Jori Leskinen BIOPOHJAISET LIIKENTEEN POLTTONESTEET

Koko: px
Aloita esitys sivulta:

Download "Jori Leskinen BIOPOHJAISET LIIKENTEEN POLTTONESTEET"

Transkriptio

1 Jori Leskinen BIOPOHJAISET LIIKENTEEN POLTTONESTEET Opinnäytetyö KESKI-POHJANMAAN AMMATTIKORKEAKOULU Kemiantekniikan koulutusohjelma Huhtikuu 2008

2 KESKI-POHJANMAAN AMMATTIKORKEAKOULU Kemiantekniikan koulutusohjelma TIIVISTELMÄ Työn tekijä: Työn nimi: Jori Leskinen Biopohjaiset liikenteen polttonesteet Päivämäärä: Sivumäärä: 27 Työn ohjaaja: Työn valvoja: Prof Ulla Lassi TrT Tauno Kuokkanen Biopolttoaineet ovat biomassasta tuotettuja polttoaineita. Biomassaa saadaan eloperäisistä kasveista, jotka kasvaessaan sitovat hiilidioksidia saman määrän, jonka palaessaan vapauttavat. Ilmastonmuutoksen on todettu johtuvan osittain liikenteen ja teollisuuden hiilidioksidipäästöistä. Liikennemäärät ovat kasvussa, ja fossiilisia polttoaineita käyttävät liikennevälineet tuottavat suuren määrän ilmaan vapautuvasta hiilidioksidista, mikä on johtanut biopolttoaineiden tuotantoprosessien kehittämisen voimakkaaseen kasvuun. Työ toimii osana SusFu- Flex-projektia. Projekti on Suomen Akatemian rahoittama tutkimus, jonka tavoitteena on löytää uusia ratkaisuja biopolttoaineiden tuotantoon. Työn tavoitteena oli selvittää mahdollisuuksia tuottaa selluloosapohjaisesta biomassasta happohydrolyysin avulla sokeria biobutanolin raaka-aineeksi sekä sokerin prosessointi edelleen biobutanoliksi. Biobutanoli on polttoaineeksi erinomaisesti soveltuva alkoholi, jonka kemialliset ja fysikaaliset ominaisuudet ovat lähellä bensiinin vastaavia ominaisuuksia. Selluloosan happohydrolyysikokeet suoritettiin Keski-Pohjanmaan ammattikorkeakoulun kemian laboratoriossa laboratoriomittakaavassa. Kokeissa käytettyjä raaka-aineita saatiin UPM Kymmene Pietarsaaren tehtailta. Avainsanat: biopolttoaine, biomassa, biobutanoli, happohydrolyysi, selluloosa

3 CENTRAL OSTROBOTHNIA UNIVERSITY OF APPLIED SCIENCES Degree programme in Chemical Engineering ABSTRACT Author: Name of thesis: Jori Leskinen Liquid Fuels from Biomass for Transportations Date: 10 April 2008 Pages: 27 Instructor: Supervisor: Ulla Lassi Tauno Kuokkanen Biofuels are fuels produced from biomass. Biomass refers to living and recently dead biological materials, which use the same amount of carbon dioxide when growing as they release when burning. The global warming is claimed to be a result from carbon dioxide emissions caused by transportations and industry. The amount of transportations is constantly growing and vehicles using fossil fuels produce a large amount of carbon dioxide releasing it to the atmosphere, which has increased the research of biofuel processes. This thesis is a part of the SusFuFlex-project, which is a research financed by the Finnish Academy. The objective of the SusFuFlex-project is to find new processes to produce biofuels. The objective of the thesis was to research possibilities to produce glucose, as a raw material of biobutanol, from cellulosic biomass by an acid hydrolysis of cellulose, and production of biobutanol from glucose. Biobutanol is an alcohol that has almost the similar chemical and physical attributes to the traditional gasoline. Therefore, biobutanol would be an excellent biofuel. The experiments of the acid hydrolysis of cellulose were made in the chemical laboratory of Central Ostrobotnia University of Applied Sciences in a laboratory scale. Raw materials used in the experiments were obtained from UPM-Kymmene Pietarsaari Mill. Key words: biofuel, biomass, biobutanol, acid hydrolysis, cellulose

4 SISÄLLYSLUETTELO 1 JOHDANTO 1 2 PERINTEISET NESTEMÄISET LIIKENTEEN BIOPOLTTOAINEET Yleistä Biodiesel Bioetanoli 7 3 BIOBUTANOLI Yleistä Biobutanoli polttoaineena 10 4 SOKERIN TUOTTAMINEN Raaka-aineet Selluloosa Hake Suoritetut kokeet Selluloosan happohydrolyysi Hakkeen happohydrolyysi Yhteenveto hydrolyysikokeiden tuloksista 19 5 BIOBUTANOLIN TUOTTO KEMIALLISILLA MENETELMILLÄ 20 6 BIOBUTANOLIN TUOTTO FERMENTOIMALLA 22 7 YHTEENVETO JA JOHTOPÄÄTÖKSET 24 LÄHTEET 26

5 1 1 JOHDANTO Ilmastonmuutos ja sen aiheuttama ilmaston lämpeneminen, ovat saaneet Euroopan Unionin päättäjät kiirehtimään vaihtoehtoisten energiamuotojen käyttöönottoa. Energian tuotannosta aiheutuvien hiilidioksidipäästöjen lisäksi Euroopan parlamentti on kiinnittänyt erityistä huomiota liikenteestä muodostuviin päästöihin. EU:n asettaman direktiivin (Direktiivi 2003/30/ EU) mukaan biopolttoaineiden osuus liikenteen polttoaineista on oltava 5,75 % vuoden 2010 loppuun mennessä ja 10 % vuoden 2020 loppuun mennessä. Lisäksi parlamentti on asettanut tavoitteeksi pienentää EU:n alueella myytävien uusien autojen hiilidioksidipäästöt 120 grammaan kilometriä kohti vuoteen 2012 mennessä. (Euroopan parlamentti 2007.) Tavoitteet ovat erittäin haastavia ja vaativat fossiilisten polttoaineiden käytön osittaista korvaamista esim. biopolttoaineilla. Ilmaston lämpenemistä nopeuttavien hiilidioksidipäästöjen lisäksi fossiilisten polttoaineiden käytön rajoittamista tukee myös se, että maailman raakaöljyvarannot ovat rajalliset ja ovat jo ehtymässä. Yhdysvaltain energiaministeriön tilaama selvitys, niin sanottu Hirschin raportti, ennakoi öljyvarojen ehtymisen aiheuttavan polttoainekriisin, josta seuraa jopa kahdenkymmenen vuoden lama. (Rantanen 2006.) Suomessa on herätty biopolttoaineiden käyttöönottoon hieman myöhemmin kuin monissa muissa Euroopan maissa. Saksa ja Ranska ovat maailman johtavia biodieselin tuottajia. Saksassa biodieselin jakelu toimii jo niin hyvin, että sitä saa 700:ltä huoltoasemalta (Juva 2006, 4.) Ruotsissa taas on keskitytty pääasiassa Brasiliasta tuotavaan bioetanoliin. Myös Suomessa on lisätty merkittävästi biopolttoaineiden tuotannon kehittämistä. Neste Oil, jonka tavoitteena on nousta maailman johtavaksi biodieselin tuottajaksi, tuottaa ns. toisen sukupolven biodieseliä eläin- ja kasvirasvoista (Neste Oil 2006, 6.) Biodieselin lisäksi tavalliselle bensiinillekin on pyritty löytämään korvaava polttoaine. Energiayhtiö St1 Biofuels Oy on avannut ensimmäisen bioetanolintuotantolaitoksen Etelä-Suomeen. Tuotanto perustuu VTT:n kehittämään ja patentoimaan prosessiin, jolla etanolia valmistetaan kotimaisessa elintarviketeollisuudessa syntyvistä jätteistä niiden syntypaikalla. (St1. Lehdistötiedote 2006.) Ilmastonmuutos ja sen yhdistäminen hiilidioksidipäästöihin ovat olleet pääasiallisena syynä useille tutkimus- ja kehitysprojekteille, joissa on etsitty vaihtoehtoisia polttoaineita fos-

6 2 siilisten polttoaineiden korvaamiseksi. Suurelta osin biopolttoaineiden tuotannossa sekä tutkimuksessa ja kehityksessä on keskitytty biodieseliin ja etanolin tai metanolin käyttämiseen polttoaineena tai bensiinin joukkoon sekoitettuna. SusFuFlex eli New, innovative and Sustainable Transportation Fuels (Uudet, innovatiiviset ja kestävät liikenteen biopolttoaineet) on Suomen Akatemian rahoittama nelivuotinen ( ) kansainvälinen tutkimushanke, jossa tutkitaan mahdollisuuksia tuottaa uudenlaisia biopolttoaineita liikenteen polttoaineiksi. Tämä opinnäytetyö on osa projektia, jonka tavoitteena on löytää uusia mahdollisuuksia tuottaa biopolttoaineita selluloosapohjaisesta biomassasta. Työssä keskitytään erityisesti selvittämään sitä, millaisilla prosesseilla olisi mahdollista pilkkoa puun sisältämä selluloosa glukoosiksi ja prosessoida glukoosista edelleen raskaampia alkoholeja ja alkoholiseoksia, tässä tapauksessa butanoliksi tai pentanoliksi. Näistä vaihtoehdoista biobutanoli näyttäisi soveltuvan hyvin bensiiniä korvaavaksi biopolttoaineeksi fysikaalisilta ja kemiallisilta ominaisuuksiltaan.

7 3 2 PERINTEISET NESTEMÄISET LIIKENTEEN BIOPOLTTOAINEET 2.1 Yleistä Biopolttoaineet ovat biomassasta valmistettuja polttoaineita. Biomassaa saadaan eloperäisistä kasveista, jotka kasvaessaan sitovat ilmakehästä hiilidioksidia saman määrän, minkä ne palaessaan vapauttavat. Biopolttoaineet kuuluvat uusiutuviin energianlähteisiin ja vähentävät etenkin hiilidioksidipäästöjen määrää. (Rantanen 2006) Tässä työssä on tarkasteltu biobutanolin lisäksi biodieseliä ja bioetanolia, jotka ovat yleisimmin käytetyt nestemäiset liikenteen biopolttoaineet. Biodieselin osalta tarkastellaan Neste Oil:n niin kutsuttua toisen sukupolven biodieseliä ja sen tuotantoprosessia. Työssä esitellään myös St1 Biofuels Oy:n innovatiivinen bioetanolin tuotantokonsepti. 2.1 Biodiesel Biodiesel on käytetyin biopolttoaine Euroopassa, ja dieselmoottorilla toimivien autojen myynti on viime aikoina kasvanut voimakkaasti etenkin Keski-Euroopassa. Raakaöljyn hinta on jatkanut nousuaan, ja vähän polttoainetta kuluttavat dieselajoneuvot on todettu hyväksi vaihtoehdoksi bensiiniä polttoaineena käyttävien autojen tilalle. (Stade & Siitonen 2006, 3.) Biodieselin eduksi taistelussa biopolttoaineiden markkinaosuuksista voidaan todeta sen melko yksinkertainen ja edullinen valmistusprosessi. Biodieseliä voidaan valmistaa kasvirasvoista ja lähes kaikista eläinrasvoista. Lisäksi biodieseliä voidaan käyttää myös öljylämmitteisten asuntojen öljykattiloissa. Biodieselin käyttö aiheuttaa kuitenkin ongelmia kylmissä olosuhteissa heikon kylmäkäynnistystoimivuuden vuoksi eikä se sellaisenaan toimi ajoneuvon moottorissa. Siksi sitä käytetäänkin useimmiten sekoitettuna perinteisen fossiilisista lähteistä jalostetun dieselin kanssa. Biodiesel on myös vahingollinen nykyisissä moottoreissa käytettäville tiivisteille, ja ne kuluvat nopeasti. Nykyisin autoteollisuudessa kuitenkin otetaan tämä seikka huomioon ja tiivistemateriaaleja on uusittu. Dieselmoottorien suurin ongelma ovat suuret pienhiukkasten, hiilivetyjen ja typpioksidien päästöt,

8 4 eikä biodieselin käyttö poista tätä ongelmaa. Uuden sukupolven biodieselin on kuitenkin toivottu pienentävän näitä päästöjä. Lisäksi hiukkaspäästöjen pienentämiseksi myös autoteollisuudelta vaaditaan vahvaa panostusta pakokaasujen hiukkassuodattimien kehittämiseen. Dieselautojen määrän kasvaessa hiukkaspäästötkin kasvavat, ja etenkin suurissa kaupungeissa tämä näkyy ilmanlaadun heikkenemisenä. (Stade & Siitonen 2006, 8.) Ensimmäisen sukupolven biodieseliä eli rypsimetyyliesteriä (RME) käytetään jo melko laajasti Keski-Euroopassa. Suomessa Neste Oil on käynnistämässä Porvoon jalostamolla toisen sukupolven biodieseliä tuottavan laitoksen (Neste Oil 2006.) Polttoainetta on tarkoitus kehittää kaikilta osin paremmin Suomen olosuhteissa toimivaksi. Neste Oil on solminut Stora Enson kanssa yhteistyösopimuksen, jonka myötä Varkauden paperitehtaan yhteyteen valmistuu koelaitos, missä kehitetään uusia puupohjaisen biodieselin tuotantotapoja (Neste Oil Oyj 2007.) Kesällä 2007 Neste Oil käynnisti Porvoon jalostamolla ensimmäisenä öljy-yhtiönä maailmassa biodieselin tuotannon raaka-aineen vetykäsittelyyn perustuvalla prosessilla. Tämän uuden luonnon rasvoista valmistetun NExBTL-polttoaineen (Next Generation Biomass to Liquid) ominaisuudet ovat kilpailukykyiset hiilivetypohjaisiin polttoaineisiin verrattuna. Kilpailukykyisten ominaisuuksien lisäksi NExBTL-polttoaineen raaka-aineena voidaan käyttää kaikentyyppisiä kasviöljyjä ja eläinrasvoja, mikä mahdollistaa raaka-aineen valikoimisen saatavuuden mukaan ja tekee polttoaineen tuottamisesta kannattavampaa. Erinomaiset, jopa perinteisen dieselin veroiset, käyttöominaisuudet mahdollistavat puhtaan biodieselin käytön polttoaineena. (Stade & Siitonen 2006, 7.) NExBTL-prosessi on kaksivaiheinen prosessi, jossa raaka-aineista valmistetaan kuvion 1 mukaisesti keskitislettä eli alueella C kiehuvaa hiilivetyseosta. Ensimmäisessä vaiheessa rasvahapot hydrataan n-parafiineiksi ja toisessa vaiheessa n-parafiinit isomeroidaan haaraketjuisiksi parafiineiksi. (Aalto, Piirainen & Kiiski 1997.)

