Mobile Sensing II Energy-Efficiency Petteri Nurmi Spring 2015
|
|
- Kimmo Mikael Kahma
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mobile Sensing II Energy-Efficiency Petteri Nurmi Spring
2 Learning Objectives Understanding the most important resource constraints and how they affect continuous sensing Learn different mechanisms for energy-efficiency and be able to relate them to different parts of the sensing cycle Learn the most common ways to assess the energy impact of sensing applications and understand their advantages and disadvantages
3 Continuous and Sustained Sensing Most mobile sensing applications these days operate in a continuous (and sustained) mode I.e., sensor data continually collected and analyzed Resource-efficiency a critical constraint High CPU or I/O load can hinder other applications Sensors drain battery, forcing users to charge the phone more often Usability concerns Consistency of the application performance Accuracy (etc.) of the classification results, particularly when the user interface is adapted based on them Focus of lecture on resource-efficiency (esp. energy)
4 Resource (and other) Constraints Energy / Battery Sensors consume high amounts of battery è sensing applications rapidly lead to poor user experience Memory & CPU Analysis of massive datasets not possible on mobile devices due to memory constraints CPUs increasingly powerful, but drain battery Programming constraints Limits on how sensors can be operated, limits on what is allowable behaviour Interaction constraints Limited means for conventional interaction techniques (text input, graphics)
5 Mechanisms for Energy- Efficiency General principle: less is more Sensor-level schemes Duty cycling: less sensing Substitution / replacement: less power heavy sensing Personal area network (PAN) schemes: Offloading: less computing/sensing on the device Cooperation: less sensing on one device Hardware and Networking schemes: Frequency/voltage scaling: less heavy CPU Coprocessor: cooperative CPU Intelligent uploading: less sending
6 Energy-Efficiency Revisited: Part I: Reducing Tasks CPU and other hardware components Sensors Networking
7 Duty Cycling Duty cycling reduces sampling by alternating between idle and active states of the sensor Duty cycle = percentage of period where a signal is active D = T / P * 100% where T is active time and P is the period of the signal Sampling sensor for one minute each five minutes thus corresponds to a 20% duty cycle Need to be carefully designed Going from lower sampling state to higher typically has an additional activation cost Moving from a high state to a lower state often has delay è need sufficiently long inactive states to save energy
8 Duty Cycling Example Motion Tracking Duty cycling schemes can be rather sophisticated Example: GPS duty cycling for location reporting Assume location needs to be reported every 100m Given current speed of user v m/s (from last GPS), the next time GPS needs to be sampled (latest) is 100 / v Can also incorporate errors, e.g., if GPS error is E m, the next sample should be within (100 E) / v Similar approach can be adopted for other motionrelated sensors (accelerometer, gyroscope, magnetometer)
9 Sensor Substitution / Replacement Often multiple sensors can be used to measure the same phenomena WiFi/GPS/GSM all provide location information Accelerometer and GPS can be used to estimate speed Energy-accuracy trade-off The more accurate information is required, the more energy heavy sensor (usually) needs to be used Sensor substitution/replacement a generic technique whereby a sensor is replaced with another (less power hungry) one
10 Active / Inactive State Detection Users tend to spend the majority of times within few locations ( 50+% of time at either home or work) During these periods users mainly stationary è can let sensors sleep until something happens Activity spotting: determine if any activity (of interest) is taking place Most common strategy is to consider the variance of accelerometer magnitude Another example is monitoring the stability of WiFi / audio environment Special case of sensor substitution
