standards by Jon Postel Internet-13 IP-osoite määrittelee rajapinnan (interface) (ei isäntäkonetta) Host 3 IP address C IP address F IP address B Router IP address D IP address E IP address A Host 2 Host 1 Internet-14 7
8 Jokaiseen rajapintaan liittyy myös MAC osoite Host 3 IP address C MAC c IP address B MAC b IP address A MAC a Router IP address D MAC d IP address E MAC e Host 2 IP address F MAC f Host 1 Internet-15 Internet kerrosmalli - isäntäkoneet ja reitittimet Isäntäkone A Reititin Isäntäkone B Sovellus TCP/ UDP IP IP Sovellus TCP/ UDP IP MAC MAC MAC MAC Verkko 1 Verkko 2 Internet-16 8
9 Internet kerrosmalli - sanomien välitys Host 1 Router IP address B MAC b IP address A MAC a IP address C MAC c Host 2 IP address D MAC d Sovellus Sovellus TCP/UDP Reititin TCP/UDP IP A B IP C D IP MAC a b MAC c d MAC verkko 1 verkko 2 Paketointi: a b,ip Ethernet otsake A D,TCP IP otsake TCP otsake Data Paketointi: c d,ip Ethernet otsake A D,TCP IP otsake TCP otsake Data Internet-17 IPv4 osoiteformaatit Alunperin kahden tason (verkko, isäntä) hierarkia: 32 bittiä MSB(t) Verkko Isäntäkone Luokka 0 7 bittiä 24 bittiä bittiä 16 bittiä bittiä 8 bittiä bittiä - multicast osoite 1111 Kokeiluja ja myöhempää käyttöä varten A B C D E Internet-18 9
10 IPv4 address formats Example: Network Subnet Host Address: Mask: Network: first bit = 10 Subnet: address* AND mask = 9 (36) Host: address AND NOT mask = address* = address with network part zeroed Also written as /14 Internet-19 IPv4 address formats Examples: Mask 0xFFFF0000 0xFFFFFE00 0xFFFFFFC0 IP IPaddress Network Subnet Host A: 10 B: C: (32) 17 (34) 3 (192) High order bits: ÿ A-class ÿ B-class ÿ C-class Without right zeroes (and with right zeroes) Later updated bycidr (discussed later) Internet-20 10
11 IPv4 osoiteformaatit Uusi taso helpottaa verkon ylläpitoa Verkko Aliverkko Isäntäkone Esimerkkejä: Maski (peite) 0xFFFF0000 0xFFFFFE00 0xFFFFFFC0 IP IPosoite Verkko Aliverkko Isäntäkone A: 10 B: C: (32) 17(34) 3(192) High order bits: > A-class > B-class > C-class Without right zeroes (and with right zeroes) Later updated bycidr (discussed later) Internet-21 Two functions of a router: 1. Packet forwarding On which interface should this packet be forwarded? Which is the following destination on that network? Host 3 address C address B Router address D address E address F address A Look in the routing table! Host 2 Host 1 Internet-22 11
12 Two functions of a router: 2. Construction and maintenance of the routing table Routers exchange routing information with routing protocols (e.g. RIP, OSPF, BGP) Router Router Router Internet-23 Routers maintain routes to networks (not to hosts) Example Host 3 Network / Router Network / Network / Host 2 Host 1 Internet-24 12
13 Aggregation describes several addresses in a single entry to reduce size of routing tables Example Host 3 Network / 16 Network / Router Network / Host 2 Host 1 Network / 8 Internet-25 Erikoisosoitteet Tuntematon verkko korvataan 0:lla Vain lähdeosoitteena = tämä isäntäkone tässä verkossa 0.X.Y.Z = isäntäkone X.Y.Z tässä verkossa Yleislähetysosoite Kaikki isäntäkoneet paikallisessa verkossa Yleislähetysosoite A , B.B , C.C.C.255 Kaikki isäntäkoneet tietyssä verkossa Loopback-osoite 127.X.X.X (yleensä ) Sisäinen lähetys yhdessä isäntäkoneessa Multicast-osoitteet esim = kaikki tämän aliverkon reitittimet Internet-26 13
14 IP paketin otsikko RFC-791 Versio IHL Palvelutyyppi Kokonaispituus Tunnistus Liput Viipaleen siirtymä Elinaika (TTL) Protokolla Otsikon tarkistus Lähettäjän osoite Vastaanottajan osoite Valinnainen Täyte 32 bittiä Oletus: Lähettäjä tietää oman osoitteensa jos ei: itsekonfigurointi (RARP, BOOTP, DHCP - dynamic host conf. protocol) Internet-27 IP paketin otsikko Versio IHL Palvelutyyppi Kokonaispituus Tunnistus Liput Viipaleen siirtymä Elinaika (TTL) Protokolla Otsikon tarkistus IP version Internet header s Sisältää kaksi Koko datapaketin, numero. length. IP -otsikon Lähettäjän alikenttää, osoite 3MSB: IP -otsikko mukaan Nykyinen pituus ilmaistuna 32 Vastaanottajan paketinosoite prioriteettia + lukien kokonaispituus versionumero -bittisten sanojen Valinnainen palvelutyyppi. Täyte ilmaistuna on 4. määränä oktettien määränä. 32 bittiä Internet-28 14
15 IP paketin otsikko Versio IHL Elinaika (TTL) Palvelutyyppi Tunnistus Liput Viipaleen siirtymä Protokolla Lähettäjän osoite Vastaanottajan osoite Datapaketin elinikä. Luku, josta Expressed Käytetään jaettaessa as vähennetään verkon laatua kuvaava Valinnainen number isoja datapaketteja of octets kokonaisluku kaikissa kohdatuissa in pienemmiksi the payload osiksi reitittimissä. Paketin reitittäminen and tiettyjä in siirtotien osia päättyy, kun TTL saa arvon bittiä the varten. header Kokonaispituus Otsikon tarkistus Täyte Internet-29 Protokolla, jolla vastaanottavan koneen tulee käsitellä datapaketti. Esim. TCP, UDP tai ICMP. Versio IHL IP paketin otsikko Palvelutyyppi Otsikon tarkistussumma, lasketaan 16 bittisenä yhden komplementtina Kokonaispituus Tunnistus Liput Viipaleen siirtymä Elinaika (TTL) Protokolla Otsikon tarkistus Lähettäjän osoite Vastaanottajan osoite Valinnainen Täyte Paketin lähettäneen isäntäkoneen osoite Sen isäntäkoneen osoite, jolle paketti on lähetetty. 32 bittiä Käytetään erityisinformaation lähettämiseen. Yksittäiset paketit voivat sisältää useita optiokenttiä. Internet-30 15