9 5 Raaka-aineet Palmuöljy Rasva/Tali Soijaöljy Rypsiöljy Kemikaalit H 3 PO 4 (75 %) NaOH (50 %) H 2 O Vedyn syöttö ESIKÄSITTELY VETYKÄSITTELY Rasvahapot n-parafiineiksi Liete Öljy/Rasva Vesi Fosfori Typpi Metallit (Fe, Ca, Mg) Vedyn syöttö ISOMEROINTI N-parafiinit haaroittuneiksi parafiineiksi Hapan vesi Polttokaasut STABILOINTI NEXBTL- KOMPONENTIT Bensiinikomponentit Kaasut KUVIO 1. NExBTL-biodieselin kaksivaiheisen tuotantoprosessin lohkokaavio (Aalto, Piirainen & Kiiski 1997.) Esikäsittelyssä raaka-aineesta pääasiassa poistetaan epäpuhtauksia fosforihapon, natriumhydroksidin ja veden avulla. Esikäsittelystä saatava liete, joka sisältää öljyä, rasvaa, fosforia, typpeä ja metalleja, ohjataan välisäiliöihin. Tämän jälkeen liete syötetään jatkuvatoimisesti prosessin ensimmäiseen vaiheeseen, jossa rasvahapot vetykäsittelyn avulla

10 6 muunnetaan n-parafiineiksi lämpötilan ollessa C ja paineen 50 bar. Ensimmäisessä vaiheessa käytetään myös rikinpoistokatalyyttejä. Vetykäsittelyn avulla biodieselin setaaniluku saadaan korkeaksi. Setaanilukua käytetään kuvaamaan dieselpolttoaineen syttymisherkkyyttä. (Stade & Siitonen 2006.) Vetykäsittelyn jälkeen liete syötetään prosessin toiseen vaiheeseen, jossa se isomeroidaan. Isomeroinnissa n-parafiinin molekyylirakennetta käsitellään sopivan katalyytin avulla siten, että hiilivetyketjuun syntyy metyylihaaroja. Ensimmäisestä vaiheesta saatu n-parafiini on ominaisuuksiltaan riittävän hyvä perinteiseen dieseliin sekoitettavaksi. Isomeroinnilla kylmäominaisuudet saadaan niin hyvälle tasolle, että valmista tuotetta voidaan käyttää sellaisenaan dieselmoottorin polttoaineena. Isomeroinnissa on tärkeätä myös säilyttää hiiliatomien suuri kokonaismäärä, ettei setaaniluku pääse laskemaan. Isomerointi vaiheessa lämpötila on samalla tasolla kun vetykäsittelyssä, mutta paine katalyytin stabiloimisen vuoksi korkeampi, n. 70 bar. Katalyyttinä voidaan käyttää mitä tahansa kaupallista isomeroivaa molekyyliseulaa. Ihanteellisia ovat mahdollisimman vähän krakkaavat isomerointikatalyytit. Kuten molempien vaiheiden korkeista paineistakin voidaan päätellä, tarvitaan prosessissa melko suuret vetyvirtaukset. Prosessin päävaiheiden jälkeen tuote stabiloidaan, jonka jälkeen siitä erotetaan prosessissa syntyneet kaasut ja bensiinikomponentit. Tämän jälkeen tuote on valmis varastoitavaksi. (Aalto, Piirainen & Kiiski 1997.) NExBTL-biodieselistä tekevät erinomaisen sen ominaisuudet, jotka ovat ensimmäisen sukupolven biodieseliä huomattavasti paremmat. Tämän ovat todenneet myös kaksi eri autonvalmistajaa, jotka ovat testanneet Neste Oil:n tuottamaa toisen sukupolven biodieseliä. Korkean setaaniluvun ansiosta polttoaine palaa tehokkaammin ja parantaa täten hyötysuhdetta. NExBTL-dieselin etuna on myös sen rikittömyys, joka tekee siitä tältä osin jopa perinteistä dieseliä paremman polttoaineen. (Stade & Siitonen 2006.)

11 7 2.3 Bioetanoli Bioetanoli on viljellyistä kasveista, kuten maissista, sokeriruo osta ja vehnästä, tai selluloosapitoisista kasveista, kuten puusta, valmistettua etanolia, jota voidaan sellaisenaan käyttää ottomoottorin polttoaineena. Etanolia tuotetaan käymisreaktiossa, missä sokeri- ja tärkkelyspitoisesta raaka-aineesta muodostuu etanolia ja hiilidioksidia. Käymisprosessissa katalyyttinä toimii hiiva, jonka sisältämät entsyymit pilkkovat glukoosin etanoliksi ja hiilidioksidiksi: (Alcoholic Fuels 2006, 61.) C 6 H 12 O 6 2 C 2 H 5 OH + 2 CO 2 Jo 1970-luvulla bioetanolin tuotanto aloitettiin Brasiliassa sokeriruo osta ja Yhdysvalloissa maissista. Etenkin viime vuosina Yhdysvallat on lisännyt rajusti bioetanolin tuotantoa ja onkin ensimmäisen kerran ohittanut Brasilian maailman suurimpana bioetanolin tuottajana. Bioetanolin tuotantoa ollaan lisäämässä myös Euroopassa ja tuotantolaitoksia on avattu lähiaikoina ainakin Espanjassa, Ranskassa ja Ruotsissa. (European Biomass Industry Association EUBIA 2007.) Suomessa on tutkittu peltoalan käyttöä bioetanolin tuotannossa. Maa- ja elintarviketalouden tutkimuskeskuksessa on tultu siihen tulokseen, että energiantuotantoon voidaan valjastaa kokonaispeltoalasta enintään 0,5 miljoonaa ha, joka vastaa hieman alle 22 % kokonaispeltoalasta. (Pahkala 2007.) Bioetanolin valmistukseen tarkoitettuja tehtaita on Suomessakin ollut suunnitteilla useampia. Projektit on yksi toisensa jälkeen kuitenkin pantu jäihin. Altia oli jo lyönyt lukkoon suunnitelmat Etelä-Pohjanmaalle Koskenkorvan tehtaalle tehtävästä mittavasta laajennuksesta, joka tähtäsi bioetanolin tuotantoon. Keväällä 2007 tehtaan laajennuksesta kuitenkin luovuttiin. (Yli-Kovero 2007.) Bioetanolia käytetään useimmiten tavalliseen bensiiniin lisättynä, jolloin moottoriin ei tarvitse tehdä muutoksia. Lisäksi etanoli aiheuttaa kylmissä olosuhteissa käynnistysongelmia, jotka poistuvat bensiini-bioetanoli seoksessa. Etanolin huonomman energiasisällön vuoksi polttoaineen kulutus suhteessa tavalliseen bensiiniin kasvaa. Etanolin oktaaniluku eli puristuskestävyys on bensiinin vastaavaa korkeampi, mikä mahdollistaa korkeamman puristussuhteen käyttämisen ilman moottorin haitallista nakutusta, joka johtuu polttoaineen ennenaikaisesta syttymisestä. Korkeampi puristussuhde parantaa moottorin hyö-

12 8 tysuhdetta ja tätä kautta taloudellisuutta. Bensiinin puristuskestävyyttä nostetaan nykyisin useimmiten sekoittamalla polttoaineen joukkoon sopivassa suhteessa oksygenaatteja, joista yleisimmin käytetään MTBE:tä eli metyyli-tert-butyylieetteriä. Kun bensiinin joukkoon lisätään etanolia, puristussuhde paranee ja MTBE:n käytöstä voidaan luopua. (Juva 2006.) Ongelmana bioetanolin laajemmassa käytössä liikenteen polttoaineena ovat sen tuotannosta aiheutuvat päästöt, jotka ikään kuin syövät hyödyn fossiilisen polttoaineen korvaamisesta saatavan hyödyn. Lisäksi huolta aiheuttaa peltoalojen valjastaminen biopolttoainetuotantoon, jolloin syntyy kilpailua elintarviketeollisuuden kanssa, mikä ei ole järkevää. Tähän ongelmaan on löydetty ratkaisu biojätteestä. St1:n ja VTT:n yhteisyritys St1 Biofuels Oy on ottanut käyttöön bioetanolin hajautetun tuotantokonseptin, jossa bioetanolin tuotanto on hajautettu kahteen eri yksikköön. Etanolix-nimen saanut konsepti perustuu siihen, että bioetanolin tuotanto ja väkevöinti on erotettu toisistaan. Etanolix-tehtaat ovat pieniä biojätettä raaka-aineena käyttäviä yksiköitä lähellä raaka-aineen lähdettä ja sivutuotteena saatavan rehun käyttäjiä. Konseptin kannattavuus on erinomainen jäteraaka-aineesta saatavien tulojen, alhaisten käyttökustannusten ja rehusta saatavien tulojen ansiosta. Biopolttoainetuotannon ja jätehuollon logistiikkakustannukset pienenevät merkittävästi tuotantoyksiköiden sijoittuessa lähelle raaka-ainetta, jolloin myös kokonaispäästöjen määrä laskee huomattavasti. St1 käynnisti syksyllä 2007 Lappeenrannassa Etanolixtehtaan, joka tuottaa 85-prosenttista bioetanolia. Vuoden 2008 alussa Haminaan valmistui väkevöintiyksikkö, jossa bioetanoli väkevöidään 99,8-prosenttiseksi, jolloin se soveltuu sekoitettavaksi bensiiniin. (St1. Lehdistötiedote 2007.)

13 9 3 BIOBUTANOLI 3.1 Yleistä Butanoli (C 4 H 9 OH) on yksiarvoinen alkoholi, jota on mahdollista valmistaa muun muassa selluloosapohjaisesta biomassasta. (Alcoholic Fuels 2006, 101.) Butanolin valmistaminen biomassasta tekee siitä bioalkoholin, jota polttoaineena käytettäessä voidaan kutsua biopolttoaineeksi. Butanolin valmistaminen on tunnettu jo melko pitkään, mutta sen hyödyntäminen liikenteen polttoaineeksi vaatii huomattavaa panostusta tutkimus- ja kehitystyöhön. Kuten etanolia, myös butanolia voidaan valmistaa käymisprosessin avulla luvun alkupuolella sitä saatiin sivutuotteena niin kutsutussa ABE(asetoni, butanoli, etanoli)-prosessissa, jolla valmistettiin pääasiassa asetonia fermentoimalla tärkkelystä Clostridium-lajin bakteerin avulla. Saanto jää tässä prosessissa kuitenkin aivan liian alhaiseksi laajemman mittakaavan tuotantoon sovellettavaksi. Nykyään butanolin raaka-aineena käytetään öljyä, joka ei tietenkään sovellu lähtöaineeksi biopolttoainetta valmistettaessa. (Alcoholic Fuels, ) Butanolia käytetään nykyisin pääasiassa liuotinaineena erilaisissa kemianprosesseissa sekä joidenkin parfyymien valmistuksessa. Polttoaineena butanolia ei niinkään ole käytetty, vaikka sen ominaisuudet ovatkin siihen tarkoitukseen erinomaiset. Kesällä 2005 Yhdysvalloissa ajettiin tavallisella polttomoottorilla toimivalla autolla länsirannikolta itärannikolle käyttämällä polttoaineena 100-prosesnttista butanolia. Tällä kokeella haluttiin osoittaa auton toimivan bensiinin korvaavalla biopolttoaineella, ja tulokset olivat erinomaiset. Hiilivetypäästöt olivat huomattavasti pienemmät ja, typenoksideja vapautui vähemmän kuin bensiiniä käytettäessä. Kokeessa butanolin kulutus oli jopa pienempi kuin bensiinin vastaavalla matkalla keskimäärin. (Butyl Fuel, LLC 2005.)