11 Active / Inactive State Detection: Example Example data from a walking segment Blue line: accelerometer magnitude, i.e., i x i Stationary periods clearly distinguishable as periods of low variance
12 Intelligent Uploading Duty cycling network transmissions Reduce frequency of data transmissions from the mobile client Basic uploading strategies Send all (only realistic for on-demand sensing with low sampling rates) Event-based: e.g., send information when transportation mode changes Persistent even change: ignore fragmentations in classification and send only once the majority of events in a window differ from current one
13 Intelligent Uploading: Examples Intelligent event-based uploading strategies popular in moving objects database literature Position tracking: Send updates only when location changes by more than a given threshold (event = location change) Buddy/proximity tracking: Send updates when a friend arrives/leaves a region that is within x meters from my current location Trajectory tracking: Send updates when the route of the user cannot be reconstructed with given accuracy otherwise Sensor sampling takes place more often, but only some measurements transmitted
14 Piggybacking and Tail Energy Piggybacking refers to transporting something on the back of something else Data piggybacking: attaching data transmissions to application-side traffic (opportunistic transmission) Sensing piggybacking: hook to application sensor data requests and pool data across all applications Tail energy minimization Cellular transmission technologies remain in high energy active state after transmission ends Tail energy minimization aims at scheduling transmissions so that low-power time can be maximized
15 Predictive Energy-Efficiency General technique for reducing energy load by predicting what is going to happen Predictive uploading Construct a predictive model and deploy on both client and server / cloud service end Predict the next state/event on the client, and compare results against prediction If agreement, no need to send data (server predicts the same) Predictive sensing Predict next state/sensor values on client Compare prediction against values If prediction matches consistently, sensor can be duty cycled
16 Energy Consumption Statistics: Hardware and Networking CPU has highest correlation with energy usage Screen brightness has major overall impact, but correlated heavily with CPU usage Networking technologies have different power profiles, but generally signal strength quality influences power consumption Sensor level energy-consumption covered later during the lecture
17 Hardware Solutions: Dynamic Voltage and Frequency Scaling (DVFS) CPU one of the most power consuming elements on the mobile device DVFS a hardware level technique for reducing the power drain caused by CPU CPU power consumption: P cpu = P dynamic + P static P static corresponds to transistor current leakages and shortcircuit power consumption P dynamic = CV 2 f where C is capacitance, f is frequency and V is voltage Thus, reducing CPU frequency or voltage reduces overall power drain
18 Hardware Solutions: Coprocessor designs Most high-end smartphones incorporate a coprocessor design Coprocessors additional CPUs which are typically dedicated for a specific task (e.g., motion coprocessor) Low-power so reduces energy footprint Types of coprocessors Graphical (GPU) Audio (especially speech recognition) Motion/Context (specialized activity recognition tasks)
19 Energy-Efficiency Revisited: Part II: Distributing Tasks Cloud Services Nearby devices CPU and other hardware components Sensors Servers Networking
20 Cyber foraging Technique where computationally heavy tasks are offloaded to surrogate computers in the vicinity Proposed in 2001 when CPU resources VERY limited Phases: 1. Surrogate discovery 2. Resource discovery (how much CPU or I/O available) 3. Task partitioning: dividing the original computational task into subcomponents 4. Scheduling: allocating tasks to surrogates and the mobile device 5. Remote execution control: verifying the connection links remain alive and that the tasks are executed