16 IP paketin otsikon reitityksen kannalta tärkeät tiedot ovat kohdeosoite ja TTL Versio IHL Palvelun tyyppi Kokonaispituus Tunnistus Liput Viipaleen siirtymä TTL - elinaika Protokolla Otsakkeen tarkistussumma Lähdeosoite Kohdeosoite Optiot Täytebitit TTL muuttuu ÿ uusi tarkistussumma Optiot (m.m. lähdereititys, aikaleima) käytetään harvoin/ei koskaan. Internet-31 Palvelun tyyppi Prioriteetti D T R C Reitin valintakriteeri D - viiveen minimointi T - siirtokapasiteetin maksimointi R- luotettavuuden maksimointi C- kustannusten minimointi Vain yksi valintakriteeri kerralla sallittu Prioriteetti Suurin arvo otetaan jonosta ensin reititettäväksi Käytännössä näitä ei yleensä käytetä DiffServ käyttää kenttää eri tavalla Internet-32 16
17 Lähdereititys Tyyppi Pituus Osoitin Osoite 1 Osoite 2... Osoite N Toteutetaan source routing optiolla Loose source routing (tyyppi 131) Paketti lähetetään listan seuraavaan osoitteeseen normaalilla reitityksellä. Strict source routing (tyyppi 137) Paketti lähetetään listan seuraavaan osoitteeseen. Jos siihen ei löydy suoraa linkkiä, paketti tuhotaan. Hidas Käytetään harvoin Korvataan usein paketoinnilla: AÿC, IP-IP AÿB, TCP TCP Data Internet-33 ICMP - Internet Control Message Protocol ICMP antaa lähettäjälle palautetta verkon toiminnasta ICMP paketti lähetetään takaisinpäin, jos esim. vastaanottajaa ei tavoiteta reititin tuhoaa paketin elinaika loppuu (TTL = 0) Kaikkien koneiden ja reitittimien täytyy tukea ICMP:tä Kuljetetaan IP paketeissa Jos ICMP viesti tuhotaan, ei generoida uutta ICMPviestiä (jottei tule lumivyöryä ) Internet-34 17
18 Tyyppi = 0 - Kaikuvastaus 3 - Kohde saavuttamaton 4 - Hiljennä tahtia (poistettu) 5 - Uudelleenohjaus 8 - Kaiku 9 - Reititin mainos 10 - Reititin mainoksen pyyntö 11 - Elinaika loppui 12 - Parametriongelma 13 - Aikaleima 14 - Aikaleimavastaus 15 - Informaatiopyyntö 16 - Informaatiovastaus (4 - Source quench poistettu suosituksista) ICMP viestejä 32 bittiä Tyyppi Koodi Otsikon tarkistussumma Ei käytössä Internet otsikko + 64 bittiä alkuperäisestä datagrammista Koodi = 0 - verkko saavuttamaton 1 - isäntäkone saavuttamaton 2 - protokolla saavuttamaton 3 - portti saavuttamaton 4 - sanoma paloiteltava 5 - lähdereitti viallinen Internet-35 Paketin lähetys Lähettäjä tutkii onko kohdeosoite omassa aliverkossa vertaamalla oman ja kohdeosoitteen maskattuja arvoja. Jos sama, kohde on samassa aliverkossa. Jos ei, viesti pitää lähettää reitittimelle. Etsitään kohteen (tai reitittimen) mediaosoite (MAC-osoite) ARPprotokollalla. Lähettäjä ARP pyyntö yleislähetyksenä ARP vastaus Vastaanottaja tunnistaa IP osoitteensa Mediaosoite talletetaan käteismuistiin. Huom: Kaikki koneet samassa aliverkossa tallettavat käteismuistiin. Internet-36 18
19 ARP Address resolution protocol ARP sovittaa IP:n allaolevaan verkkoon IP-osoite ÿ MAC-osoite Joka teknologia vaatii oman ARP sovituksen Helppoa, jos teknologia tukee yleis- tai monilähetystä Ethernet, Token Ring, FDDI ATM:ssä tarvitaan ARP-palvelin Käsin määritelty osoite X.25, ISDN, Frame-Relay Toimii suoraan Ethernetin päällä (ei IP:n päällä) RFC-826 Internet-37 Reitittimen löytäminen Miten saada selville reitittimen IP osoite? Manuaalinen konfigurointi default gateway Automaattinen konfigurointi DHCP:n avulla Ylläpitäjä konfiguroi, vaatii manuaalista työtä Kuuntele reititysprotokollien liikennettä Tuhlaa isäntäkoneen resursseja, liikaa reititysprotokollia ÿ ei käytetä enää Automaattinen reitittimen paikantaminen ICMP:llä verkko X Y LAN1 LAN2 B Internet-38 19
20 Reitittimen löytäminen Reitittimet lähettävät mainoksia kaikille isännille säännöllisesti (esim. 7 minuutin välein) A Y ICMP sanomat: Reititinmainos kaikille isännille verkko Mainos sisältää listan reitittimen osoitteista. osoitteiden preferenssit, joilla merkataan normaali-, vara- jne reititin tai reititinosoite (oletusreitittimen preferenssi on korkein) tiedon elinaika (esim. 30 min) X LAN1 LAN2 B Internet-39 Reitittimen löytäminen Isäntäkone joutuisi odottamaan jopa 7 minuuttia ennen kuin se voi lähettää paketteja oman aliverkon ulkopuolelle Mainospyynnön avulla isäntäkone saa mainokset heti verkko ICMP sanomat: A Reititinmainospyyntö kaikille reitittimille Reititinmainos Y X LAN1 B LAN2 Internet-40 20