14 Biobutanoli liikenteen polttoaineena Biobutanolilla on lukuisia ominaisuuksia, jotka puhuvat sen puolesta bensiinin korvaavana biopolttoaineena. Butanoli on vähemmän korrodoiva kuin etanoli, ja siksi olisikin mahdollista käyttää jo olemassa olevia jakeluverkostoja biobutanolin siirtämisessä. Tämä pienentäisi selvästi sekä kuljetuskustannuksia että kuljetuksesta aiheutuvia päästöjä. Biobutanolin jakelussa voidaan siis pääosin käyttää nykyistä jakeluverkostoa, mikä pienentää bensiinin korvaamisesta aiheutuvia kustannuksia ja madaltaa kynnystä vaihtoehtoisen polttoaineen käyttöön ottamiseksi. Taulukosta 1 voidaan havaita biobutanolin energiasisällön ja lämpöarvon olevan hyvin lähellä bensiinin vastaavia arvoja, ja tällä on erittäin suuri merkitys autoteollisuuden näkökulmasta. Nykyisin käytössä oleviin polttomoottoreihin ei tarvitse tehdä muutoksia, vaan ne toimivat moitteetta biobutanolillakin kuten Yhdysvalloissa suoritettu koe osoittaa. (Butyl Fuel, LLC 2005.) Lämpöarvon ollessa melko lähellä bensiinin vastaavaa ei polttoaineen suhteellinen kulutuskaan kasva kovin paljon vaan pysyy lähellä samaa tasoa. Biopolttoaineiden käyttöä lisätään kuitenkin aluksi valmistamalla seoksia, joissa bensiiniin lisätään biopolttoainetta sopivassa suhteessa. Tässäkin biobutanolin erinomaiset ominaisuudet ovat eduksi ja sitä voidaan lisätä suuremmassa suhteessa kuin esimerkiksi etanolia, jolloin haitalliset hiilidioksidipäästöt pienenevät ja voidaan puhua biopolttoaineesta. Alhainen oktaaniluku on ainoa ominaisuus, joka on biobutanolilla heikompi kuin etanolilla. Tämän vuoksi sekoitettaessa biobutanolia bensiinin joukkoon joudutaan seokseen lisäämään oktaanilukua nostavaa oksygenaattia.

15 11 Polttoaine Lämpöarvo (MJ/l) Ilmapolttoaine seoksen suhde Energia sisältö (Btu/US gallona) RON* MON* Liukoisuus veteen Kinem. viskosit (20 C) (cst) Leimahdus/ itsesyttymis piste ( C) Bensiini , Mitätön >-43 / 246 Diesel 35.5 (60 100, joutokäynti) ,000 (Biodiesel) 130,000 (Diesel) - - Mitätön 4 (40 C) >62 / 210 n- Pentanoli Pieni Pieni 0 % 4 mpas 45 / 300 n- Butanoli , % / 345 Etanoli , % / 363 Metanoli , % / 455 TAULUKKO 1. Polttoaineiden ominaisuuksia (Gautam & Martin II 2000) *RON = polttoaineen teoreettinen oktaaniluku (Research Octane Number) *MON = polttoaineen todellinen oktaani luku moottorissa (Motor Octane Number) Vaikka biobutanoli onkin erinomainen vaihtoehto bensiiniä korvaavaksi liikenteen polttoaineeksi, vaatii se erittäin paljon tutkimustyötä, ennen kuin se voidaan ottaa laajempaan tuotantoon. Suurin ongelma ovat pääasiassa huonosta saannista kärsivästä (ABEprosessi) tai monivaiheisesta ja kalliista tuotantoprosessista johtuvat korkeat tuotantokustannukset, jotka nostavat myös valmiin polttoaineen hinnan korkeaksi, jolloin mahdollisuudet murtautua kuumina käyville biopolttoainemarkkinoille vaikeutuvat (Vasala 2007). Tämän vuoksi kehitystyö prosessien parantamiseksi onkin ensiarvoisen tärkeää. Butanoli toimii sinällään vaivatta nykyisten autojen moottoreissa, joiden valmistuksessa otetaan huomioon biopolttoaineiden lisääntynyt käyttö, mutta sen kohtalaisen korkea leimahduspiste aiheuttaa vaikeuksia leudommassa ilmastossa. Toisin kuin dieselmoottorissa, jossa polttoaine syttyy kovan paineen nostaessa ilma polttoaine seoksessa ilman lämpötilaa, ottomoottorissa käytetään sytytystä. Korkean leimahduspisteen vuoksi viileämmissä olosuhteissa polttoainetta joudutaan ongelmattoman käynnistämisen saavuttamiseksi esilämmittämään, mikä nostaa kustannuksia sekä kuluttajalle että auton valmistajalle ja maahantuojalle.

16 12 Kaiken kaikkiaan voidaan todeta biobutanolin olevan laajemman tutkimuksen arvoinen kohde biopolttoaineita kehitettäessä. Polttoaineena se on ominaisuuksiltaan erittäin lähellä bensiiniä, mikä tekee siitä erinomaisen biopolttoaineen. Tutkimus- ja kehitystyössä tulisi ennen kaikkea keskittyä tuottavamman tuotantoprosessin kehittämiseen.

17 13 4 SOKERIN TUOTTAMINEN 4.1 Raaka-aineet Biobutanolia voidaan valmistaa selluloosapohjaisista raaka-aineista kaksivaiheisella prosessilla, jonka ensimmäisessä vaiheessa raaka-aine hydrolysoidaan sokereiksi. Toisessa vaiheessa sokereista tuotetaan biobutanolia joko kemiallisesti tai biokemiallisesti fermentoimalla. Kokeissa käytettiin raaka-aineena haketta, joka saatiin UPM Kymmene Pietarsaaren tehtailta, sekä referenssinä Whatmanin suodatinpaperia simuloimassa selluloosaa, jonka pitoisuus suodatinpaperissa on yli 98 %. Kyseisiä raaka-aineita käsiteltiin kokeellisesti erilaisilla kemiallisilla prosesseilla toivotun lopputuotteen saamiseksi. Työssä tärkeintä oli kokeilla happohydrolyysin avulla tuottaa glukoosia selluloosasta ja hakkeesta. Todellisessa prosessissa ei voida käyttää samaa raaka-ainetta sellutehtaan kanssa. Myöskään selluloosan käyttö raaka-aineena ei tule kysymykseen, vaan raaka-aineena tulisi käyttää jotain sellutehtaan sivuvirroista kuten kuituliete Selluloosa Selluloosa on pitkäketjuinen glukoosianhydrideistä (C 6 H 10 O 5 ) koostuva polysakkaridi, jonka glukoosimolekyylit ovat liittyneet toisiinsa β-glykosidisilla sidoksilla. Selluloosa siis koostuu tuhansista peräkkäisistä glukoosiyksiköistä, jolloin se olisi erittäin hyvä raaka-aine bioalkoholin valmistukseen. Selluloosaa on kaikissa kasveissa soluseinämien tukiaineena, eikä se juuri liukene yleisimpiin liuottimiin. Selluloosa erotetaan puun sisältämästä ligniinistä alkalisissa olosuhteissa sellunkeitossa, jossa ligniini liukenee keittoliuokseen. (Isotalo 2004, )

18 Hake Kokeissa käytettiin sekahaketta, joka sisälsi havupuuta, koivua ja eukalyptusta. Hake on paperin valmistuksen raaka-aine, joka saadaan sellutehtaan puunkäsittelystä. Puunrungot, jotka on jo ennen kuljetusta katkottu sopivaan mittaan, kuoritaan, haketetaan ja seulotaan mahdollisimman tasalaatuiseksi hakkeeksi. Hake sisältää selluloosan lisäksi hemiselluloosaa ja ligniiniä sekä uuteaineita. Hemiselluloosa on heteropolysakkaridi, eli se muodostuu erilaisista monosakkaridiyksiköistä, kuten glukoosista ja mannoosista. Hemiselluloosa hydrolysoituu happojen vaikutuksesta helpommin kuin selluloosa. (Isotalo 2004, ) Sellutehtaalta saadun hakkeen avulla pystyttiin tekemään kokeita, joista saatiin alustavia tuloksia mahdollisuuksista prosessoida hakkeesta glukoosia. 4.2 Suoritetut kokeet Työssä suoritetut kokeet tehtiin Keski-Pohjanmaan ammattikorkeakoulun laboratoriossa. Ensimmäisenä suoritettiin kokeet selluloosan happohydrolyysistä, jonka raaka-aineena käytettiin Whatmanin suodatinpaperia. Tällä kokeella haluttiin saada alustavaa tietoa selluloosan käyttäytymisestä prosessin aikana ja ennen kaikkea tietoa hajotusolosuhteiden valintaan vaikuttavista muuttujista ennen varsinaista koetta. Seuraavana aloitettiin hakkeen prosessointi, jossa käytettiin hyväksi ensimmäisenä suoritetusta selluloosan happohydrolyysistä saatuja tietoja Selluloosan happohydrolyysi Selluloosa hydrolysoituu happojen vaikutuksesta, jolloin polymeeri katkeaa glykosidisen happisillan kohdalta ja yksi molekyyli vettä liittyy katkenneeseen kohtaan (Isotalo, 2004). Selluloosan happohydrolyysillä, joka on esitetty kuviossa 2, olisi siis teoriassa mahdollista katkaista molekyylit siten, että lopputuotteena saadaan glukoosia.

19 15 HO HO O OH OH O OH O OH Cellulose OH OH n H + Room Temperature 20 min HO HO H O O + OH OH OH OH O OH OH H 2 O 2 O HO HO OH Glucose OH OH KUVIO 2. Selluloosan happohydrolyysi (Isotalo 2004, 42) Kokeet aloitettiin hydrolysoimalla puhdasta selluloosaa rikkihapolla (H 2 SO 4 ). Ensimmäinen koe suoritettiin tilavuusprosentiltaan 10 olevalla happoliuoksella, johon lisättiin 3 grammaa selluloosaa (Whatman suodatinpaperi), joka oli silputtu pienemmiksi jakeiksi. Liuosta sekoitettiin magneettisekoittajalla huoneenlämmössä tunnin ajan, jonka jälkeen havaittiin, ettei liukenemista ollut juurikaan tapahtunut, joten happoa lisättiin vähitellen samalla kun sekoitusta jatkettiin. Koetta jatkettiin neljän tunnin ajan kunnes paperi alkoi liueta. Tällöin H 2 SO 4 -pitoisuus oli noin 30 tilavuusprosenttia ja liukeneminen oli edelleen melko vähäistä. Tässä vaiheessa, liukenemisen parantamiseksi, liuos lämmitettiin 100 C:een. Lämmitystä jatkettiin 20 minuuttia ja voitiin havaita liuoksen muuttuneen kellertävän ruskeaksi. Värin muutos johtuu suodatinpaperin sisältämästä ligniinistä, joka liian korkean lämpötilan vuoksi alkoi liueta glukoosin mukana. Vaikka kyseinen paperi onkin erittäin selluloosapitoista ja puhdasta, se sisältää kuitenkin vähäisen määrän ligniiniä, jota ei täysin voida poistaa ilman kasvavia selluloosahäviöitä. Edellä esitetyn kokeen perusteella rikkihapon pitoisuuden tulisi olla korkeampi ja liuotettavan raaka-aineen määrän pienempi, jolloin happoa suhteessa raaka-aineen määrän olisi enemmän. Prosessi päätettiin suorittaa kolmella eri happopitoisuudella, jolloin oli havaittavissa myös mahdollinen ajallinen ero eri pitoisuuksien välillä. Liuokset valmistettiin lisäämällä 100 ml:aan vettä rikkihappoa siten, että saatiin 40, 55 ja 70 tilavuusprosenttista rikkihappoa. Paperia punnittiin liuokseen sekoitettavaksi yksi gramma, jolloin lähtöliuoksen pitoisuudeksi saatiin 10 g/l. Eniten happoa sisältävässä liuoksessa liukeneminen alkoi lähes välittömästi, kun sekoitus aloitettiin, ja 20 minuutin kuluttua paperi oli hajonnut silmämääräisesti kokonaan. Liuos suodatettiin ja suodoksena saatiin kirkas liuos. Suodosta ei kuitenkaan ollut kovin paljon, vaan suuri osa selluloosasta jäi sakaksi suodatinpaperin päälle, joten prosessin saanto ei ollut kovin hyvä.

20 16 Suodos analysoitiin FT-IR spektrometrillä, jonka kuvaajasta (KUVIO 3) voitiin nähdä suodoksen koostumus. Vertailukuvaajaksi analysoitiin veteen liuotettu puhdas glukoosi, ja tulokset olivat rohkaisevia: happohydrolyysin avulla selluloosaa oli saatu pilkottua glukoosiksi, mikä oli odotettavissakin. Selluloosan happohydrolyysi toimi hyvänä pohjana seuraavassa vaiheessa suoritettavalle hakkeen happohydrolyysille. Happopitoisuuden osalta voitiin päätellä, että sen tulisi olla vähintään 70 tilavuusprosenttia.