21 Offloading Offloading refers to the general principle of transferring tasks to other devices In principle, ANY part of the sensing chain can be transferred to other devices: Computational offloading: transferring computations to other devices, including remote devices / cloud Cyber foraging a special case where only nearby stationary computers are considered Cooperative/collaborative sensing: transferring sensing tasks to other devices Network offloading: transferring data transmission to other devices or technologies Also, e.g., UI or interaction layers can be offloaded
22 Collaborative Sensing Consider the task of transportation mode detection using accelerometer and GPS GPS energy consuming and has accuracy of around 5m è nearby devices can share measurements Accelerometer has high sampling rate, high cost to share è devices sample locally Need to always ensure utility from collaboration higher than cost of sharing
23 Discovery The first phase of offloading typically consists of discovering potential collaborators Exception when dedicated collaborators used, e.g., a specific server/cloud service Primary technologies: Bluetooth low energy (BLE) WiFi direct Network topology usually restricted by the technology: Star topology: one master and several slaves (unicast) Fully connected: each device communicates with each other (broadcast)
24 Scheduling Process of allocating sensing tasks to devices Factors to consider: Collaboration cost: energy consumption from sharing information (sensor data, classifier results, etc.) Sensing cost: energy consumption from performing sensing on the device Accuracy: quality of sensor information (should not select GPS with poor accuracy in the example) Utility: some sensors might not be needed, does adding them provide significant benefits compared to their cost? Cost of ONE device allowed to be higher, but overall cost for all devices participating should be lower
25 Example: CoMon Middleware solution for collaborative sensing Applications represent sensing needs as declarative queries, middleware executes queries locally on the device or distributes them if collaborators found Bluetooth based collaborator discovery Devices optimize expected benefit Expected Benefit = UTILITY x E(T 2 ) COST DETECT x E(T 1 ) E(T 2 ) is expected duration of cooperation E(T 1 ) is expected waiting time until cooperation opportunity COST DETECT is (constant) cost of discovering collaborators è Collaboration opportunities more actively the higher the cost of sensing and the more likely opportunities exist
26 Example: Remora Middleware for collaborative sensing Neighbour management Potential collaborators detected using proximity sensing Duration prediction: the length of collaboration opportunity predicted by considering type of contact, current activity, and calendar information Sharing-aware classifier design Weak classifiers at each device and shares the classifier results (instead of sharing sensor data) Each weak classifier considers single sensor Classifiers combined to obtain final result
27 Evaluating Energy Efficiency Estimating the overall battery drain of an application crucial for continuous sensing applications Two main ways to accomplish this: Install application on devices and see how it influences battery recharging cycles of users Difficult to conduct, but gives the absolute effect Model-based validation: estimate power consumption using models of sensor/hardware energy consumption Allows relative comparison of applications, but does not give absolute effect
28 Evaluating Energy Efficiency: Metrics and Units 1. Temporal Absolute/relative influence on charging time (hours or percentage decreases) 2. Power unit measures Milliwatts (mw), unit of power drain per second Millijoules (mj), specific power drain, e.g., the cost of turning GPS on (watts over time) 3. Discharge Rate State of charge (SOC): the percentage of battery remaining Discharge rate = ΔSOC / Δt (typically at one percent increments)
29 Energy Profiling Energy profile refers to a mathematical characterization of power consumption, i.e., a model-based approach Basic idea: 1. Construct a reference model that estimates power consumption of sensor/hardware unit within unit time Typically separate different states, e.g., CPU level as percentage or idle/active/turning on/turning off for sensors 2. Calculate the time the hardware/sensor is in different states during the execution of application Readily supported by mobile platforms 3. Estimate power consumption by multiplying the time spent in a state with estimated power consumption 4. Sum over all sensors/hardware components