21 Reitittimen löytäminen Isäntäkone valitsee korkeimman prioriteetin samassa aliverkossa olevan reitittimen oletusreitittimeksi Kaikki aliverkon ulkopuolelle menevät paketit lähetetään oletusreitittimeen Internet-41 Verkossa voi olla useita reitittimiä, joista pitää löytää se, joka on lähinnä kohdetta Oletusreitittimen kautta lähetetty paketti saapuu kohteeseen, mutta saattaa tuhlata verkon resursseja. A verkko X Oletusreititin Paketti A ÿ B(aÿ x) Y Paketti A ÿ B(xÿ y) Paketti A ÿ B(yÿ b) B Internet-42 21
22 Verkossa voi olla useita reitittimiä, joista pitää löytää se, joka on lähinnä kohdetta Reititin voi lähettää uudelleenohjauksen osoittaakseen lyhyemmän reitin kohteeseen A Paketti A -->B Y ICMP uudelleenohjaus verkko X Oletusreititin B Tyyppi Koodi Otsikon tarkistussumma IP osoite --> reititin=y Internet otsikko + 64 bittiä alkuperäisestä datagrammista Tyyppi: 5 uudelleenohjaus Koodi: 0 uudelleenohjaus verkolle 1 uudelleenohjaus kohteelle 2 uo palvelutyypille ja verkolle 4 uo palvelutyypille ja isäntäkoneelle Internet-43 Isäntäkoneen täytyy saada palautetta ensimmäiseltä reitittimeltä, jotta se ei lähettäisi mustaan aukkoon Palautteeksi kelpaa TCP tason kuittaukset Reititinmainokset ARP-vastaukset ICMP kaikuvastaus (ping) Reitittimien välillä reititysprotokollat huolehtivat viallisten reitittimien paljastamisesta Internet-45 22
23 Miksi DNS? DNS - Domain Name Service Helpompi muistaa nimiä kuin osoitteita Osoite voi muuttua, nimi pysyy samana Useita osoitteita / isäntäkone Laajennuksia: palvelujen paikantaminen, ENUM Nimi ÿ osoite DNS ei vaikuta reititykseen Internet-46 Reititysalgoritmit Internet-47 23
24 Internetin reititys perustuu reititysprotokolliin, joilla kerätään lähtötiedot Internetiin ei liity off-line reitityssuunnittelua Ainoastaan mitoitus tehdään off-line Itse reititys toimii kokonaan automaattisesti Reitittimet kommunikoivat keskenään reititysprotokollan avulla Reititysalgoritmi hakee lyhimmän (halvimman) reitin jokaiseen kohteeseen Internet-48 Internetin reititys on yleensä dynaamista. Staattista reititystä käytetään tietyissä tapauksissa. Dynaaminen reititys perustuu protokolliin, jotka luovat ja ylläpitävät reititystauluja automaattisesti Esimerkkiprotokollia: RIP, OSPF, BGP... Esim. organisaation kytkentä Internetiin useilla linkeillä Staattinen reititys perustuu käsin määriteltyihin reititystauluihin Staattista reititystä käytetään esim. kun kaksi palveluntarjoajaa eivät luota toisiinsa Organisaation kytkentä palveluntarjoajan verkkoon yhdellä ainoalla linkillä Staattisten reittien ylläpito vaikeaa Internet-49 24
25 Reititys jaetaan sisäiseen ja ulkoiseen reunareititin autonominen alue (AS) ulkoiset naapurit sisäiset naapurit Tällä kurssilla käsitellään käytännössä vain sisäistä reititystä. Internet-50 Reititys jaetaan sisäiseen ja ulkoiseen Autonominen alue (Autonomous System, AS) Joukko verkkoja, joilla on yhteinen reititysstrategia, ja joita hallinnoi yksi organisaatio Reunareititin (Border router) Vähintään yksi naapuri kuuluu eri autonomiseen alueeseen Internet-51 25
26 Reititys jaetaan sisäiseen ja ulkoiseen Sisäisiä reititysprotokollia Routing Information Protocol (RIP), RIP-2 Open Shortest Path First (OSPF) Interior Gateway Routing Protocol (IGRP), EIGRP Intermediate System-to-Intermediate System (IS-IS) Ulkoisia reititysprotokollia External Gateway Protocol (EGP) Border Gateway Protocol version 4 (BGP-4) Internet-52 Proactive Routing algorithms Proactive vs. reactive The router creates and maintains routes to all destinations The routes are available in advance The routing algorithms in the Internet are proactive Reactive Routes are created only when they are needed Used in e.g. ad hoc networks (discussed later in this course) Internet-53 26
27 Etäisyysvektori Reititysalgoritmit Etäisyysvektoreita lähetetään, kunnes verkon tila on stabiloitunut Reitittimet muodostavat reitit yhteistyössä Esimerkki: RIP Linkkitila Topologiatietokantoja lähetetään säännöllisesti Jokainen reititin muodostaa reitit itsenäisesti Esimerkki: OSPF Internet-54 Reititysalgoritmien ominaisuudet Etäisyysvektori + Yksinkertainen ja kevyt - Konvergoituu hitaasti - Vain yksi reitti per kohde - Vain yksi kustannusfunktio Linkkitila - Monimutkainen ja raskas + Konvergoituu nopeasti + Tukee useita reittejä per kohde + Tukee erilaisia kustannusfunktioita Internet-55 27
Johdanto Internetin reititykseen
Johdanto Internetin reititykseen Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Luvut 2-3 Huiteman kirjassa) Internet-1 Internet Architecture Principles End-to-end principle All
Internet perusteet. Analyysin tasot
Internet perusteet Internet perusteet Osoitteet IPv4 ja ICMP -protokollat ARP - Address Resolution Protocol Internet-1 Analyysin tasot Tuotteet Markkinat Määrittelyt, RFC, draft specifications Protokollat
Internet perusteet. Internet perusteet Osoitteet IPv4 ja ICMP -protokollat ARP - Address Resolution Protocol. Internet-1. S-38.