21 17 100, %T ,1 4000, ,0 cm-1 Puhdas glukoosi veteen liuotettuna Happohydrolyysillä käsitelty selluloosa Happohydrolyysillä käsitelty hake KUVIO 3. IR-kuvaaja näytteille

22 Hakkeen happohydrolyysi Hakkeen hydrolysointi ei periaatteessa juuri eronnut selluloosan vastaavasta kokeesta, joka oli suoritettu aiemmin. Hakkeen osalta oli kuitenkin otettava huomioon erilainen koostumus. Hake sisältää selluloosaa %, joten oli otettava huomioon sen sisältämät muut aineosat kuten ligniini ja hemiselluloosa. Hakkeen käsittelyyn varattiin enemmän aikaa ja se suoritettiin useammassa vaiheessa. Sellutehtaalla käytettävän hakkeen partikkelikoko on pääosin liian suuri pienessä mittakaavassa tehtäviin kokeisiin, joten koetta varten hake hienonnettiin alle 10 mm:n partikkelikokoon. Näin saatiin lisättyä myös reaktiivista pinta-alaa. Hakkeen hydrolysoinnissa käytettiin 80 tilavuusprosenttista rikkihappoa, jota lisättiin ensimmäisessä vaiheessa 200 ml 10 g:aan haketta. Liuos muuttui saman tien mustaksi, muistuttaen mustalipeää. Värin muutos aiheutuu ligniinistä, jota on puun kuiva-aineesta % puulajikkeen mukaan. Prosessista tuotteena saatu liuos jätettiin sekoittumaan useiden tuntien ajaksi, jolloin hapolle annettiin aikaa reagoida hakkeen kanssa. Puuaines hajosi hapon vaikutuksesta muutamia paloja lukuun ottamatta hyvin ja, voitiin siirtyä seuraavaan vaiheeseen. Edellisestä vaiheesta saatuun tuoteliuokseen lisättiin 200 ml lämmitettyä vettä, jotta rikkihappopitoisuus saatiin alhaisemmaksi, noin 35 tilavuusprosenttiin. Liuoksen lämpötila nostettiin 90 C:een. Lämmitystä jatkettiin puolen tunnin ajan, jonka jälkeen liuos suodatettiin. Suodoksena saatiin melko kirkas liuos, joka muistutti selluloosan happohydrolyysistä saatua tuoteliuosta. Tässäkin tapauksessa suodatettuun sakkaan jäi kohtalaisen paljon selluloosaa, mikä ei sinänsä yllätä, vaan oli odotettavissa tämän tyyppistä kokeellista prosessia suoritettaessa. Saantoa ei näissä kokeissa ollut vielä oleellista saada korkeaksi, vaan sitä pyritään kehittämään prosessin mukana ennen laajempaa tukimusta. Seuraavaksi suodoksen lämpötila nostettiin kahden tunnin ajaksi C:een. Korkeampi lämpötila alkaa liuottaa ligniiniä glukoosin joukkoon, mikä saattaa olla haitallista prosessoitaessa glukoosia butanoliksi. Tuotteesta otettiin näytteet ja ne analysoitiin FT-IR spektrometrillä, jonka antamia kuvaajia verrattiin aiemmin tehdyistä analyyseistä saatuihin kuvaajiin (Kuva 3). Kuvaajasta voidaan päätellä tutkittavan aineen koostumus tiettyjen aineosien kohdalta, jotka voidaan tulkita tunnetuilla aallonpituuksilla muodostuvista piikeistä. Vertailtaessa kuvaajia keskenään

23 19 niiden havaittiin olevan hyvin samankaltaiset puhtaan glukoosin kuvaajan kanssa, muutamia ylimääräisiä epäpuhtauksista johtuvia piikkejä lukuun ottamatta. 4.3 Yhteenveto hydrolyysikokeiden tuloksista Sekä selluloosan että hakkeen happohydrolyysikokeiden tulokset olivat rohkaisevia. Kuten kuviossa 3 esitetystä FT-IR spektrometrin analyysikuvaajasta voidaan havaita, selluloosasta ja hakkeesta saatiin rikkihapolla hydrolysoimalla tuotettua sokeria. Happohydrolyysi on prosessina yksinkertainen ja näin ollen melko helposti toteutettavissa. Prosessi toimii käytännössä hyvin eikä siihen tarvita monimutkaisia laitteistoja. Puhdas selluloosa saadaan pilkottua sokeriksi jo riittävän väkevän happoliuoksen ja sekoituksen avulla. Rikkihappo, jonka tilavuusprosentti oli 70, reagoi selluloosan kanssa nopeasti, ja tuotetta eli sokeria saatiin jo 20 minuutin sekoituksen jälkeen. Lämpötilaa nostamalla prosessia saadaan entisestään nopeammaksi. Selluloosaa käsiteltäessä lämpötila virheellisesti nostettiin 100 C:een, jolloin ligniiniä pääsi liukenemaan tuoteliuokseen. Ensimmäisten kokeiden tuloksia voitiin hyödyntää hakkeen hydrolyysikokeissa. Haketta käsiteltäessä voitiin havaita sen hitaampi reagoiminen rikkihapon kanssa. Kokeessa käytetty 80 tilavuusprosenttinen rikkihappo erottaa ensin puun sisältämän ligniinin ja selluloosan. Viiveaika oli tässä vaiheessa pitkä, jolloin happo reagoi riittävän hyvin raaka-aineen kanssa. Seuraavaksi liuoksen lämpötila nostettiin. Hakkeen happohydrolyysissä lämpötilalla on huomattavasti suurempi merkitys kuin selluloosan happohydrolyysissä. Hyvin toimiakseen prosessi vaatii tässä vaiheessa C:een lämpötilan. Lämpötilan nostaminen nopeuttaa selluloosan ja rikkihapon reaktiota hakkeessa ja lyhentää prosessin kokonaiskestoa huomattavasti. Lämpötilan ylärajana on 90 C, jonka ylittyessä ligniini alkaa liueta tuoteliuokseen. Parhaiten hydrolysoituvat liuokset tarvitsevat rikkihappoa melko paljon, mistä voidaan päätellä prosessin kuluttavan suuren määrän happoa. Toisaalta tutkimuksen tässä vaiheessa ei ole vielä olennaista pyrkiä minimoimaan kemikaalikuluja. Prosessin saanto on toistaiseksi heikko, mutta se paranee reaktio-olosuhteita optimoitaessa.

24 20 5 BIOBUTANOLIN TUOTTO KEMIALLISILLA MENETELMILLÄ Puuperäisen biobutanolin tuotantoprosessin ensimmäinen vaihe, glukoosin tuottaminen selluloosasta, on mahdollista toteuttaa. Seuraavassa vaiheessa glukoosista tulisi tuottaa butanolia. Tämän prosessivaiheen toteuttaminen on monessa suhteessa hankalaa ja kallistakin. Kemiallisia tapoja on muutamia, mutta ne ovat monivaiheisia ja suuressa mittakaavassa niissä käytettävät kemikaalit ja olosuhteet aiheuttavat tarpeettoman suuria kustannuksia. Tällaiset monivaiheiset prosessit saattavat olla hyvinkin kalliita toteuttaa ja lisäkustannuksia tuovat vielä kalliit kemikaalit, jotka vaaratekijöidensä vuoksi vaativat ylimääräisiä turvatoimia ja -laitteita. Tässä työssä ei käydä yksityiskohtaisesti läpi edellä mainittuja prosesseja, koska niitä ei olisi mahdollista käyttää biobutanolin tuotannossa. Esimerkkinä on tuotu esille kuvion 4 viisivaiheinen prosessi, jossa glukoosista tuotetaan butanolia. Tämän prosessin käynnistäjänä toimii HIO 4 eli jodihappo. Protection alcohol I TBDMSCl OH H H HO O OH H H H OH OH Glucose 2 mol HIO4 O H OH H OH + 2 H HO Erythrose O OH t-bu CH 3 Si Cl CH 3 O H OH H OH O t-bu Si CH 3 CH 3 1. NaBH4 2. H2SO4, 50% C CH 3 Deprotection TBAF CH 3 Pd/C + H2 CH 2 HO O t-bu Si CH 3 O t-bu Si CH 3 CH 3 CH 3 KUVIO 4. Glukoosin pilkkominen butanoliksi HIO 4 :n avulla (Hernoux 2007) Vaikka jodihappoa ei tässä tarvitakaan paljon, prosessissa joudutaan käyttämään kalliita suoja-aineita, kuten TBDMSCl eli tertbutyylidimetyylipiikloridi, joiden avulla suojataan primäärialkoholi. Reaktioketjun viimeisessä vaiheessa suoja joudutaan poistamaan toisella

25 21 kemikaalilla. Palladiumin käyttö aktiivihiilen ja vedyn kanssa muodostaa huomattavan turvallisuusriskin. Laboratorio mittakaavassa tällaiset prosessit ovat ihan normaaleja ja käyttökelpoisia, mutta kemianteollisuudessa niitä ei voida käyttää. Kemiallisten reittien hyödyntäminen selluloosapohjaisen biobutanolin tuotannossa vaatii suuria panostuksia kehitystyöhön..

26 22 6 BIOBUTANOLIN TUOTTO FERMENTOIMALLA Tällä hetkellä järkevin ja kustannustehokkain tapa tuottaa biobutanolia on käyttää jo pitkään tunnettua käymisreaktiota. Aiemminkin mainittua ABE- eli asetoni-butanolietanolifermentointia on käytetty jo vuosia. Butanoli saadaan tämän prosessin sivutuotteena, jolloin sen saanti jää alhaiseksi ja tuotteen puhdistaminen tulee kalliiksi. Viime vuosina fermentointiprosessia on kuitenkin kasvavien biopolttoainemarkkinoiden innoittamana pyritty kehittämään tuottavammaksi. (Vasala 2007.) ABE-fermentoinnissa Clostridium acetobutylicum -lajin bakteeri pilkkoo glukoosin asetoniksi, butanoliksi ja etanoliksi. Lopputuotteen butanolipitoisuus on kuitenkin alhainen ja se onkin yksi syy kehittää prosessia paremmin tuottavaksi. Ohion yliopisto ja Environmental Energy Inc. ovat yhteistyössä kehittäneet tuottavamman ABE-prosessin, jossa kaksivaiheisella fermentoinnilla voidaan glukoosin hyötysuhdetta parantaa lähelle 50 %:a. Clostridium acetobutylicum:n lisäksi prosessissa käytetään toistakin organismia, clostridium tyrobutylicum:ia, jonka avulla ensimmäisessä vaiheessa glukoosista tuotetaan voihappoa. (Vasala 2007.) Oulun yliopistossa on tutkittu kyseistä menetelmää ja kehitetty alustava suunnitelma teollisesta prosessista, jonka virtauskaavio on esitetty kuviossa 5. Ensimmäisessä reaktorissa tuotettu voihappo pumpataan kaasunpoistoon, jossa reaktiossa syntyvä vety ja muut kaasut poistetaan. Kaasunpoistosta voihappo ohjataan fermentointireaktoriin (reaktori 2) yhdessä Clostridium acetobutylicum-organismin ja raaka-aineen kanssa. Reaktorista 2 saadaan pääasiassa butanolia ja voihappoa sisältävä liuos, joka ohjataan adsorptiodesorptiopuhdistukseen. Voihappo erotetaan butanolista ns. Sol-Gel-adsorptiolla, joka sitoo liuoksessa olevan butanolin, mutta ei voihappoa. Desorptiolla poistetaan liuokseen imeytyneet kaasut. Seuraavassa vaiheessa butanolista erotettu voihappo poistetaan dekantoimalla, jonka jälkeen se on mahdollista kierrättää takaisin prosessiin. Kierrätyksen myötä voihapon tuottamiseksi tarvittavan organismin tarve on pienempi, jolloin kustannuksia saadaan alhaisemmiksi. Dekantoinnin jälkeen liuos sisältää kymmenisen prosenttia vettä, joka poistetaan tislaamalla. Tislauksesta saadaan lopputuote eli butanoli. Perinteisellä ABE-fermentoinilla lopputuotteen butanolipitoisuus on alle 13 g/l, kun se kaksivaiheisella fermentoinnilla on yli 40 g/l. Parannus saannissa on huomattava ja tekee kaksi-

27 23 vaiheisesta fermentoinnista kehityskelpoisen vaihtoehdon. Prosessi on suunnitteluasteella ja vaatii edelleen panostusta tutkimus- ja kehitystyöhön. Esimerkiksi puhdistusta kehittämällä on mahdollista parantaa saantoa edelleen. (Vasala 2007.) Raaka-aine prosessiin Clostridium tyrobutyricum varastointi/tuotanto Reaktori 1 voihapon tuotto Kaasun poisto Kaasut (vety) Clostridium acetobutylicum varastointi/tuotanto Reaktori 2 butanolin tuotto Kaasun poisto Kaasut Adsorptio Desorptio Butanoli Tislauskoloni Dekantointi Voihapon kierrätys KUVIO 5. Kaksivaiheisen fermentointiprosessin virtauskaavio (Vasala 2007)

28 24 7 YHTEENVETO JA JOHTOPÄÄTÖKSET Metsäbiomassa on biopolttoaineen raaka-aineena varsin varteenotettava, vaikkei se yksistään riitäkään kattamaan EU:n asettamia tavoitteita biopolttoaineiden tuottamiseksi. Polttoainetarpeen tyydyttämiseksi puun lisäksi on tuotannossa käytettävä myös muita biomassan lähteitä. Viime aikoina biodieseltuotanto on saanut osakseen kritiikkiä liiallisen puunkäytön pelossa. Samoin saattaa käydä bioalkoholien tuotannon käynnistyessä, kun etsitään raaka-ainelähteitä. Pelot liiallisista hakkuista ovat varmasti aiheellisia, etenkin biodieseltuotannossa, jossa raaka-aineena käytetään pääasiassa kehitysmaista tuotavaa palmuöljyä. Suomessa metsänhoito toimii erinomaisesti ja metsän vuotuinen kasvu on suurempi kuin puun kulutus. Suomessa puuperäisten bioalkoholien tuotannon kehittämiseen kannattaa panostaa. Metsäteollisuus on vuosia ollut tärkein teollisuuden ala Suomessa, ja sen myötä puuta raaka-aineena käyttäviä sellu- ja paperitehtaita on useita ympäri maan. Biopolttoainemarkkinat saattavatkin olla tulevaisuudessa tärkeä osa metsäteollisuuden maailmankauppaa. Työn tulosten perusteella voidaan todeta, että raaka-aineen hydrolysointi glukoosiksi on mahdollista. Menetelmä vaatii kuitenkin edelleen kehittämistä etenkin tuotteen puhtauden ja riittävän saannon osalta, jotta selluloosapohjaisesta raaka-aineesta saadaan melko edullisilla ja yksinkertaisilla menetelmillä tuotettua glukoosia. Ioniset nesteet eli suolasulat ovat myös tutkimuksen arvoinen kohde. Niiden käyttö on lisääntymässä hyvien ominaisuuksien ja ympäristöystävällisyyden vuoksi, ja mahdollisuutta käyttää ionisia nesteitä prosessissa rikkihapon lisänä tai tilalla on syytä tutkia. Sellutehtaiden sivuvirroista, kuten kuitulietteestä, saatava selluloosa olisi ihanteellinen raaka-aine tällaiseen prosessiin. Jätepuun käsittelyssä taas vaaditaan todennäköisesti useampia vaiheita hyvän lopputuotteen saamiseksi. Biobutanolin valmistaminen on vaikea toteuttaa laboratorio-olosuhteissa ilman erityisiä laitteita. Perjodihapon käyttö ei ole suuremmassa mittakaavassa taloudellisesti järkevää, ja fermentointimenetelmän testaamiseksi tarvitaan järjestelyjä, jotka vaativat aikaa ja pääomaa.