30 Energy Profiling: Reference Models Different ways to construct the reference model 1. Manufacturer provided values: Typically minimum and maximum, values for other states interpolated 2. Empirical models 1. Sensor-level models Using sensor X for t seconds consumes P amount of power (on average) 2. Aggregate models Using application Y for t seconds consumes R amount of power (on average)
31 Energy Profiling: Sensor-Level Empirical Models Three steps in constructing a sensor-level model: 1. Isolate the sensor and utilize it in different states 2. Estimate energy consumed in each state 3. Divide energy by time to obtain reference model Typically a separate background model that contains no sensors is first estimated and subtracted States not necessarily easy to define Mobile data has tail whereby the radio remains for a while in active state even without any transmission GPS has different start-up costs depending on how long the sensor has been inactive
32 Example Consider constructing a power model for gyroscope 1. Ensure phone is not collected to any power source 2. Implement a program that samples the gyroscope (potentially at different rates) 3. Isolate the sensor Turn screen off Turn of radio sensors or even switch to airplane mode Use wake lock to prevent system from suspending If possible, control CPU speed 4. Run program several times, measure power drain, and estimate power consumption
33 Power Monitor Modelling Power monitor is a tool that measures power drain Phone battery linked with cables to monitor, logs drain directly Most accurate way to construct reference models But also most cumbersome, and limited in terms of situations where measurements can be taken
34 Power Monitor Modelling: Practical Issues Controlling signal strength levels difficult, especially low signal levels difficult to emulate Requires a Faraday box, bomb shelter, or other means of isolation Most sensors (and hardware components) have strong relationship with CPU Power consumptions seldom independent, e.g., gyroscope and accelerometer often on same chip The more variation in the states of the sensor, the more difficult to estimate power consumption E.g., CPU consumption highly volatile
35 Application Level Profiling Smartphones have a smart battery interface which provides information about battery level Responsible for analysing voltage, temperature etc. and determining currently remaining battery level State of charge (SOC): Percentage of battery currently remaining Discharge rate: change of SOC as a function of time, i.e., rate = ΔSOC / Δt Application level profiling operates on SOC measurements Observe which sensors / applications running and monitor changes in the SOC values
36 Example: PowerTutor Source: u/projects/powertutor/ (Semi-)automatic tool for power model construction directly on the phone Discharge rate used as energy unit Battery-specific lookup table for converting discharge values into voltages Constructed by discharging the phone once with constant rate and logging the results Energy modelled using regression Linear relationship between different states of the system and energy (P = i ß i U i + c)
37 Example: Carat Source: Crowdsourced-based energy modelling approach Original focus on applications, but similar methodology can be used to construct sensor-level models Discharge rates used as energy unit Each device represented by a discharge profile Looks at applications running on the device and how they affect discharge Device-specific profile compared against community average Profiles with higher discharge rates have problems, and potential applications causing the problem can be identified from the discharge profiles
38 Energy Profiles: Accelerometer Energy profile of accelerometer indicates more or less constant power drain Spikes on the background most likely due to CPU and I/O Low overall consumption Around 21mW on Galaxy SIII Note: measurements contain also background consumption General rule of thumb: can be used, and device tends to sample regularly anyway