Internet perusteet Internet perusteet Osoitteet IPv4 ja ICMP -protokollat ARP - Address Resolution Protocol Internet-1 Analyysin tasot Tuotteet Markkinat Määrittelyt, RFC, draft specifications Protokollat
Johdanto Internetin reititykseen
Johdanto Internetin reititykseen IPv4, ICMP, ARP, osoitteet (Luvut 2-3 Huiteman kirjassa) Internet-1 Analyysin tasot Tuotteet Markkinat Määrittelyt, RFC, draft specifications Protokollat Periaatteet, Vaatimukset
Introduction to Routing in Internet
Introduction to Routing in Internet Internet basics IPv4 and IMP Internet ddressing RP - ddress Resolution Protocol Routing Information (Distance Vector ) Protocol Principles S38./RKa s-00 3- Internetin
Introduction to Routing in Internet. Luento-ohjelma tästä eteenpäin
Introduction to Routing in Internet Internet basics IPv4 and IMP Internet ddressing RP - ddress Resolution Protocol Routing Information (istance Vector ) Protocol Principles 3- Luento-ohjelma tästä eteenpäin
Johdanto Internetin reititykseen
Johdanto Internetin reititykseen Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Luvut 2-3 Huiteman kirjassa) Internet-1 Analyysin tasot Tuotteet Markkinat Määrittelyt, RFC, draft
100 % Kaisu Keskinen Diat
100 % Kaisu Keskinen Diat 98-103 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6
Introduction to exterior routing
Introduction to exterior routing CIDR-1 Autonomous Systems AS Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen) reititysprotokolla,
Introduction to exterior routing
Introduction to exterior routing CIDR-1 Autonomous Systems AS Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen) reititysprotokolla,
Introduction to exterior routing
Introduction to exterior routing CIDR-1 Autonomous Systems AS - Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen)
Introduction to exterior routing. Autonomous Systems
Introduction to exterior routing CIDR1 Autonomous Systems AS Autonomous System on Internetin hallinnollinen alue, eli osa verkosta, jolla on yksi omistaja. AS:lla käytössä on yleensä yksi (sisäinen) reititysprotokolla,
ICMP-sanomia. 3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol)
3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) DHCP (Dynamic Host Configuration Protocol) CIDR (Classless InterDomain Routing)
3. IP-kerroksen muita protokollia ja
3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) DHCP (Dynamic Host Configuration Protocol) CIDR (Classless InterDomain Routing)
Internet Protocol version 6. IPv6
Internet Protocol version 6 IPv6 IPv6 Osoiteavaruus 32-bittisestä 128-bittiseksi Otsikkokentässä vähemmän kenttiä Lisäominaisuuksien määritteleminen mahdollista Pakettien salaus ja autentikointi mahdollista
Kattava katsaus reititykseen
M.Sc.(Tech.) Marko Luoma (1/29) S 38.188 Tietoliikenneverkot S 2000 Luento 4: Reititys Kattava katsaus reititykseen M.Sc.(Tech.) Marko Luoma (2/29) S 38.122 Telecommunication Switching Technology II (2
OSI ja Protokollapino
TCP/IP OSI ja Protokollapino OSI: Open Systems Interconnection OSI Malli TCP/IP hierarkia Protokollat 7 Sovelluskerros 6 Esitystapakerros Sovellus 5 Istuntokerros 4 Kuljetuskerros 3 Verkkokerros Linkkikerros
S 38.1105 Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory
S 38.1105 Tietoliikennetekniikan perusteet Pakettikytkentäiset verkot Kertausta: Verkkojen OSI kerrosmalli Sovelluskerros Esitystapakerros Istuntokerros Kuljetuskerros Verkkokerros Linkkikerros Fyysinen
Turvallisuus verkkokerroksella
Turvallisuus verkkokerroksella IPsec Authentication Header ( AH) -protokolla Encapsulation Security Payload (ESP) -protokolla ennen käyttöä on luotava kommunikoivien koneiden välille turvasopimus SA (Security
Turvallisuus verkkokerroksella
Turvallisuus verkkokerroksella IPsec Authentication Header ( AH) -protokolla Encapsulation Security Payload (ESP) -protokolla ennen käyttöä on luotava kommunikoivien koneiden välille turvasopimus SA (Security
AH-otsake. Turvallisuus verkkokerroksella. AH-otsake. AH-otsake. ESP-otsake. IP-otsake
Turvallisuus verkkokerroksella IPsec Authentication Header ( AH) -protokolla Encapsulation Security Payload (ESP) -protokolla ennen käyttöä on luotava kommunikoivien koneiden välille turvasopimus SA (Security
Verkkoinformaation välittämiseen isäntäkoneiden ja reitittimien välillä
3. IP-kerroksen muita protokollia ja mekanismeja ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) DHCP (Dynamic Host Configuration Protocol) CIDR (Classless InterDomain Routing)
reitittimissä => tehokkaampi 2005 Markku Kojo IPv6