29 25 Bioalkoholien ominaisuuksia verrattaessa on helppo todeta biobutanolin edut. Ongelmana on kuitenkin edelleen tuottavan prosessin puuttuminen. Tällä hetkellä vaikuttaa siltä, että järkevin vaihtoehto on fermentointimenetelmän kehittäminen paremmin tuottavaksi, mutta muitakin mahdollisuuksia kannattaa tutkia. Puuperäisen biomassan saattaminen fermentoitavaan muotoon onkin yksi tutkimuskohde, joka puuperäisen biobutanolin tuotannon kannalta on hyvin tärkeässä asemassa. Mikäli kehitteillä oleva butanolin fermentointimenetelmä saadaan riittävän tuottavaksi, voidaan puhua lähes biopolttoainemarkkinat mullistavasta tuotteesta.

30 26 LÄHTEET Aalto, Pekka, Piirainen, Outi & Kiiski, Ulla. Keskitisleen valmistus Patentti. Patenttinumero: FI B. Alcoholic Fuels Chemical Industries. A Series of Reference Books and Textbooks. St. Louis University, Missouri, USA. Editor: Minteer, Shelley. Butyl Fuel, LLC Butanol works in Your car today. www-dokumentti. Saatavissa: Luettu European Biomass Industry Association EUBIA Creating Markets for Renewable Energy Technologies EU, RES Technology Marketing Campaign. Pdf-tiedosto. Saatavissa: _Bioethanol_Production Use.pdf. Luettu Euroopan parlamentti Euroopan parlamentin päätöslauselma biomassaan ja biopolttoaineisiin sovellettavasta strategiasta. Www-dokumentti. Saatavissa: Euroopan parlamentti Euroopan parlamentin päätöslauselma ilmastonmuutoksesta. www-dokumentti. Saatavissa: Gautam, M, Martin II, D.W Combustion characteristics of higher-alcohol/gasoline blends. Pro. Inst. Mech.Engineers 214 A Hernoux, Audrey Preparation of bio-alcohols from residual wood. Tutkimusraportti. Keski-Pohjanmaan ammattikorkeakoulu. Julkaisematon. Isotalo, Kaija Puu- ja sellukemia. 3. uudistettu painos. Kemi. Kustantaja: Opetushallitus Juva, Jaakko Biopolttoaineet ja niiden käytön edistäminen liikenteessä. Pro seminaari. Helsingin yliopisto. Pdf-tiedosto. Saatavissa: Luettu: Neste Oil. Vuosikertomus Www-dokumentti. Saatavissa: Neste Oil Oyj. Pörssitiedote Www-dokumentti. Saatavissa: Pahkala, Katri Bioenergiaa pellolta. Maa- ja elintarviketalouden tutkimuskeskus MTT. Kasvintuotannon tutkimus. Pdf-tiedosto. Saatavissa:

31 27 Rantanen, Kalevi Millä tankkaat? Vai tankkaatko vähemmän? Artikkeli. Tiedelehti 9/2006. Saatavissa: St1. Lehdistötiedote St1 aloittaa bioetanolin tuotannon Lappeenrannassa. Pdf-tiedosto. Saatavissa: St1. Lehdistötiedote St1 aloittaa kotimaisen bioetanolin tuotannon VTT:n kehittämällä menetelmällä. Pdf-tiedosto. Saatavissa: Vasala, Antti Butanolin tuotto Clostridium-lajeilla. Suunnitelma. Oulun yliopisto. Julkaisematon. Yli-Kovero, Kristiina. Helsingin Sanomat Www-dokumentti. Luettu Saatavissa:

Biodiesel Tuotantomenetelmien kemiaa

Biodiesel Tuotantomenetelmien kemiaa Biodiesel Tuotantomenetelmien kemiaa Tuotantomenetelmät Kasviöljyjen vaihtoesteröinti Kasviöljyjen hydrogenointi Fischer-Tropsch-synteesi Kasviöljyt Rasvan kemiallinen rakenne Lähde: Malkki, Rypsiöljyn

Lisätiedot

Nesteen biodieselprosessi

Nesteen biodieselprosessi LAPPEENRANNAN TEKNILLINEN YLIOPISTO Kemiantekniikan osasto Teknillisen kemian laboratorio Ke3330000 Kemianteollisuuden prosessit Nesteen biodieselprosessi Tekijät: Sam Stade 0279555, Ke2 Jani Siitonen

Lisätiedot

Biopolttoaineet, niiden ominaisuudet ja käyttäytyminen maaperässä

Biopolttoaineet, niiden ominaisuudet ja käyttäytyminen maaperässä Biopolttoaineet, niiden ominaisuudet ja käyttäytyminen maaperässä Henrik Westerholm Neste Oil Ouj Tutkimus ja Teknologia Mutku päivät 30.-31.3.2011 Sisältö Uusiotuvat energialähteet Lainsäädäntö Biopolttoaineet

Lisätiedot

Matkalle PUHTAAMPAAN. maailmaan UPM BIOPOLTTOAINEET

Matkalle PUHTAAMPAAN. maailmaan UPM BIOPOLTTOAINEET Matkalle PUHTAAMPAAN maailmaan UPM BIOPOLTTOAINEET NYT TEHDÄÄN TEOLLISTA HISTORIAA Olet todistamassa ainutlaatuista tapahtumaa teollisuushistoriassa. Maailman ensimmäinen kaupallinen biojalostamo valmistaa

Lisätiedot

KEMIJÄRVEN SELLUTEHTAAN BIOJALOSTAMOVAIHTOEHDOT

KEMIJÄRVEN SELLUTEHTAAN BIOJALOSTAMOVAIHTOEHDOT KEMIJÄRVEN SELLUTEHTAAN BIOJALOSTAMOVAIHTOEHDOT Julkisuudessa on ollut esillä Kemijärven sellutehtaan muuttamiseksi biojalostamoksi. Tarkasteluissa täytyy muistaa, että tunnettujenkin tekniikkojen soveltaminen

Lisätiedot

Bioetanolia food waste to wood waste kestävän, hajautetun biopolttoainetuotannon kehityspolku

Bioetanolia food waste to wood waste kestävän, hajautetun biopolttoainetuotannon kehityspolku BIOJALOSTUKSEN INNOVAATIOPÄIVÄ 30.5.2013, Lappeenranta Bioetanolia food waste to wood waste kestävän, hajautetun biopolttoainetuotannon kehityspolku St1 Biofuels Oy Patrick Pitkänen Globaali energiahaaste

Lisätiedot

Matkalle puhtaampaan maailmaan. Jaakko Nousiainen, UPM Biopolttoaineet Puhdas liikenne Etelä-Karjalassa

Matkalle puhtaampaan maailmaan. Jaakko Nousiainen, UPM Biopolttoaineet Puhdas liikenne Etelä-Karjalassa Matkalle puhtaampaan maailmaan Jaakko Nousiainen, UPM Biopolttoaineet Puhdas liikenne Etelä-Karjalassa 30.1.2017 METSÄ ON TÄYNNÄ UUSIA MAHDOLLISUUKSIA Maailma muuttuu Rajalliset resurssit Globaalin talouden

Lisätiedot

Biopolttoaineiden ympäristövaikutuksista. Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät 3.12.2013

Biopolttoaineiden ympäristövaikutuksista. Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät 3.12.2013 Biopolttoaineiden ympäristövaikutuksista Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät 3.12.2013 Eikö ilmastovaikutus kerrokaan kaikkea? 2 Mistä ympäristövaikutuksien arvioinnissa

Lisätiedot

Suomi kehittyneiden biopolttoaineiden kärjessä UPM Lappeenrannan biojalostamo. Ilmansuojelupäivät 19.8.2015 Stefan Sundman UPM Sidosryhmäsuhteet

Suomi kehittyneiden biopolttoaineiden kärjessä UPM Lappeenrannan biojalostamo. Ilmansuojelupäivät 19.8.2015 Stefan Sundman UPM Sidosryhmäsuhteet Suomi kehittyneiden biopolttoaineiden kärjessä UPM Lappeenrannan biojalostamo Ilmansuojelupäivät 19.8.2015 Stefan Sundman UPM Sidosryhmäsuhteet METSÄ ON TÄYNNÄ UUSIA MAHDOLLISUUKSIA Maailma muuttuu Rajalliset

Lisätiedot

Jätteistä ja tähteistä kohti uusia raakaaineita

Jätteistä ja tähteistä kohti uusia raakaaineita Jätteistä ja tähteistä kohti uusia raakaaineita Tulevaisuuden liikennepolttoaineet teemapäivä 18.9.2014 Pekka Tuovinen Helsingin keskusta inversiotilanteessa Kuvattu 10.2.1999 Keilaniemestä itään 18.9.2014

Lisätiedot

2. Prosessikaavioiden yksityiskohtainen tarkastelu

2. Prosessikaavioiden yksityiskohtainen tarkastelu 2. Prosessikaavioiden yksityiskohtainen tarkastelu 2.1 Reaktorit Teolliset reaktorit voidaan toimintansa perusteella jakaa seuraavasti: panosreaktorit (batch) panosreaktorit (batch) 1 virtausreaktorit

Lisätiedot

Kehittyneet työkoneiden käyttövoimavaihtoehdot moottorinvalmistajan näkökulmasta. 10.09.2015 Pekka Hjon

Kehittyneet työkoneiden käyttövoimavaihtoehdot moottorinvalmistajan näkökulmasta. 10.09.2015 Pekka Hjon Kehittyneet työkoneiden käyttövoimavaihtoehdot moottorinvalmistajan näkökulmasta 10.09.2015 Pekka Hjon Agenda 1 Vallitseva tilanne maailmalla 2 Tulevaisuuden vaihtoehdot 3 Moottorinvalmistajan toiveet

Lisätiedot

Liikennepolttoaineet nyt ja tulevaisuudessa

Liikennepolttoaineet nyt ja tulevaisuudessa Liikennepolttoaineet nyt ja tulevaisuudessa Perinteiset polttoaineet eli Bensiini ja Diesel Kulutus maailmassa n. 4,9 biljoonaa litraa/vuosi. Kasvihuonekaasuista n. 20% liikenteestä. Ajoneuvoja n. 800

Lisätiedot

TEKNIIKKA. Dieselmoottorit jaetaan kahteen ryhmään: - Apukammiomoottoreihin - Suoraruiskutusmoottoreihin

TEKNIIKKA. Dieselmoottorit jaetaan kahteen ryhmään: - Apukammiomoottoreihin - Suoraruiskutusmoottoreihin TALOUDELLISUUS Dieselmoottori on vastaavaa ottomoottoria taloudellisempi vaihtoehto, koska tarvittava teho säädetään polttoaineen syöttömäärän avulla. Ottomoottorissa kuristetaan imuilman määrää kaasuläpän

Lisätiedot

Moottoritekniikan kehityssuuntia ja tulevaisuuden polttoaineet

Moottoritekniikan kehityssuuntia ja tulevaisuuden polttoaineet Moottoritekniikan kehityssuuntia ja tulevaisuuden polttoaineet Ari Juva, Neste Oil seminaari 4.11.2009 Source: Ben Knight, Honda, 2004 4.11.2009 Ari Juva 2 120 v 4.11.2009 Ari Juva 3 Auton kasvihuonekaasupäästöt

Lisätiedot

Etanolin tuotanto teollisuuden sivuvirroista ja biojätteistä. Kiertokapula juhlaseminaari St1Biofuels / Mika Anttonen 16.05.2013

Etanolin tuotanto teollisuuden sivuvirroista ja biojätteistä. Kiertokapula juhlaseminaari St1Biofuels / Mika Anttonen 16.05.2013 Etanolin tuotanto teollisuuden sivuvirroista ja biojätteistä Kiertokapula juhlaseminaari St1Biofuels / Mika Anttonen 16.05.2013 Globaali energiahaaste Maailma vuonna 2030... Source: BP 2012, Energy Outlook

Lisätiedot

Onko puuta runsaasti käyttävä biojalostamo mahdollinen Suomessa?