39 Energy Profiles: GPS Only contains cost from sampling the GPS (10 times) Heavy cost from turning on the GPS and/or from searching for a position fix when no satellites visible HUGE variations in energy consumption across devices General rule of thumb: avoid as much as can (for energy)
40 Energy Profiles: WiFi Contains samples from scanning the WiFi 100 times Cost of scanning high, but more or less constant Sending data over WiFi difficult to model, depends on signal quality (bad signal è more retransmissions), amount of data sent etc. Sensitivity of WiFi chips varies across devices è unpredictable energy costs General rule of thumb: use cautiously
41 Energy Profiles: Audio Contains samples from continuous audio recording Cost of collecting one sample average, but costs accumulate quickly due to high sampling rate Processing data requires heavy CPU and I/O è high variation General rule of thumb: do not use continuously and use otherwise cautiously
42 Summary Energy significant problem for continuous sensing applications and need to be optimized Main categories of mechanisms: Reduction: sensor substitution, duty cycling, power optimization, intelligent uploading Task distribution: cyber foraging, cooperative sensing Energy-efficiency evaluated using energy profiling Power monitor based empirical models Empirical models constructed from SOC / discharge rate measurements
43 References Bhattacharya, S.; Blunck, H.; Kjergaard, M. & Nurmi, P., Robust and Energy-Efficient Trajectory Tracking for Mobile Devices, IEEE Transactions on Mobile Computing, 2015 Kim, D. H.; Kim, Y.; Estrin, D. & Srivastava, M. B., SensLoc: sensing everyday places and paths using less energy, Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys), ACM, 2010, Lee, Y.; Ju, Y.; Min, C.; Kang, S.; Hwang, I. & Song, J., CoMon: Cooperative Ambience Monitoring Platform with Continuity and Benefit Awareness, Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys), ACM, 2012, Keally, M.; Zhou, G.; Xing, G. & Wu, J., Remora: Sensing Resource Sharing Among Smartphone-based Body Sensor Networks, Proc. of 21st International IEEE/ACM Symposium on Quality of Service, 2013, 1-10 Musolesi, M.; Piraccini, M.; Fodor, K.; Corradi, A. & Campbell, A. T., Supporting Energy-Efficient Uploading Strategies for Continuous Sensing Applications on Mobile Phones, Proceedings of the International Conference on Pervasive Computing (Pervasive), 2010, Balan, R. K.; Flinn, J.; Satyanarayanan, M.; Sinnamohideen, S. & Yang, H., The case for cyber foraging, Proceedings of the 10th ACM SIGOPS European Workshop,
44 References Ferreira, D.; Dey, A. K. & Kostakos, V., Understanding Human-Smartphone Concerns: A Study of Battery Life, Proceedings of the 9th International Conference on Pervasive Computing, 2011 Banerjee, A.; Chong, L. K.; Chattopadhyay, S. & Roychoudhury, A., Detecting Energy Bugs and Hotspots in Mobile Apps, Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM, 2014, Zhang, L.; Tiwana, B.; Qian, Z.; Wang, Z.; Dick, R. P.; Mao, Z. M. & Yang, L., Accurate Online Power Estimation and Automatic Battery Behavior Based Power Model Generation for Smartphones, Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, ACM, 2010, Oliner, A. J.; Iyer, A. P.; Stoica, I.; Lagerspetz, E. & Tarkoma, S., Carat: Collaborative Energy Diagnosis for Mobile Devices, Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys), ACM, 2013, 10:1-10:14 Kjærgaard, M. B. & Blunck, H., Unsupervised Power Profiling for Mobile Devices, Proceedings of the 8th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous),
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
HITSAUKSEN TUOTTAVUUSRATKAISUT
Kemppi ARC YOU GET WHAT YOU MEASURE OR BE CAREFUL WHAT YOU WISH FOR HITSAUKSEN TUOTTAVUUSRATKAISUT Puolitetaan hitsauskustannukset seminaari 9.4.2008 Mikko Veikkolainen, Ratkaisuliiketoimintapäällikkö
7.4 Variability management
7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
7. Product-line architectures
7. Product-line architectures 7.1 Introduction 7.2 Product-line basics 7.3 Layered style for product-lines 7.4 Variability management 7.5 Benefits and problems with product-lines 1 Short history of software
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