4. IPv6-protokolla (RFC 2460) Enemmän osoitteita 16 tavua osoitteelle => osoitteita paljon! Virtaviivaistettu nopeampi käsittely k reitittimissä => tehokkaampi Uusia piirteitä Erilaisten sovellusten tarpeet
Reititys. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL. Yhteyden jakaminen Reititys Kytkentä Internet-protokolla TCP, UDP
Reititys 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 DUNXVHXKNXUL Tämä ja OSI Yhteyden jakaminen Reititys Kytkentä Internet-protokolla TCP, UDP 7 sovellus 6 esitystapa 5 yhteysjakso 4 siirto verkko linkki fyysinen
Vuonimiö on pelkkä tunniste
Reitittimelle vuo on joukko peräkkäisiä paketteja, joita tulee käsitellä tietyllä tavalla samat resurssivaraukset samat turvallisuusvaatimukset samat säännöt pakettien hävittämiseen samat etuoikeudet jonoissa
Vuonimiö on pelkkä tunniste
Reitittimelle vuo on joukko peräkkäisiä paketteja, joita tulee käsitellä tietyllä tavalla samat resurssivaraukset samat turvallisuusvaatimukset samat säännöt pakettien hävittämiseen samat etuoikeudet jonoissa
Tietoliikenne II. Syksy 2005 Markku Kojo. Tietoliikenne II (2 ov,, 4 op) Page1. Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos
Tietoliikenne II Syksy 2005 Markku Kojo 1 Syksy 2005 Tietoliikenne II (2 ov,, 4 op) Markku Kojo Helsingin yliopisto Tietojenkäsittelytieteen laitos 2 Page1 1 Kirjallisuus ja muuta materiaalia Kurssikirja:
... Laajennusotsakkeet. Reititysotsake. Vuonimiö on pelkkä tunniste. Vuonimiöiden käsittely solmuissa
Reitittimelle vuo on joukko peräkkäisiä paketteja, joita tulee käsitellä tietyllä tavalla samat resurssivaraukset samat turvallisuusvaatimukset samat säännöt pakettien hävittämiseen samat etuoikeudet jonoissa
Sovelluskerros. Sovelluskerros. Kuljetuskerros Verkkokerros Linkkikerros Fyysinen kerros. Kuljetuskerros Verkkokerros Linkkikerros Fyysinen kerros
do w hat I m ean Luennon sisältö Internet-protokolla versio 6 Comer luku 31 (vanha kirja ss. 257-278) Sovelluskerros Kuljetuskerros Verkkokerros Linkkikerros Fyysinen kerros IPv6 Internet Sovelluskerros
Liikkuvien isäntäkoneiden reititys
5. Mobile IP (RFC 3220) IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi
5. Mobile IP (RFC 3220)
5. Mobile IP (RFC 3220) IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi
100 % Kaisu Keskinen Diat
100 % Kaisu Keskinen Diat 121-134 4-1 BGP route selection router may learn about more than 1 route to destination AS, selects route based on: 1. local preference value attribute: policy decision 2. shortest
reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa
OSPF:n toiminta reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa viestit tulvitetaan, viestit numeroidaan, viestit kuitataan viestit ohjataan valitulle (designed)
reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa
OSPF:n toiminta reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa viestit tulvitetaan, viestit numeroidaan, viestit kuitataan viestit ohjataan valitulle (designed)
OSPF:n toiminta. Välittäjäreititin. Hello-paketti. Hello-paketin kentät. Hello-paketin kentät jatkuvat. OSPF-sanomat hello naapurien selvillesaaminen
OSPF:n toiminta reititystietojen vaihto linkkitilaviestejä säännöllisin väliajoin ja topologian muuttuessa viestit tulvitetaan, viestit numeroidaan, viestit kuitataan viestit ohjataan valitulle (designed)
Liikkuvien isäntäkoneiden reititys
Mobile IP IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi osoite tässä
IP-reititys IP-osoitteen perusteella. koneelle uusi osoite tässä verkossa?
Mobile IP IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi osoite tässä
ESPOO VANTAA INSTITUTE OF TECHNOLOGY. ser 0/0. Right WS-3 WS-4. Ennen QoS-määrittelyjä tehdään normaalit reititinmäärittelyt ja testataan IP-yhteys:
Demo 9: LLQ Kytkentä Esimerkkiverkko koostuu kahdesta 2600-sarjan reitittimestä, jotka on yhdistetty hitaalla 128 kbit/s yhteydellä. Molempien reitittimien FastEthernet 0/0-liitäntään on liitetty kytkin,
Multicast perusteet. Ins (YAMK) Karo Saharinen Karo Saharinen
Multicast perusteet Ins (YAMK) Karo Saharinen 20.04.2016 Lyhenteitä Multicastissä Lyhenne PIM PIM-SM PIM-DM MC ASM SSM RP BSR IGMP UC (S,G) Selite Protocol Independent Multicast PIM Sparse Mode PIM Dense
ITKP104 Tietoverkot - Teoria 3
ITKP104 Tietoverkot - Teoria 3 Ari Viinikainen Jyväskylän yliopisto 5.6.2014 Teoria 3 osuuden tärkeimmät asiat kuljetuskerroksella TCP yhteyden muodostus ja lopetus ymmärtää tilakaavion suhde protokollan
Tämän kurssin sisältö. Esitiedot. Tietoa tästä kurssista. Ilmoittautuminen. Kurssin osasuoritukset ja arvostelu. T Tietokoneverkot