Onko puuta runsaasti käyttävä biojalostamo mahdollinen Suomessa? Onko puuta runsaasti käyttävä biojalostamo mahdollinen Suomessa? Hallituksen puheenjohtaja Pöyry Forest Industry Consulting Miksi bioenergian tuotantoa tutkitaan ja kehitetään kiivaasti? Perinteisten fossiilisten

Lisätiedot

Metsäbiojalostamot. Energia-lehti 7/2006: "Biojalostamo pelastaa" "Kaasutuksessa muhii miljardibisnes" Metsätehon seminaari Helsinki, 17.3.

Metsäbiojalostamot. Energia-lehti 7/2006: Biojalostamo pelastaa Kaasutuksessa muhii miljardibisnes Metsätehon seminaari Helsinki, 17.3. Metsäbiojalostamot Energia-lehti 7/2006: "Biojalostamo pelastaa" "Kaasutuksessa muhii miljardibisnes" Metsätehon seminaari Helsinki, 17.3.2009 Klaus Niemelä 1 Metsäbiojalostamoista Mistä oikein on kysymys

Lisätiedot

Nestemäiset biopolttoaineet fossiilisten korvaajana. Ville Vauhkonen, UPM Biopolttoaineet Uudistuva liikenne - seminaari

Nestemäiset biopolttoaineet fossiilisten korvaajana. Ville Vauhkonen, UPM Biopolttoaineet Uudistuva liikenne - seminaari Nestemäiset biopolttoaineet fossiilisten korvaajana Ville Vauhkonen, UPM Biopolttoaineet Uudistuva liikenne - seminaari 4.4.2017 UPM BIOPOLTTOAINEET Biopolttoainekonseptit 1. sukupolven perinteiset biopolttoaineet

Lisätiedot

SPV - Katsastajien neuvottelupäivät 18.10.2014

SPV - Katsastajien neuvottelupäivät 18.10.2014 SPV - Katsastajien neuvottelupäivät 18.10.2014 Energiahaaste St1 yhtiönä Polttoaineista Biopolttoaineista Taudeista ja hoidoista Energiayhtiö St1 Johtava CO 2 -hyvän energian valmistaja ja myyjä Tavoitteemme

Lisätiedot

Biokaasun tuotanto tuo työpaikkoja Suomeen

Biokaasun tuotanto tuo työpaikkoja Suomeen BIOKAASUA METSÄSTÄ Biokaasun tuotanto tuo työpaikkoja Suomeen KOTIMAINEN Puupohjainen biokaasu on kotimaista energiaa. Raaka-aineen hankinta, kaasun tuotanto ja käyttö tapahtuvat kaikki maamme rajojen

Lisätiedot

Biodieselin (RME) pientuotanto

Biodieselin (RME) pientuotanto Biokaasu ja biodiesel uusia mahdollisuuksia maatalouteen Laukaa, 15.11.2007 Biodieselin (RME) pientuotanto Pekka Äänismaa Jyväskylän ammattikorkeakoulu, Bioenergiakeskus BDC 1 Pekka Äänismaa Biodieselin

Lisätiedot

Powered by UPM BioVerno

Powered by UPM BioVerno Powered by UPM BioVerno vähäpäästöistä suomalaista dieseliä ja naftaa www.upmbiopolttoaineet.fi UPM Biopolttoaineet Alvar Aallon katu 1 PL 380 00101 Helsinki Finland Puh: +358 2041 5111 Sähköposti: biofuels@upm.com

Lisätiedot

Puun uudet käyttömuodot Vastuullinen metsien käyttö kasvavia odotuksia ja uusia mahdollisuuksia. 20.3.2013 Pia Nilsson, UPM

Puun uudet käyttömuodot Vastuullinen metsien käyttö kasvavia odotuksia ja uusia mahdollisuuksia. 20.3.2013 Pia Nilsson, UPM Puun uudet käyttömuodot Vastuullinen metsien käyttö kasvavia odotuksia ja uusia mahdollisuuksia 20.3.2013 Pia Nilsson, UPM Visio The Biofore Company UPM yhdistää bio- ja metsäteollisuuden ja rakentaa uutta,

Lisätiedot

Uusiutuvan energian tuotanto haasteet ja mahdollisuudet. Ulla Lassi

Uusiutuvan energian tuotanto haasteet ja mahdollisuudet. Ulla Lassi Uusiutuvan energian tuotanto haasteet ja mahdollisuudet Ulla Lassi EnePro seminaari 3.6.2009 Aurinkoenergian hyödyntäminen Auringonvalo Energian talteenotto, sähkö BIOENERGIA Bioenergiaraaka-aineet

Lisätiedot

TOISEN SUKUPOLVEN BIOPOLTTONESTEET

TOISEN SUKUPOLVEN BIOPOLTTONESTEET TOISEN SUKUPOLVEN BIOPOLTTONESTEET BioRefine loppuseminaari 27.11.2012 Marina Congress Center Pekka Jokela Manager, Technology Development UPM BIOPOLTTOAINEET Puusta on moneksi liiketoiminnaksi Kuidut

Lisätiedot

BioGTS Biojalostamo - Jätteestä paras tuotto

BioGTS Biojalostamo - Jätteestä paras tuotto BioGTS Biojalostamo - Jätteestä paras tuotto BioGTS Biojalostamo Biohajoavista jätteistä uusiutuvaa energiaa, liikenteen biopolttoaineita, kierrätysravinteita ja kemikaaleja kustannustehokkaasti hajautettuna

Lisätiedot

Kaasutus tulevaisuuden teknologiana haasteita ja mahdollisuuksia

Kaasutus tulevaisuuden teknologiana haasteita ja mahdollisuuksia Kaasutus tulevaisuuden teknologiana haasteita ja mahdollisuuksia Prof. Ulla Lassi, Jyväskylän yliopisto, Kokkolan yliopistokeskus Chydenius Kokkola 24.2.2011 24.2.2011 1 HighBio-hanke Päärahoittaja: EU

Lisätiedot

BIOENERGIAN KÄYTÖN LISÄÄNTYMISEN VAIKUTUS YHTEISKUNTAAN JA YMPÄRISTÖÖN VUOTEEN 2025 MENNESSÄ 12.12.2006

BIOENERGIAN KÄYTÖN LISÄÄNTYMISEN VAIKUTUS YHTEISKUNTAAN JA YMPÄRISTÖÖN VUOTEEN 2025 MENNESSÄ 12.12.2006 BIOENERGIAN KÄYTÖN LISÄÄNTYMISEN VAIKUTUS YHTEISKUNTAAN JA YMPÄRISTÖÖN VUOTEEN 2025 MENNESSÄ BIOENERGIAN KÄYTÖN LISÄÄNTYMISEN VAIKUTUS VUOTEEN 2025 MENNESSÄ Lappeenrannan teknillisessä yliopistossa on

Lisätiedot

METSÄN UUDET MAHDOLLISUUDET UPM BIOFORE YHTIÖ. ProSuomi-projektin päätösseminari 16.11.2012, Juuso Konttinen

METSÄN UUDET MAHDOLLISUUDET UPM BIOFORE YHTIÖ. ProSuomi-projektin päätösseminari 16.11.2012, Juuso Konttinen UPM BIOFORE YHTIÖ ProSuomi-projektin päätösseminari 16.11.2012, Juuso Konttinen AGENDA 1. UPM BIOFORE YHTIÖ 2. UUSI METSÄTEOLLISUUS 3. UUDET MAHDOLLISUUDET AGENDA 1. UPM BIOFORE YHTIÖ 2. UUSI METSÄTEOLLISUUS

Lisätiedot

Liikenteen vaihtoehtoiset polttoaineet

Liikenteen vaihtoehtoiset polttoaineet Liikenteen vaihtoehtoiset polttoaineet Kimmo Klemola Yliassistentti, teknillinen kemia, Lappeenrannan teknillinen yliopisto Kaakkois-Suomen kemistiseuran öljyhuippu- ja bioenergiailta, Lappeenrannan teknillinen

Lisätiedot

Neste Oilin Biopolttoaineet

Neste Oilin Biopolttoaineet Neste Oilin Biopolttoaineet Ari Juva Neste Oil Oyj ari.juva@nesteoil.com 1 Miksi biopolttoaineita liikenteeseen? Tuontiriippuvuuden vähentäminen Kasvihuonekaasujen vähentäminen Energiasektoreista vain

Lisätiedot

Nestepienmoottoribensiini

Nestepienmoottoribensiini Nestepienmoottoribensiini Lehdistömateriaali 4.7.2012 Viestintäpäällikkö Silja Metsola, puh. 050 458 5104 Sisältö 1. Neste-pienmoottoribensiini korkealaatuinen erikoistuote 2. Parempi ja turvallisempi

Lisätiedot

TransEco -tutkimusohjelma 2009 2013

TransEco -tutkimusohjelma 2009 2013 TransEco -tutkimusohjelma 2009 2013 Vuosiseminaari Ari Juva RED dir. 2009/28/EC: EU polttoainedirektiivit ohjaavat kehitystä Uusiutuva energia (polttoaine + sähkö) liikenteessä min.10% 2020 Suomen tavoite

Lisätiedot

Liikenteen biopolttoaineet

Liikenteen biopolttoaineet Liikenteen biopolttoaineet Jäte- ja tähdepohjaisen uusiutuvan dieselin ilmastohyödyt Pekka Tuovinen Using advanced refinery technologies 3 15 November 2018 Uusiutuvat tuotteet TUOTANTOKAPASITEETTI: 2,7

Lisätiedot

Synteesikaasuun pohjautuvat 2G-tuotantovaihtoehdot ja niiden aiheuttamat päästövähenemät

Synteesikaasuun pohjautuvat 2G-tuotantovaihtoehdot ja niiden aiheuttamat päästövähenemät Synteesikaasuun pohjautuvat 2G-tuotantovaihtoehdot ja niiden aiheuttamat päästövähenemät 2G 2020 BIOFUELS PROJEKTIN SEMINAARI Ilkka Hannula, VTT Arvioidut kokonaishyötysuhteet * 2 Leijukerroskaasutus,

Lisätiedot

Prof Magnus Gustafsson PBI Research Institute

Prof Magnus Gustafsson PBI Research Institute Biokaasun hyödyntäminen liikenteessä Prof Magnus Gustafsson PBI Research Institute Kaasuautojen Edellytykset Suomessa Kaasukäyttöiset autot muodostavat varteenotettavan vaihtoehdon. Päästöt ovat huomattavan

Lisätiedot

Pohjois-Karjalan Bioenergiastrategia 2006-2015

Pohjois-Karjalan Bioenergiastrategia 2006-2015 Pohjois-Karjalan Bioenergiastrategia 2006-2015 Bioenergian tulevaisuus Itä-Suomessa Joensuu 12.12.2006 Timo Tahvanainen - Metsäntutkimuslaitos (Metla) Eteneminen: - laajapohjainen valmistelutyö 2006 -

Lisätiedot

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe Kemian koe kurssi KE5 Reaktiot ja tasapaino koe 1.4.017 Tee kuusi tehtävää. 1. Tämä tehtävä koostuu kuudesta monivalintaosiosta, joista jokaiseen on yksi oikea vastausvaihtoehto. Kirjaa vastaukseksi numero-kirjainyhdistelmä

Lisätiedot

AJONEUVOTEKNIIKAN KEHITTYMINEN JA UUSIEN ENERGIAMUOTOJEN SOVELTUMINEN SÄILIÖKULJETUKSIIN. Mika Jukkara, Tuotepäällikkö / Scania Suomi Oy

AJONEUVOTEKNIIKAN KEHITTYMINEN JA UUSIEN ENERGIAMUOTOJEN SOVELTUMINEN SÄILIÖKULJETUKSIIN. Mika Jukkara, Tuotepäällikkö / Scania Suomi Oy AJONEUVOTEKNIIKAN KEHITTYMINEN JA UUSIEN ENERGIAMUOTOJEN SOVELTUMINEN SÄILIÖKULJETUKSIIN Mika Jukkara, Tuotepäällikkö / Scania Suomi Oy Scania Vabis Chassis 1930 Liikenteen rooli kestävässä kehityksessä

Lisätiedot

Korkeaseosteiset biokomponentit henkilöautojen polttoaineisiin muut kuin etanoli

Korkeaseosteiset biokomponentit henkilöautojen polttoaineisiin muut kuin etanoli TRANSECO: Henkilöautokaluston 2. sukupolven biopolttoainevaihtoehdot ja 2020 toimintamallit Korkeaseosteiset biokomponentit henkilöautojen polttoaineisiin muut kuin etanoli TransEco tutkijaseminaari 18.11.2010

Lisätiedot

Puun monipuolinen jalostus on ratkaisu ympäristökysymyksiin

Puun monipuolinen jalostus on ratkaisu ympäristökysymyksiin Puun monipuolinen jalostus on ratkaisu ympäristökysymyksiin Metsätieteen päivät Metsäteollisuus ry 2 Maailman metsät ovat kestävästi hoidettuina ja käytettyinä ehtymätön luonnonvara Metsien peittävyys

Lisätiedot

Tulevaisuuden biopolttoaine valmistetaan puusta

Tulevaisuuden biopolttoaine valmistetaan puusta Tulevaisuuden biopolttoaine valmistetaan puusta PÄÄTTÄJIEN 34. METSÄAKATEMIA Maastojakso 22.-24.5.2013 Jaakko Nousiainen/UPM Biopolttoaineet SISÄLTÖ 1. Kestävä perusta Biofore 2. Uudistu rohkeasti BioVerno

Lisätiedot

Pyrolyysiöljy osana ympäristöystävällistä sähkön ja kaukolämmön tuotantoa. Kasperi Karhapää 15.10.2012

Pyrolyysiöljy osana ympäristöystävällistä sähkön ja kaukolämmön tuotantoa. Kasperi Karhapää 15.10.2012 Pyrolyysiöljy osana ympäristöystävällistä sähkön ja kaukolämmön tuotantoa Kasperi Karhapää 15.10.2012 2 Heat / Kasperi Karhapää Fortum ja biopolttoaineet Energiatehokas yhdistetty sähkön- ja lämmöntuotanto

Lisätiedot

Jussi Klemola 3D- KEITTIÖSUUNNITTELUOHJELMAN KÄYTTÖÖNOTTO

Jussi Klemola 3D- KEITTIÖSUUNNITTELUOHJELMAN KÄYTTÖÖNOTTO Jussi Klemola 3D- KEITTIÖSUUNNITTELUOHJELMAN KÄYTTÖÖNOTTO Opinnäytetyö KESKI-POHJANMAAN AMMATTIKORKEAKOULU Puutekniikan koulutusohjelma Toukokuu 2009 TIIVISTELMÄ OPINNÄYTETYÖSTÄ Yksikkö Aika Ylivieska

Lisätiedot

EU vaatii kansalaisiltaan nykyisen elämänmuodon täydellistä viherpesua.