The role of 3dr sector in rural -community based- tourism - potentials, challenges
The role of 3dr sector in rural -community based- tourism - potentials, challenges Lappeenranta, 5th September 2014 Contents of the presentation 1. SEPRA what is it and why does it exist? 2. Experiences
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat
Tarua vai totta: sähkön vähittäismarkkina ei toimi? 11.2.2015 Satu Viljainen Professori, sähkömarkkinat Esityksen sisältö: 1. EU:n energiapolitiikka on se, joka ei toimi 2. Mihin perustuu väite, etteivät
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing. 13.10.2010 Jan Nyman, jan.nyman@posintra.fi
WAMS 2010,Ylivieska Monitoring service of energy efficiency in housing 13.10.2010 Jan Nyman, jan.nyman@posintra.fi Background info STOK: development center for technology related to building automation
FYSE301(Elektroniikka(1(A3osa,(kevät(2013(
FYSE301(Elektroniikka(1(A3osa,(kevät(2013( 1/2 Loppukoe1.3.2013 vastaakaikkiinkysymyksiin(yhteensä48pistettä) 1. Kuvailelyhyesti a. Energialineaarisissapiirielementeissä:vastuksessa,kondensaattorissajakelassa(3
Metsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
C++11 seminaari, kevät Johannes Koskinen
C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a
, Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland
Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland Anne Mari Juppo, Nina Katajavuori University of Helsinki Faculty of Pharmacy 23.7.2012 1 Background Pedagogic research
TM ETRS-TM35FIN-ETRS89 WTG
VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please
WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum
S Sähkön jakelu ja markkinat S Electricity Distribution and Markets
S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija
Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija 1 Asemoitumisen kuvaus Hakemukset parantuneet viime vuodesta, mutta paneeli toivoi edelleen asemoitumisen
The Use of Hardware Simulation in Smartphone Projects
Master s Thesis Presentation 17.1.2006 The Use of Hardware Simulation in Smartphone Projects Author: Supervisor: Instructor: Joonas Kolmonen Professor Heikki Hämmäinen Timo Pasonen Contents Background
Making diversity manageable. Miradore. Käytännön kokemuksia rahoituksen hakemisesta. Tiistai 17.4.2012 Technopolis Vapaudenaukio / Lappeenranta
Miradore Käytännön kokemuksia rahoituksen hakemisesta Tiistai Technopolis Vapaudenaukio / Lappeenranta Miradore Ltd Established in 2006, spin-off from UPM The story started already in 1995 from a burning
( ,5 1 1,5 2 km
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km
WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Carat-projekti: Tutkimuspohjaista tietoa mobiilikäytöstä
Carat-projekti: Tutkimuspohjaista tietoa mobiilikäytöstä Eemil Lagerspetz, Ella Peltonen, Jonatan Hamberg, Petteri Nurmi, prof. Sasu Tarkoma NODES-ryhmä, Tietojenkäsittelytieteen laitos Esityksen rakenne
ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.
ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel Kalle Lehto, Aalto-yliopisto 5.5.2011 Otaniemi ReFuel a three year research project (2009-2011) goal utilize the
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014
Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014 Jarmo Partanen, professori, Lappeenrannan yliopisto jarmo.partanen@lut.fi +358 40 5066 564 Electricity Market, targets Competitive
,0 Yes ,0 120, ,8
SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
UNCITRAL EMERGENCE CONFERENCE 13.12.2016 Session I: Emerging Legal Issues in the Commercial Exploitation of Deep Seabed, Space and AI BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Microsoft Lync 2010 Attendee
VYVI MEETING Lync Attendee 2010 Instruction 1 (15) Microsoft Lync 2010 Attendee Online meeting VYVI MEETING Lync Attendee 2010 Instruction 2 (15) Index 1 Microsoft LYNC 2010 Attendee... 3 2 Acquiring Lync
E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
AYYE 9/ HOUSING POLICY
AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä. public-procurement
Innovative and responsible public procurement Urban Agenda kumppanuusryhmä https://ec.europa.eu/futurium/en/ public-procurement Julkiset hankinnat liittyvät moneen Konsortio Lähtökohdat ja tavoitteet Every