Tämän kurssin sisältö, TkL Opettava tutkija, TML, HUT TCP/IP-verkot ja niiden toiminta Turvallisuusominaisuudet Verkkosovellusten suunnittelu ja ohjelmointi 1 2 Tietoa tästä kurssista news://news.tky.hut.fi/
T-110.4100 Tietokoneverkot : Reititys sisäverkossa
T-110.4100 Tietokoneverkot : Reititys sisäverkossa Teemu Kiviniemi Funet-verkko CSC Tieteen tietotekniikan keskus Oy Luento pohjautuu Sanna Suorannan aiempaan materiaaliin. 7.2.2012 Luennon sisältö Reititys
4 reititintyyppiä. AS:ien alueet. sisäinen reititin alueen sisäisiä. alueen reunareititin sekä alueessa että runkolinjassa
Yhden AS:n sisällä reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol) OSPF, RIP, kukin reititin tuntee kaikki muut tämän AS:n reitittimet ja saa niiltä reititystietoja tietää mikä reititin
reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol)
Yhden AS:n sisällä reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol) OSPF, RIP, kukin reititin tuntee kaikki muut tämän AS:n reitittimet ja saa niiltä reititystietoja tietää mikä reititin
Lisää reititystä. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Lisää reititystä. Jaakko Kangasharju
Tietokoneverkot 2009 (4 op) jaakko.kangasharju@futurice.com Futurice Oy Syksy 2009 (Futurice Oy) Syksy 2009 1 / 39 Sisältö 1 2 (Futurice Oy) Syksy 2009 2 / 39 Sisältö 1 2 (Futurice Oy) Syksy 2009 3 / 39
Lisää reititystä. Tietokoneverkot 2008 (4 op) Syksy Teknillinen korkeakoulu. Lisää reititystä. Jaakko Kangasharju
Tietokoneverkot 2008 (4 op) jkangash@cc.hut.fi Teknillinen korkeakoulu Syksy 2008 (TKK) Syksy 2008 1 / 39 Sisältö 1 2 (TKK) Syksy 2008 2 / 39 Sisältö 1 2 (TKK) Syksy 2008 3 / 39 iksi monilähetys? : saman
Monilähetysreititys. Paketti lähetetään usealle vastaanottajalle Miksi? Monet sovellukset hyötyvät
Monilähetysreititys Paketti lähetetään usealle vastaanottajalle Miksi? Monet sovellukset hyötyvät ohjelmistopäivitykset WWW-välimuistien päivitykset etäopetus, virtuaalikoulu videoiden, äänitteiden lähetys
Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone
ja ylläpito computer = laskija koostuu osista tulostuslaite näyttö, tulostin syöttölaite hiiri, näppäimistö tallennuslaite levy (keskusyksikössä) Keskusyksikkö suoritin prosessori emolevy muisti levy Suoritin
TCP/IP-protokollapino. Verkkokerros ja Internetprotokolla. Sisältö. Viime luennolla. Matti Siekkinen
TCP/IP-protokollapino Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2010 Sovelluskerros Middleware: HTTP, SSL, XML... Kuljetuskerros: TCP, UDP,... Verkkokerros: IPv4, IPv6 Linkkikerros:
Multicast. Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta
Multicast Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta 1 Johdanto Tietoverkoissa voidaan lähettää kolmella eri tavalla Unicast
Luento 7: Verkkokerros verkkokerroksen tehtävät, IP-protokolla, reititin. Syksy 2014, Tiina Niklander
Tietoliikenteen perusteet Luento 7: Verkkokerros verkkokerroksen tehtävät, IP-protokolla, reititin Syksy 2014, Tiina Niklander Kurose&Ross: Ch4 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights
Antti Vähälummukka 2010
Antti Vähälummukka 2010 TCP/IP (Transmission Control Protocol / Internet Protocol) on usean Internet-liikennöinnissä käytettävän tietoverkkoprotokollan yhdistelmä. IP-protokolla on alemman tason protokolla,
Chapter 4 Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
Verkkokerros ja Internet Protocol. kirja sivut 190-222
Verkkokerros ja Internet Protocol kirja sivut 190-222 Verkkokerros Internet-protokolla (IP) toteuttaa verkkokerroksen Tietoliikennepaketit välitetään erilaisten fyysisten kerrosten ylitse koneelta koneelle
3/3/15. Verkkokerros 2: Reititys CSE-C2400 Tietokoneverkot Kirjasta 4.2-4.3, 4.5-4.8. Verkkokerros. Internet-protokollapino ja verkkokerroksen tehtävä
do what I mean // : Reititys CSE-C400 Tietokoneverkot Kirjasta 4.-4., 4.-4.8 Tällä luennolla Reititys Internet-verkossa ja internet-verkoissa Internetin rakenne Reititysprotokollat ja algoritmit Reitittimen
Luento 7: Verkkokerros
: Verkkokerros tehtävät, reititin ja IP-protokolla Tiina Niklander Kurose&Ross Ch4.1-4.5 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved 1 Lähettäjä (sender) Luennon sisältöä segmentti
Verkkokerros. Verkkokerros ja Internet Protocol. End-to-end -argumentti. IP-otsikkotiedot. IP ja linkkikerros <#>
Verkkokerros Verkkokerros ja Internet Protocol kirja sivut 190-222 Internet-protokolla (IP) toteuttaa verkkokerroksen Tietoliikennepaketit välitetään erilaisten fyysisten kerrosten ylitse koneelta koneelle