EU vaatii kansalaisiltaan nykyisen elämänmuodon täydellistä viherpesua. EU vaatii kansalaisiltaan nykyisen elämänmuodon täydellistä viherpesua. Se asettaa itselleen energiatavoitteita, joiden perusteella jäsenmaissa joudutaan kerta kaikkiaan luopumaan kertakäyttöyhteiskunnan

Lisätiedot

Neste palvelee taksiyrittäjää

Neste palvelee taksiyrittäjää Neste palvelee taksiyrittäjää tuotteet - palvelut Neste Marketing & Services www.neste.fi Neste tarjoaa taksiyrittäjälle Asiakaskohtaiset ratkaisut Korkealaatuiset tuotteet Kattavin verkosto Nopea ja miellyttävin

Lisätiedot

UPM BIOPOLTTOAINEET Puupohjaisisten biopolttoaineiden edelläkävijä

UPM BIOPOLTTOAINEET Puupohjaisisten biopolttoaineiden edelläkävijä UPM BIOPOLTTOAINEET Puupohjaisisten biopolttoaineiden edelläkävijä Teollisuuden metsänhoitajien syysseminaari 2014, 06.11.2014 Sari Mannonen/UPM Biopolttoaineet UPM tänään The Biofore Company UPM Biorefining

Lisätiedot

MIHIN PANOSTAA JÄTEHUOLLON PÄÄTÖKSENTEOSSA? Mari Hupponen Tutkija Lappeenrannan teknillinen yliopisto

MIHIN PANOSTAA JÄTEHUOLLON PÄÄTÖKSENTEOSSA? Mari Hupponen Tutkija Lappeenrannan teknillinen yliopisto MIHIN PANOSTAA JÄTEHUOLLON PÄÄTÖKSENTEOSSA? Mari Hupponen Tutkija Lappeenrannan teknillinen yliopisto TAUSTA Yhdyskuntajätteen kaatopaikkasijoitusta halutaan vähentää Energiahyötykäyttö lisääntynyt Orgaanisen

Lisätiedot

Ratkaisuja hajautettuun energiantuotantoon

Ratkaisuja hajautettuun energiantuotantoon Ratkaisuja hajautettuun energiantuotantoon Maa- ja elintarviketalouden tutkimuskeskus MTT on Suomen johtava ruokajärjestelmän vastuullisuutta, kilpailukykyä ja luonnonvarojen kestävää hyödyntämistä kehittävä

Lisätiedot

Puun kaskadikäyttö Suomessa. Energia 2016 messut Tampere Kati Koponen, VTT

Puun kaskadikäyttö Suomessa. Energia 2016 messut Tampere Kati Koponen, VTT Puun kaskadikäyttö Suomessa Energia 2016 messut Tampere 26.10. Kati Koponen, VTT Sisältö Miksi kaskadikäytöstä keskustellaan? Mitä kaskadikäytöllä tarkoitetaan? Kaskadikäyttö Euroopassa Suomen erityispiirteitä

Lisätiedot

BiKa-hanke Viitasaaren työpaja Uusiutuvan energian direktiivi REDII ehdotus

BiKa-hanke Viitasaaren työpaja Uusiutuvan energian direktiivi REDII ehdotus BiKa-hanke Viitasaaren työpaja 27.3.2018 Uusiutuvan energian direktiivi REDII ehdotus Saija Rasi, Luonnonvarakeskus Biokaasuliiketoimintaa ja -verkostoja Keski-Suomeen, 1.3.2016 30.4.2018 29.3.201 RED

Lisätiedot

Refuel RE85 Refuel RED95 Etanolipolttoaineet. Jari Suominen jari.suominen@st1.fi +358 50 595 6780

Refuel RE85 Refuel RED95 Etanolipolttoaineet. Jari Suominen jari.suominen@st1.fi +358 50 595 6780 Refuel RE85 Refuel RED95 Etanolipolttoaineet Jari Suominen jari.suominen@st1.fi +358 50 595 6780 Päästötavoitteet laskevat kulutusta Teoreettinen be kulutus vs 700/400 milj litran etanolivolyymi 140 Emissions,

Lisätiedot

Puuperusteisten energiateknologioiden kehitysnäkymät. Metsäenergian kehitysnäkymät Suomessa seminaari Suomenlinna 25.3.2010 Tuula Mäkinen, VTT

Puuperusteisten energiateknologioiden kehitysnäkymät. Metsäenergian kehitysnäkymät Suomessa seminaari Suomenlinna 25.3.2010 Tuula Mäkinen, VTT Puuperusteisten energiateknologioiden kehitysnäkymät Metsäenergian kehitysnäkymät Suomessa seminaari Suomenlinna 25.3.2010 Tuula Mäkinen, VTT 2 Bioenergian nykykäyttö 2008 Uusiutuvaa energiaa 25 % kokonaisenergian

Lisätiedot

Liikenteen polttoaineet - Riittääkö pelloilta tankin täytteeksi?

Liikenteen polttoaineet - Riittääkö pelloilta tankin täytteeksi? Liikenteen polttoaineet - Riittääkö pelloilta tankin täytteeksi? Lappeenrannan teknillinen yliopisto Biodieselin tuotannon koulutus 30-31.03.2006 Hämeen ammattikorkeakoulu Mustiala Tieliikenteen polttoaineet

Lisätiedot

Energian tuotanto haasteita ja mahdollisuuksia Pohjois- Suomessa. Pekka Tynjälä Ulla Lassi

Energian tuotanto haasteita ja mahdollisuuksia Pohjois- Suomessa. Pekka Tynjälä Ulla Lassi Energian tuotanto haasteita ja mahdollisuuksia Pohjois- Suomessa Pekka Tynjälä Ulla Lassi Pohjois-Suomen suuralueseminaari 9.6.2009 Johdanto Mahdollisuuksia *Uusiutuvan energian tuotanto (erityisesti metsäbiomassan

Lisätiedot

UPM THE BIOFORE COMPANY

UPM THE BIOFORE COMPANY UPM THE BIOFORE COMPANY Liikenteen biopolttoaineet Veikko Viikari 8.2.2017 Esityksen sisältö 01 02 03 UPM YRITYKSENÄ LIIKENTEEN BIOPOLTTOAINEET METSÄ RAAKA-AINELÄHTEENÄ Veikko Viikari Biofuels development

Lisätiedot

Biotalouden uudet tuotteet

Biotalouden uudet tuotteet Biotalouden uudet tuotteet Prof. Olli Dahl Aalto-yliopisto Kemiantekniikan korkeakoulu Puunjalostustekniikan laitos PL 16300, 00076 Aalto Vuorimiehentie 1, Espoo p. +358 40 5401070 Sisältö Puun kemiallinen

Lisätiedot

Metsäbiojalostamoinvestointien kannattavuus eri politiikkavaihtoehdoissa: Alustavia tuloksia

Metsäbiojalostamoinvestointien kannattavuus eri politiikkavaihtoehdoissa: Alustavia tuloksia Metsäbiojalostamoinvestointien kannattavuus eri politiikkavaihtoehdoissa: Alustavia tuloksia Hanna-Liisa Kangas ja Jussi Lintunen, & Pohjola, J., Hetemäki, L. & Uusivuori, J. Metsäenergian kehitysnäkymät

Lisätiedot

Tulevaisuuden polttoaineet kemianteollisuuden näkökulmasta. Kokkola Material Week 2016 Timo Leppä

Tulevaisuuden polttoaineet kemianteollisuuden näkökulmasta. Kokkola Material Week 2016 Timo Leppä Tulevaisuuden polttoaineet kemianteollisuuden näkökulmasta Kokkola Material Week 2016 Timo Leppä 1 Mikä ajaa liikenteen muutosta EU:ssa? 2 Kohti vuotta 2020 Optimoidut diesel- ja bensiinimoottorit vastaavat

Lisätiedot

Sellutehdas biojalostamona Jukka Kilpeläinen, tutkimus- ja kehitysjohtaja, Stora Enso Oyj 28.11.2007 Biotekniikka kansaa palvelemaan yleisötilaisuus

Sellutehdas biojalostamona Jukka Kilpeläinen, tutkimus- ja kehitysjohtaja, Stora Enso Oyj 28.11.2007 Biotekniikka kansaa palvelemaan yleisötilaisuus Sellutehdas biojalostamona Jukka Kilpeläinen, tutkimus- ja kehitysjohtaja, Stora Enso Oyj 28.11.2007 Biotekniikka kansaa palvelemaan yleisötilaisuus Porthaniassa Sellutehdas biojalostamona Tausta Sellu-

Lisätiedot

Puun (metsäbiomassan) käyttö nyt ja tulevaisuudessa

Puun (metsäbiomassan) käyttö nyt ja tulevaisuudessa Puun (metsäbiomassan) käyttö nyt ja tulevaisuudessa Olli Dahl, alto yliopisto, Kemiantekniikan korkeakoulu, Puunjalostustekniikan laitos, Espoo Bioreducer-seminaari Oulussa 19.9.2013 Sisällys Metsäbiomassan

Lisätiedot

joutsenmerkityt takat

joutsenmerkityt takat joutsenmerkityt takat tulevaisuus luodaan nyt Pohjoismaisen Joutsen-ympäristömerkin tavoitteena on auttaa kuluttajaa valitsemaan vähiten ympäristöä kuormittava tuote. Palvelulle tai tuotteelle myönnettävän

Lisätiedot

Influence of nano-sized catalysts on pyrolysis of plastic waste (PYROL) Tausta

Influence of nano-sized catalysts on pyrolysis of plastic waste (PYROL) Tausta Influence of nano-sized catalysts on pyrolysis of plastic waste (PYROL) Tausta Polymeerien (muovijäte ym.) hajottaminen katalyyttisen pyrolyysin avulla oligomeereiksi pyrolyysituotteiden hyödyntäminen

Lisätiedot

Uusi ejektoripohjainen hiilidioksidin talteenotto-menetelmä. BioCO 2 -projektin loppuseminaari elokuuta 2018, Jyväskylä.