Exercise 1. (session: )
EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You
MUSEOT KULTTUURIPALVELUINA
Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum
Collaborative & Co-Creative Design in the Semogen -projects
1 Collaborative & Co-Creative Design in the Semogen -projects Pekka Ranta Project Manager -research group, Intelligent Information Systems Laboratory 2 Semogen -project Supporting design of a machine system
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo
TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,
FPGA-piirien käyttökohteet nyt ja tulevaisuudessa Tomi Norolampi
FPGA-piirien käyttökohteet nyt ja tulevaisuudessa Tomi Norolampi ESITYKSEN SISÄLTÖ Flexibilis Oy lyhyesti FPGA FPGA-teknologian nykytilanne ja tulevaisuus Kaupallinen näkökulma Uudelleenkonfiguroinnin
Data Quality Master Data Management
Data Quality Master Data Management TDWI Finland, 28.1.2011 Johdanto: Petri Hakanen Agenda 08.30-09.00 Coffee 09.00-09.30 Welcome by IBM! Introduction by TDWI 09.30-10.30 Dario Bezzina: The Data Quality
Windows Phone. Module Descriptions. Opiframe Oy puh. +358 44 7220800 eero.huusko@opiframe.com. 02600 Espoo
Windows Phone Module Descriptions Mikä on RekryKoulutus? Harvassa ovat ne työnantajat, jotka löytävät juuri heidän alansa hallitsevat ammatti-ihmiset valmiina. Fiksuinta on tunnustaa tosiasiat ja hankkia
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)
Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
EUROOPAN PARLAMENTTI
EUROOPAN PARLAMENTTI 2004 2009 Kansalaisvapauksien sekä oikeus- ja sisäasioiden valiokunta 2008/0101(CNS) 2.9.2008 TARKISTUKSET 9-12 Mietintöluonnos Luca Romagnoli (PE409.790v01-00) ehdotuksesta neuvoston
LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet
LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Taulukon edut Taulukon haitat Taulukon haittojen välttäminen Dynaamisesti linkattu lista Linkatun listan solmun määrittelytavat Lineaarisen listan toteutus dynaamisesti linkattuna
Rakennukset Varjostus "real case" h/a 0,5 1,5
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km
Ostamisen muutos muutti myynnin. Technopolis Business Breakfast 21.8.2014
Ostamisen muutos muutti myynnin Technopolis Business Breakfast 21.8.2014 Taking Sales to a Higher Level Mercuri International on maailman suurin myynnin konsultointiyritys. Autamme asiakkaitamme parantamaan
Vaisala s New Global L ightning Lightning Dataset GLD360
Vaisala s New Global Lightning Dataset GLD360 Vaisala Global Lightning Dataset GLD360 Page 2 / Oct09 / Holle-SW Hydro / Vaisala Schedule GLD360 Validation Applications Demonstration Page 3 / Oct09 / Holle-SW
Olet vastuussa osaamisestasi
Olet vastuussa osaamisestasi Ohjelmistoammattilaisuuden uudet haasteet Timo Vehmaro 02-12-2015 1 Nokia 2015 Mitä osaamista tulevaisuudessa tarvitaan? Vahva perusosaaminen on kaiken perusta Implementaatio
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
DIGITAL MARKETING LANDSCAPE. Maatalous-metsätieteellinen tiedekunta
DIGITAL MARKETING LANDSCAPE Mobile marketing, services and games MOBILE TECHNOLOGIES Handset technologies Network technologies Application technologies INTRODUCTION TO MOBILE TECHNOLOGIES COMPANY PERSPECTIVE
GNSS-vastaanottimet. Havaintosuureet
GNSS-vastaanottimet vastanottimien tyyppejä antennit signaalin havaitseminen Havaintosuureet Nyt: C/A-koodi L1 L1-kantoaalto L1 Doppler L2 kantoaalto L2 Doppler P-koodi L1 P-koodi L2 Tulevaisuudessa: C/A-koodi
Curriculum. Gym card
A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK
Co-Design Yhteissuunnittelu
Co-Design Yhteissuunnittelu Tuuli Mattelmäki DA, associate professor Aalto University School of Arts, Design and Architecture School of Arts, Design and Architecture design with and for people Codesign
Additions, deletions and changes to courses for the academic year Mitä vanhoja kursseja uusi korvaa / kommentit
s, s and changes to courses for the academic year 2016 2017 Mikro ja nanotekniikan laitos Department for Micro and Nanosciences S 69, S 87, S 104, S 129, ELEC A3, ELEC C3, ELEC D3, ELEC E3, ELEC L3 T 4030
dupol.eu - smart home product comparison
DUPOL KFT HUNGARY SINGULAR WIFI WIFI alarm communicator for signal to smartphone App, working with any alarm panel Connection to alarm panel through Ring/Tip terminals (emulates phone line) Forwards Contact