Reitittimen rakenne. Kytkentäosa ... (switching fabric) Reititysprosessori linkkikerroksen toiminnot (LK)
Reitittimen rakenne sisäänmenoportit ulostuloportit...... (switching fabric) 12.10.2001 41 Portit peruskerroksen toiminnot (PK) fyysisen siirtoyhteyden pää linkkikerroksen toiminnot (LK) virhetarkistukset,
" Reititysprosessori. " suorittaa reititysprotokollaa " RIP, OSPF, BGP,.. " päivittää reititystauluja. " hallinta- ja ylläpitotoimintoja
Reitittimen rakenne sisäänmenoportit...... (switching fabric) ulostuloportit Portit peruskerroksen toiminnot (PK) fyysisen siirtoyhteyden pää linkkikerroksen toiminnot (LK) virhetarkistukset, vuonvalvonta,
3.7. Internetin reititysprotokollista
3.7. Internetin reititysprotokollista AS (autonomous system) reititys AS:n sisällä (Interior routing protocols) RIP (Routing Information Protocol), RIP2, RIPng etäisryysvektorireititysprotokolla OSPF (Open
Security server v6 installation requirements
CSC Security server v6 installation requirements Security server version 6.4-0-201505291153 Pekka Muhonen 8/12/2015 Date Version Description 18.12.2014 0.1 Initial version 10.02.2015 0.2 Major changes
Reitittimen rakenne. Kytkentäosa ... (switching fabric) Reititysprosessori 2/7/ pakettien edelleenohjaaminen (PE)
Reitittimen rakenne sisäänmenoportit ulostuloportit...... 2/7/2003 43 Portit peruskerroksen toiminnot (PK) fyysisen siirtoyhteyden pää linkkikerroksen toiminnot (LK) virhetarkistukset, vuonvalvonta, MAC-kerroksen
Verkkokerros 2: Reititys
Verkkokerros 2: Reititys CSE-C2400 Tietokoneverkot Kirjasta 4.2-4.3, 4.5-4.8 Sanna Suoranta Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach
" Reititysprosessori. " suorittaa reititysprotokollaa " RIP, OSPF, BGP,.. " päivittää reititystauluja. " hallinta- ja ylläpitotoimintoja
Reitittimen rakenne sisäänmenoportit...... ulostuloportit Portit peruskerroksen toiminnot (PK) fyysisen siirtoyhteyden pää linkkikerroksen toiminnot (LK) virhetarkistukset, vuonvalvonta, MAC-kerroksen
Kun n = 32 ei ole tarpeeksi nopea nykyisiin runkoreitittimiin! - content addressable memory (CAM) - välimuistin käyttö
Osoitteen 1. bitti 2. bitti 3. bitti jne 0 1 0 1 0 1 001.. Kun n = 32 ei ole tarpeeksi nopea nykyisiin runkoreitittimiin! - content addressable memory (CAM) - välimuistin käyttö Kytkentäosa Kytkentä muistin
001.. Kun n = 32 ei ole tarpeeksi nopea nykyisiin runkoreitittimiin! - content addressable memory (CAM) - välimuistin käyttö
Osoitteen 1. bitti 2. bitti 3. bitti jne 0 0 1 0 1 1 001.. Kun n = 32 ei ole tarpeeksi nopea nykyisiin runkoreitittimiin! - content addressable memory (CAM) - välimuistin käyttö Kytkentäosa Kytkentä muistin
3. Kuljetuskerros 3.1. Kuljetuspalvelu
End- to- end 3. Kuljetuskerros 3.1. Kuljetuspalvelu prosessilta prosessille looginen yhteys portti verkkokerros koneelta koneelle IP-osoite peittää verkkokerroksen puutteet jos verkkopalvelu ei ole riittävän
Reititys. Luennon sisältö. Miten IP-paketti löytää tiensä verkon läpi. Edelleenlähetys (forwarding) yksittäisen koneen näkökulmasta
Luennon sisältö Reititys Autonomisten järjestelmien sisäinen reititys luvut 7, 3 ja 5 Mitä reititys on Reititysalgoritmit etäisyysvektori linkkitila (polkuvektori ensi viikolla) Sisäiset reititysprotokollat
Reititys. Autonomisten järjestelmien sisäinen reititys. luvut 7, 13 ja 15. Sanna Suoranta https://noppa.tkk.fi/noppa/kurssi/t-110.4100 16.9.
Reititys Autonomisten järjestelmien sisäinen reititys luvut 7, 13 ja 15 1 Luennon sisältö Mitä reititys on Reititysalgoritmit etäisyysvektori linkkitila (polkuvektori ensi viikolla) Sisäiset reititysprotokollat
Tietoliikenteen perusteet. Langaton linkki
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman
Tietoliikenteen perusteet. Langaton linkki
Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman
Chapter 4 Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
IPv6. IPv6. IPv6-otsake. Otsakekentät. 16 tavun osoitteet => rajaton määrä osoitteita
IPv6 CIDR on kikkailua, ei ratkaise IP:n perusongelmia tavoitteita: biljoonia osoitteita pienempiä reititystauluja yksinkertaisempia protokollia turvallisuutta mukaan palvelutyyppi (tosiaikainen), monilähetys
CIDR on kikkailua, ei ratkaise IP:n perusongelmia tavoitteita:
IPv6 CIDR on kikkailua, ei ratkaise IP:n perusongelmia tavoitteita: biljoonia osoitteita pienempiä reititystauluja yksinkertaisempia protokollia turvallisuutta mukaan palvelutyyppi (tosiaikainen), monilähetys
Reititys. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Reititys. Jaakko Kangasharju.