Uusi ejektoripohjainen hiilidioksidin talteenotto-menetelmä. BioCO 2 -projektin loppuseminaari elokuuta 2018, Jyväskylä. Uusi ejektoripohjainen hiilidioksidin talteenotto-menetelmä BioCO 2 -projektin loppuseminaari - 30. elokuuta 2018, Jyväskylä Kristian Melin Esityksen sisältö Haasteet CO 2 erotuksessa Mitä uutta ejektorimenetelmässä

Lisätiedot

Biopolttoaineille haasteelliset tavoitteet. Uusiutuvan energian ajankohtaispäivä Tekninen asiantuntija Mari Tenhovirta

Biopolttoaineille haasteelliset tavoitteet. Uusiutuvan energian ajankohtaispäivä Tekninen asiantuntija Mari Tenhovirta Biopolttoaineille haasteelliset tavoitteet Uusiutuvan energian ajankohtaispäivä 22.1.2019 Tekninen asiantuntija Mari Tenhovirta Liikenteen päästöt Suomessa Liikenne tuottaa n. 20 % kaikista kasvihuonekaasupäästöistä

Lisätiedot

Uusia mahdollisuuksia suuren ja pienen yhteistyöstä

Uusia mahdollisuuksia suuren ja pienen yhteistyöstä Uusia mahdollisuuksia suuren ja pienen yhteistyöstä Olli Laitinen Metsäliitto Puunhankinta 1 2 3 Edistämme kestävän kehityksen mukaista tulevaisuutta Tuotteidemme pääraaka-aine on kestävästi hoidetuissa

Lisätiedot

Metsähyvinvoinnin kehitysohjelman ajankohtaistapahtuma 18.11.2014 Biotalous tehdään yhteistyöllä. Sixten Sunabacka Työ- ja elinkeinoministeriö

Metsähyvinvoinnin kehitysohjelman ajankohtaistapahtuma 18.11.2014 Biotalous tehdään yhteistyöllä. Sixten Sunabacka Työ- ja elinkeinoministeriö Metsähyvinvoinnin kehitysohjelman ajankohtaistapahtuma Biotalous tehdään yhteistyöllä Sixten Sunabacka Työ- ja elinkeinoministeriö www.biotalous.fi Aiheet: 1. Biotalous ja hyvinvointi 2. Biotalous ja yhteistyö

Lisätiedot

Suomen metsäbiotalouden tulevaisuus

Suomen metsäbiotalouden tulevaisuus Suomen metsäbiotalouden tulevaisuus Puumarkkinapäivät Reima Sutinen Työ- ja elinkeinoministeriö www.biotalous.fi Biotalous on talouden seuraava aalto BKT ja Hyvinvointi Fossiilitalous Luontaistalous Biotalous:

Lisätiedot

Luonnonkaasuratkaisuilla puhtaampaan huomiseen

Luonnonkaasuratkaisuilla puhtaampaan huomiseen Luonnonkaasuratkaisuilla puhtaampaan huomiseen Kaasun käytön valvojien neuvottelupäivät Maakaasun käyttäjäpäivät 13.14.9.2011, Tallinna Gasum Oy, Liikennepalvelut, Liiketoimintayksikön päällikkö Jussi

Lisätiedot

1 Tehtävät. 2 Teoria. rauta(ii)ioneiksi ja rauta(ii)ionien hapettaminen kaliumpermanganaattiliuoksella.

1 Tehtävät. 2 Teoria. rauta(ii)ioneiksi ja rauta(ii)ionien hapettaminen kaliumpermanganaattiliuoksella. 1 Tehtävät Edellisellä työkerralla oli valmistettu rauta(ii)oksalaattia epäorgaanisen synteesin avulla. Tätä sakkaa tarkasteltiin seuraavalla kerralla. Tällä työ kerralla ensin valmistettiin kaliumpermanganaatti-

Lisätiedot

BJ90A1000 Luonnonvarat ja niiden prosessointi kemianja energiateollisuudessa 3 op

BJ90A1000 Luonnonvarat ja niiden prosessointi kemianja energiateollisuudessa 3 op BJ90A1000 Luonnonvarat ja niiden prosessointi kemianja energiateollisuudessa 3 op Luennoitsija: Yliassistentti Kimmo Klemola Luennot ja seminaarit 2011: 3. periodi, pe klo 10 13, 7339 4. periodi ke klo

Lisätiedot

Puuhiilen tuotanto Suomessa mahdollisuudet ja haasteet

Puuhiilen tuotanto Suomessa mahdollisuudet ja haasteet Puuhiilen tuotanto Suomessa mahdollisuudet ja haasteet BalBic, Bioenergian ja teollisen puuhiilen tuotannon kehittäminen aloitusseminaari 9.2.2012 Malmitalo Matti Virkkunen, Martti Flyktman ja Jyrki Raitila,

Lisätiedot

Mitä polttoaineita moottoreihin tulevaisuudessa?

Mitä polttoaineita moottoreihin tulevaisuudessa? Mitä polttoaineita moottoreihin tulevaisuudessa? Energian käyttö ja säästö maataloudessa Helsingin yliopisto, Maataloustieteiden laitos Seppo Mikkonen Neste Oil seppo.mikkonen@nesteoil.com Monenlaisia

Lisätiedot

BIOETANOLIN TUOTANTO

BIOETANOLIN TUOTANTO Kemiantekniikan osasto Teknillisen kemian laboratorio 050414000 Kemiateollisuuden prosessit BIOETANOLIN TUOTANTO Tekijät: Taneli Kiviranta, tuta 2 Ville Siitonen, tuta 2 31.03.2005 Sisällysluettelo 1 Johdanto...2

Lisätiedot

Lahti Energian uusi voimalaitos KYMIJÄRVI II. Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy

Lahti Energian uusi voimalaitos KYMIJÄRVI II. Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy Lahti Energian uusi voimalaitos KYMIJÄRVI II Jaana Lehtovirta Viestintäjohtaja Lahti Energia Oy Miksi voimalaitos on rakennettu? Lahti Energialla on hyvät kokemukset yli 12 vuotta hiilivoimalan yhteydessä

Lisätiedot

Aate Laukkanen Suomen Bioetanoli Oy

Aate Laukkanen Suomen Bioetanoli Oy Aate Laukkanen Suomen Bioetanoli Oy Bioetanoli liikennepolttoaineena RES - direktiivi (artikla 3(4)): uusiutuvien energialähteiden osuus liikenteen energiankulutuksesta koko EU:ssa 10 % vuoteen 2020 mennessä

Lisätiedot

Suomestako öljyvaltio? Kari Liukko

Suomestako öljyvaltio? Kari Liukko Päättäjien Metsäakatemia Kurssi 34 Maastojakso 22.-24.5 2013 Suomestako öljyvaltio? Kari Liukko Öljyn hinta, vaihtotase, työllisyys, rikkidirektiivi TE 3.5.-13 TE 3.5.-13 TE 26.4.-13 KL 21.8.-12 2 PMA

Lisätiedot

Voimalaitoksen vesikemian yleiset tavoitteet ja peruskäsitteitä

Voimalaitoksen vesikemian yleiset tavoitteet ja peruskäsitteitä Voimalaitoksen vesikemian yleiset tavoitteet ja peruskäsitteitä Susanna Vähäsarja ÅF-Consult 4.2.2016 1 Sisältö Vedenkäsittelyn vaatimukset Mitä voimalaitoksen vesikemialla tarkoitetaan? Voimalaitosten

Lisätiedot

Kehittyneet keskitisleet moottorikäyttöön Diesel- ja moottoripolttoöljyt. Teollisuuden polttonesteet - Tampere Matti Pentti St1 oy

Kehittyneet keskitisleet moottorikäyttöön Diesel- ja moottoripolttoöljyt. Teollisuuden polttonesteet - Tampere Matti Pentti St1 oy Kehittyneet keskitisleet moottorikäyttöön Diesel- ja moottoripolttoöljyt Teollisuuden polttonesteet - Tampere Matti Pentti St1 oy 1 9/7/2015 Maailmantalous ja energia Population Primary energy GDP Kärkihanke

Lisätiedot

Öljyhuippu- ja bioenergiailta 25.04.07. Yhdyskuntien ja teollisuuden sivuainevirtojen ja biomassan hyödyntäminen sähköksi ja lämmöksi

Öljyhuippu- ja bioenergiailta 25.04.07. Yhdyskuntien ja teollisuuden sivuainevirtojen ja biomassan hyödyntäminen sähköksi ja lämmöksi Öljyhuippu- ja bioenergiailta 25.04.07 Yhdyskuntien ja teollisuuden sivuainevirtojen ja biomassan hyödyntäminen sähköksi ja lämmöksi Esa Marttila, LTY, ympäristötekniikka Jätteiden kertymät ja käsittely

Lisätiedot

5 LIUOKSEN PITOISUUS Lisätehtävät

5 LIUOKSEN PITOISUUS Lisätehtävät LIUOKSEN PITOISUUS Lisätehtävät Esimerkki 1. a) 100 ml:ssa suolaista merivettä on keskimäärin 2,7 g NaCl:a. Mikä on meriveden NaCl-pitoisuus ilmoitettuna molaarisuutena? b) Suolaisen meriveden MgCl 2 -pitoisuus

Lisätiedot

Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut

Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut Energiajärjestelmän haasteet ja liikenteen uudet ratkaisut Vihreä moottoritie foorumi 18.8.2010, Fortum, Espoo Petra Lundström Vice President, CTO Fortum Oyj Kolme valtavaa haastetta Energian kysynnän

Lisätiedot

BIOMASSAN ESIKÄSITTELYN MERKITYS BIOMASSA ARVOKETJUSSA. Jana Holm

BIOMASSAN ESIKÄSITTELYN MERKITYS BIOMASSA ARVOKETJUSSA. Jana Holm BIOMASSAN ESIKÄSITTELYN MERKITYS BIOMASSA ARVOKETJUSSA Jana Holm 8.4.2014 Lähtötilanne Biotaloudessa keskeisiä globaaleja haasteita ovat: Kasvava energian tarve Vähenevät fossiiliset öljyvarannot Tarve

Lisätiedot

TULEVAISUUDEN BIOENERGIARATKAISUT, TBE

TULEVAISUUDEN BIOENERGIARATKAISUT, TBE TULEVAISUUDEN BIOENERGIARATKAISUT, TBE TAVOITE Keskeinen TBE-tavoite on ollut löytää uusia potentiaalisia, mielellään isoja bioenergian tuotanto- ja käyttömuotoja Koillismaan hyödyntämättömälle nuorien

Lisätiedot

Scanchips. Bioetanolitehdashanke

Scanchips. Bioetanolitehdashanke Scanchips Bioetanolitehdashanke Hankkeen taustaa Ylivieskan seutukunta Ry käynnisti 1.10.2011 LOGIBIO- Biojalostamon raaka-aineiden hankintatoiminnan kannattavuus- ja käynnistämisselvityksen. Hankkeessa

Lisätiedot

Tervetuloa. Polttoainelinjaston huolto, nykyaikaiset polttoaineet ongelmineen

Tervetuloa. Polttoainelinjaston huolto, nykyaikaiset polttoaineet ongelmineen Tervetuloa Polttoainelinjaston huolto, nykyaikaiset polttoaineet ongelmineen Koneiden yleisimmin käyttämät polttoaineet Diesel Bensiini 2T Bensiini Diesel ja Bensiini Suomessa ja EU:ssa (muuta ei saatavana)

Lisätiedot

BIOMUOVIA TÄRKKELYKSESTÄ

BIOMUOVIA TÄRKKELYKSESTÄ BIOMUOVIA TÄRKKELYKSESTÄ KOHDERYHMÄ: Soveltuu peruskoulun 9.luokan kemian osioon Orgaaninen kemia. KESTO: 45 60 min. Kemian opetuksen keskus MOTIVAATIO: Muovituotteet kerääntyvät helposti luontoon ja saastuttavat

Lisätiedot

Liikenteen ilmastopolitiikan työryhmän väliraportti (syyskuu 2018)

Liikenteen ilmastopolitiikan työryhmän väliraportti (syyskuu 2018) Liikenteen ilmastopolitiikan työryhmän väliraportti (syyskuu 2018) Liikenteen ilmastopolitiikan työryhmä 12.4. 12.12.2018 Selvitetään ja arvioidaan keinoja, joilla liikenteen kasvihuonekaasupäästöt voidaan

Lisätiedot

Biometaanin tuotannon ja käytön ympäristövaikutusten arviointi

Biometaanin tuotannon ja käytön ympäristövaikutusten arviointi From Waste to Traffic Fuel W-Fuel Biometaanin tuotannon ja käytön ympäristövaikutusten arviointi 12.3.2012 Kaisa Manninen MTT Sisältö Laskentaperiaatteet Perus- ja metaaniskenaario Laskennan taustaa Tulokset

Lisätiedot

METSÄTEOLLISUUDEN UUDET TUOTTEET

METSÄTEOLLISUUDEN UUDET TUOTTEET METSÄTEOLLISUUDEN UUDET TUOTTEET Kuhmon Metsäpäivän Ideaseminaari 26.3.2014 Janne Seilo Aluejohtaja UPM Metsä Pohjanmaan integraattialue UPM tänään UPM Plywood Vaneri- ja viilutuotteet UPM Biorefining

Lisätiedot

Kymen Bioenergia Oy NATURAL100

Kymen Bioenergia Oy NATURAL100 Kymen Bioenergia Oy NATURAL100 Maakaasuyhdistys 23.4.2010 Kymen Bioenergia Oy KSS Energia Oy, 60 % ajurina kannattava bioenergian tuottaminen liiketoimintakonseptin tuomat monipuoliset mahdollisuudet tehokkaasti

Lisätiedot

Suomi muuttuu Energia uusiutuu

Suomi muuttuu Energia uusiutuu Suomi muuttuu Energia uusiutuu Suomen rooli ilmastotalkoissa ja taloudelliset mahdollisuudet 15.11.2018 Esa Vakkilainen 1 ENERGIA MUUTTUU Vahvasti eteenpäin Tuuli halvinta Sähköautot yleistyvät Bioenergia

Lisätiedot

Energiamurros - Energiasta ja CO2

Energiamurros - Energiasta ja CO2 Energiamurros - Energiasta ja CO2 Hybridivoimala seminaari, 25.10.2016 Micropolis, Piisilta 1, 91100 Ii Esa Vakkilainen Sisältö CO2 Uusi aika Energian tuotanto ja hinta Bioenergia ja uusiutuva Strategia

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 3.6.217 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 1 2 3 4 5 6 7 8

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 25.9.217 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 17 2 17

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 31.1.2 1 () Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7

Lisätiedot

Uusiutuvat liikennepolttoaineet oljestako dieseliä?

Uusiutuvat liikennepolttoaineet oljestako dieseliä? Uusiutuvat liikennepolttoaineet oljestako dieseliä? Olki energiantuotantoon seminaari Loimaa 27.5.2014 Sisällysluettelo 1. Tarvitaanko uusiutuvia polttoaineita Fossiilisten polttoaineiden riittävyys Ilmastonmuutoksen

Lisätiedot