Sisällysluettelo Table of contents
Sisällysluettelo Table of contents OTC:n Moodlen käyttöohje suomeksi... 1 Kirjautuminen Moodleen... 2 Ensimmäinen kirjautuminen Moodleen... 2 Salasanan vaihto... 2 Oma käyttäjäprofiili... 3 Työskentely
Statistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
Improving advisory services through technology. Challenges for agricultural advisory after 2020 Jussi Juhola Warsaw,
Improving advisory services through technology Challenges for agricultural advisory after 2020 Jussi Juhola Warsaw, 22.2.2018 ProAgria in a nutshell Provides farm-and-agriculture entrepreneurs with services
Location-Based Services Petteri Nurmi, Ella Peltonen
Location-Based Services Petteri Nurmi, Ella Peltonen 3.11.2016 1 Questions How location-based services (LBS) operate and what kind of services there are currently available? What are the main challenges
Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat
7.80.4 Asiakasnumero: 3000359 KALLE MANNINEN KOVASTENLUODONTIE 46 51600 HAUKIVUORI Toimitusosoite: KUMMANNIEMENTIE 5 B 51720 RAHULA Viitteenne: Henna-Riikka Haikonen Viitteemme: Pyry Niemi +358400874498
Yhtiön nimi: - Luotu: - Puhelin: - Fax: - Päiväys: -
Positio Laske Kuvaus 1 MAGNA 32-1 N Tuote No.: 98117 Huom.! Tuotteen kuva voi poiketa todellisesta tuotteesta The pump is of the canned rotor type, i.e. pump and motor form an integral unit without shaft
Security server v6 installation requirements
CSC Security server v6 installation requirements Security server version 6.4-0-201505291153 Pekka Muhonen 8/12/2015 Date Version Description 18.12.2014 0.1 Initial version 10.02.2015 0.2 Major changes
( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet
Honkajoki & Kankaanpää tuulivoimahankkeet N117 x HH141 Honkajoki N117 x 9 x HH120 tv-alueet Alahonkajoki_kaava_alueen_raja_polyline Asuinrakennus Julkinen tai liiker rak. Lomarakennus Teollinen rak. Allas
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku Centre for Language and Communication Studies
Information on Finnish Courses Autumn Semester 2017 Jenni Laine & Päivi Paukku 24.8.2017 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve terve!
03 PYÖRIEN SIIRTÄMINEN
78 03 PYÖRIEN SIIRTÄMINEN Wheels and tyres are heavy. Their handling may involve heavy lifting at the workshop. We have developed a logical ergonomic method for transporting wheels. The focus here is our
Paikkatiedon semanttinen mallinnus, integrointi ja julkaiseminen Case Suomalainen ajallinen paikkaontologia SAPO
Paikkatiedon semanttinen mallinnus, integrointi ja julkaiseminen Case Suomalainen ajallinen paikkaontologia SAPO Tomi Kauppinen, Eero Hyvönen, Jari Väätäinen Semantic Computing Research Group (SeCo) http://www.seco.tkk.fi/
AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.
T287/M03/2017 Liite 1 / Appendix 1 Sivu / Page 1(5) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD. Tunnus Code Laboratorio Laboratory Osoite Address www www T287
SSTY:n EMC-seminaari. EMC ja sähköisten lääkintälaitteiden standardit. Ari Honkala SESKO ry
SSTY:n EMC-seminaari EMC ja sähköisten lääkintälaitteiden standardit SESKO ry 2016-10-04 Tässä esityksessä käsitellään Yleistä täydentävistä (collateral, -1 sarja, horisontaaliset) ja eritysvaatimuksia
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies
Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve
Informaatioteknologia vaikuttaa ihmisten käyttäytymiseen ja asenteisiin
Infotech Seminar, Oulu, November 11, 2005 Informaatioteknologia vaikuttaa ihmisten käyttäytymiseen ja asenteisiin Prof. Harri Oinas-Kukkonen Dept. Information Processing Science University of Oulu Outline
Data quality points. ICAR, Berlin,
Data quality points an immediate and motivating supervision tool ICAR, Berlin, 22.5.2014 Association of ProAgria Centres Development project of Milk Recording Project manager, Heli Wahlroos heli.wahlroos@proagria.fi
Increase of opioid use in Finland when is there enough key indicator data to state a trend?
Increase of opioid use in Finland when is there enough key indicator data to state a trend? Martta Forsell, Finnish Focal Point 28.9.2015 Esityksen nimi / Tekijä 1 Martta Forsell Master of Social Sciences