algoritmit Tietokoneverkot 2009 (4 op) jaakko.kangasharju@futurice.com Futurice Oy Syksy 2009 (Futurice Oy) Syksy 2009 1 / 45 Sisältö 1 algoritmit 2 3 4 algoritmit 5 6 (Futurice Oy) Syksy 2009 2 / 45 Sisältö
T Tietokoneverkot
, TkL Opettava tutkija, TML, HUT 1 Tämän kurssin sisältö TCP/IP-verkot ja niiden toiminta Turvallisuusominaisuudet Verkkosovellusten suunnittelu ja ohjelmointi 2 Tietoa tästä kurssista news://news.tky.hut.fi/opinnot.tik.tietokoneverkot
Reititys. Autonomisten järjestelmien sisäinen reititys. luvut 7, 13 ja 15
Reititys Autonomisten järjestelmien sisäinen reititys luvut 7, 13 ja 15 1 16.9.2010 Luennon sisältö Mitä reititys on Reititysalgoritmit etäisyysvektori linkkitila (polkuvektori ensi viikolla) Sisäiset
Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat
Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat
S Tietoliikenneverkot / Marko Luoma 1
Teknillinen korkeakoulu Teletekniikan laboratorio Tietoliikenneverkot Luento 4: Reititys 29.9.1999 S-38.188 Tietoliikenneverkot / Marko Luoma 1 Ja taas OSI 7 sovelluskerros 6 esitystapakerros 5 yhteysjakso
Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/2003 79. Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja
Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat
Internet-protokollia. testauspakettien lähettäminen
Internet-protokollia ICMP (Internet Control Message Protocol) ARP (Address Resolution Protocol) RARP (Reverse Address Resolution Protocol) OSPF (Open Shortest Path First) BGP (Border Gateway Protocol)
Multicast. Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta
Multicast Johdanto Ryhmien hallinta Reititys Reaaliaikaiset siirto- ja hallintaprotokollat Resurssien varaus Sessioiden hallinta 1 Johdanto Tietoverkoissa voidaan lähettää kolmella eri tavalla Unicast
AS 3 AS 0. reitittimet käyttävät samaa reititysprotokollaa (intra-as protocol)
AS 3 Internet koostuu autonomisista systeemeistä AS (autonomous system), jotka yhdistetty runkolinjaalueella. AS 1 AS 5 AS 0 AS 2 AS 4 Yhden AS:n sisällä reitittimet käyttävät samaa reititysprotokollaa
AS 3 AS 5 AS 1 AS 0 AS 2 AS 4
AS 3 Internet koostuu autonomisista systeemeistä AS (autonomous system), jotka yhdistetty runkolinjaalueella. AS 1 AS 5 AS 0 AS 2 AS 4 Yhden AS:n sisällä reitittimet käyttävät samaa reititysprotokollaa
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
ELEC-C7241 Tietokoneverkot Verkkokerros
ELEC-C7241 Tietokoneverkot Verkkokerros Pasi Sarolahti (useat kalvot: Sanna Suoranta) 21.2.2017 Kurssin loppuvaiheet Kolme luentoa (ja harjoituskierrosta) jäljellä 21.2. Verkkokerros Ensi viikolla tauko
4. Reititys (Routing)
4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle Välissä voi olla hyvin monimutkainen monista erilaisista aliverkoista koostuva verkko.
Security server v6 installation requirements
CSC Security server v6 installation requirements Security server version 6.x. Version 0.2 Pekka Muhonen 2/10/2015 Date Version Description 18.12.2014 0.1 Initial version 10.02.2015 0.2 Major changes Contents
Kuljetus- ja verkkokerrokset. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2011
Kuljetus- ja verkkokerrokset Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2011 Luennon sisältö 1. Johdantoa Kertaus, motivointi Yhteys, yhteydettömyys Best effort
Reitittimen rakenne ... ulostuloportit. sisäänmenoportit. Kytkentäosa. (switching fabric) Reititysprosessori 2/7/
Reitittimen rakenne sisäänmenoportit ulostuloportit Reititysprosessori Kytkentäosa...... (switching fabric) 2/7/2003 43 Portit peruskerroksen toiminnot (PK) fyysisen siirtoyhteyden pää linkkikerroksen
Malliverkko. Tietoliikenneverkot. Terminologiaa. Ja taas OSI /XHQWR5HLWLW\V
Teknillinen korkeakoulu Teletekniikan laboratorio Malliverkko Tietoliikenneverkot /XHQWR5HLWLW\V 30.9.1998 S-38.188 Tietoliikenneverkot / Marko Luoma 1 30.9.1998 S-38.188 Tietoliikenneverkot / Marko Luoma
Reititys. 4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle. Reititysalgoritmit
4. Reititys (Routing) Verkkokerroksen tehtävänä on toimittaa data (paketit) lähettäjän koneelta vastaanottajan koneelle Välissä voi olla hyvin monimutkainen monista erilaisista aliverkoista koostuva verkko.
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
IPv6-protokolla. Internet. Internetin verkkokerros
IPv6-protokolla enemmän osoitteita 16 tavua osoitteelle=> osoitteita paljon! virtaviivaistettu nopeampi käsittely reitittimissä => tehokkaampi uusia piirteitä erilaisten sovellusten tarpeet huomioon turvauspiirteet
enemmän osoitteita 16 tavua osoitteelle=> osoitteita paljon!
IPv6-protokolla enemmän osoitteita 16 tavua osoitteelle=> osoitteita paljon! virtaviivaistettu nopeampi käsittely reitittimissä => tehokkaampi uusia piirteitä erilaisten sovellusten tarpeet huomioon turvauspiirteet
enemmän osoitteita 16 tavua osoitteelle=> osoitteita paljon! virtaviivaistettu nopeampi käsittely reitittimissä => tehokkaampi
IPv6-protokolla enemmän osoitteita 16 tavua osoitteelle=> osoitteita paljon! virtaviivaistettu nopeampi käsittely reitittimissä => tehokkaampi uusia piirteitä erilaisten sovellusten tarpeet huomioon turvauspiirteet
Aliverkkomaskin käyttö maskin avulla osoitteesta poistetaan koneosoite. etsitään verkko-osoite reititystaulusta esim.
Aliverkkomaskin käyttö maskin avulla osoitteesta poistetaan koneosoite AND-operaatio etsitään verkko-osoite reititystaulusta esim. paketin kohdeosoite: 130.50.15.6 maski: 11 1 11111100 00000000 osoite:
Linkkikerros, tiedonsiirron perusteet. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2013
Linkkikerros, tiedonsiirron perusteet Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2013 Luennon sisältö 1. Päivänpolitiikkaa 2. Kertausta 3. Linkkikerros 4. Tiedonsiirron
Reititin (Router) Reitittimen rakenne. Reititysprosessori. Aliverkkomaskin käyttö maskin avulla osoitteesta poistetaan koneosoite AND-operaatio
Aliverkkomaskin käyttö maskin avulla osoitteesta poistetaan koneosoite AND-operaatio etsitään verkko-osoite reititystaulusta esim. paketin kohdeosoite: 130.50.15.6 maski: 11 1 11111100 00000000 osoite:
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna