Arttu Haapiainen ja Timo Kamppinen. Standardimalli & Supersymmetria

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Arttu Haapiainen ja Timo Kamppinen. Standardimalli & Supersymmetria"

Transkriptio

1 Standardimalli & Supersymmetria

2 Standardimalli Hiukkasfysiikan Standardimalli on teoria, joka kuvaa hiukkaset ja voimat, jotka vaikuttavat luonnossa. Ympärillämme näkyvä maailma koostuu ylös- ja alas-kvarkeista sekä elektroneista. Nämä hiukkaset kuuluvat elektronin perheeseen. Perheeseen kuuluu myös elektronin neutriino. Elektronin perheen lisäksi on myonin ja taun perheet, joilla on myös kaksi kvarkkia ja leptonia. Kahden muun hiukkasperheen hiukkasten ominaisuudet eroavat elektronin perheen vastaavien hiukkasten ominaisuuksista vain massan perusteella. Myonin ja taun perheen hiukkaset ovat epävakaita, ja ne hajoavat nopeasti elektronin perheen hiukkasiksi. Standardimalli ei selitä, miksi perheitä on kolme, ja mikä myonin ja taun perheen merkitys on maailmankaikkeuden kannalta, mutta se selittää kaikkien näiden hiukkasten käyttäytymisen ja hajoamisen toisiksi hiukkasiksi. Sähkö-varaus Elektronin perhe Myonin perhe Taun perhe Kvarkit 2/3 e Ylös-kvarkki u Lumo-kvarkki Tosi-kvarkki -1/3 e Alas-kvarkki d Outo-kvarkki Kaunis-kvarkki Leptonit -e Elektroni Myoni Tau 0 Elektronin neutriino Myonin neutriino Taun neutriino Standardimallin yhtälöistä seuraa, että kaikilla perushiukkasilla tulee olla antihiukkanen. Antihiukkasen ominaisuudet eroavat hiukkasesta vain varauksen suhteen. Antihiukkasen varaus on hiukkasen varauksen vastaluku. Jokaista perushiukkasta kohden on olemassa antihiukkanen. Antihiukkasia pystytään tuottamaan hiukkaskiihdyttimessä, joten standardimallin ennustus osui oikeaan. Esimerkiksi elektroneilla on olemassa antihiukkanen, positroni. Kun energiasta syntyy ainetta, syntyy aina hiukkanen ja sen antihiukkanen. Olisi siis luontevaa ajatella, että alkuräjähdyksessä olisi syntynyt yhtä paljon ainetta ja antiainetta. Standardimalli ei sellaisenaan selitä, miksi maailmankaikkeudessa on enemmän materiaa kuin antimateriaa. Teoriaa pitää siis laajentaa. Kaikki hiukkasten väliset vuorovaikutukset selitetään välittäjähiukkasten avulla. Kun hiukkaset vuorovaikuttavat keskenään, ne vaihtavat välittäjähiukkasia. Esimerkiksi jos kaksi elektronia lähestyvät toisiaan, elektronit vaihtavat sähkömagneettisen vuorovaikutuksen välittäjähiukkasia, fotoneja. Fotonit saavat aikaan sen, että elektronien vauhti hidastuu ja lopulta ne loittonevat toisistaan. Muita välittäjähiukkasia ovat W- ja Z-bosonit, gluonit ja gravitonit. W- ja Z-bosonit vaikuttavat heikossa vuorovaikutuksessa, gluonit vahvassa vuorovaikutuksessa ja gravitonit gravitaatiovuorovaikutuksessa. Kaikki muut välittäjähiukkaset on havaittu, paitsi gravitoni. Standardimalli ei oikeastaan selitäkkään gravitaatiota. Gravitaatio on kuitenkin niin heikko voima verrattuna muihin voimiin ytimen tasolla, että se ei vaikuta merkittävästi standardimallin kokoluokassa.

3 Standardimalliin kuuluu vielä yksi hiukkasluokka, Higgsin bosonit. Massa ja gravitaatio ovat ongelmallisia standardimallille. Standardimallin yhtälöt pätevät vain, jos yhtälöissä ei käytetä hiukkasten massoja, eikä ole kehitetty kvanttimekaanista gravitaatiovuorovaikutusta. Kuitenkin esimerkiksi kvarkeilla, elektroneilla ja W- ja Z-bosoneilla on massa. Standardimalli selittää hiukkasten massat siten, että hiukkaset vuorovaikuttavat Higgsin kentän kanssa. Massa hidastaa kappaleita. Massattomat hiukkaset kulkevat valonnopeutta, mutta massallisten hiukkasten on liikuttava alemmilla nopeuksilla (jotta massallinen hiukkanen liikkuisi valonnopeudella, tarvittaisiin ääretön määrä energiaa -> mahdottomuus). Higgsin bosonit ikään kuin tarttuvat hiukkaseen hidastaen sen kulkua. Standardimallin ongelma higgsin suhteen on, että mekanismi on vain liitetty siihen. Standardimalli ei kykene selittämään Higgsin mekanismia. Higgsin mekanismissa joudutaan olettamaan, että Higgsin bosonin massan neliö on negatiivinen. Aine- ja välittäjähiukkasilla on kvantittunut ominaisuus, jota kutsutaan spiniksi. Sallittuja arvoja ovat 0,1/2,1,3/2,... perusspinin moninkertaa h/2π, jossa h on Planckin vakio (yleensä spin ilmaistaan ilman yksikköä). Spin muistuttaa kappaleen pyörimistä akselinsa ympäri, mutta tällä ei oikeastaan ole nyt merkitystä. Fermionien, eli ainehiukkasten (kvarkit ja leptonit) spin on puoliluku, esim. 1/2 tai 3/2. Bosoneilla, eli vuorovaikutusten välittäjähiukkasilla spin on kokonaisluku, esim. 0 tai 1. Spinillä on erittäin suuri merkitys hiukkasten ominaisuuksiin sillä se erottaa ainehiukkaset välittäjähiukkasista. Supersymmetria Supersymmetriaa ei keksitty minkään ongelman, kuten pimeän aineen selittämiseksi. Hyviin teorioihin kuuluu symmetrioita. Niin kuuluu myös Standardimalliin. Esimerkiksi aineantiainesymmetria kuuluu siihen. Antiaineen olemassaolo ennustettiin yhtälöistä. Myöhemmin kokeissa pystyttiin tuottamaan antiainetta. Samalla tavalla on ennustettu supersymmetristen hiukkasten olemassaolo. Supersymmetria keksittiin Standardimallin yhtälöistä. Huomattiin, että Standardimallin yhtälöt antavat oikeat tulokset, vaikka fermionien ja bosonien merkitykset vaihdetaan. Voidaan siis vaihtaa fermionien spinit kokonaislukuun ja bosonien spinit puolilukuun, jolloin ne vaihtavat merkityksiä. Tämän perusteella on olemassa vielä uusia hiukkasia, joita kutsutaan varjohiukkasiksi, eli superkumppaneiksi. Jokaisella ainehiukkasella on varjovälittäjähiukkanen ja jokaisella välittäjähiukkasella on varjoainehiukkanen. Hiukkasten määrä siis kaksinkertaistuu. Uusien hiukkasten nimeämisessä on menetelty seuraavasti: varjovälittäjähiukkasten nimet saadaan lisäämällä s vastaavan fermionin eteen. Esimerkiksi kvarkkien superkumppanit ovat skvarkkeja ja elektronien superkumppanit ovat selektroneja. Varjomateriaalihiukkasten nimet saadaan muuttamalla vastaavan bosonin -oni pääte iino-päätteellä. Tästä esimerkkeinä fotonin superkumppani fotiino. Supersymmetrian täytyy olla rikkoutunut symmetria, eli kätketty symmetria. Superkumppanit eroavat tavallisista hiukkasista spinin lisäksi massaltaan. Tähän johtopäätökseen on tultu, sillä muuten superkumppaneita olisi jo löytynyt. Oletetaan, että superkumppanit ovat niin raskaita, että niitä ei ole vielä voitu tuottaa nykyisillä energioilla.

4 Supersymmetria on hyvä teoria, sillä toisin kuin monet muut Standardimallin laajennukset, se antaa Standardimallin mukaisia tuloksia. Standardimallin ennustamat ilmiöt on mitattu melko tarkkaan, ja ne ovat noudattaneet Standardimallia. Hyvä teoria ennustaa siten lähes samoja tuloksia kuin Standardimalli. Supersymmetria onnistuu tässä kiitettävästi, sillä supersymmetrian aiheuttamat muutokset ovat niin pieniä, että mittaustarkkuuden rajoissa molemmat teoriat pätevät. Silti supersymmetria laajentaa Standardimallia ja selittää ilmiöitä, joita Standardimalli ei selitä. Supersymmetrian sovellukset Higgsin mekanismi Aiemmin mainitsimme, kuinka standardimalli ei pysty selittämään Higgsin mekanismia. Hiukkasten massa selitetään Higgsin kentällä, jonka kvantti on Higgsin bosoni. Jotta Higgsin kenttä olisi olemassa, higgsin kentän arvon tulee olla eri suuri kuin nolla, kun maailmankaikkeus on alimmassa energiatilassa. Kaavasta E=M^2*h^2+A*h^4 seuraa, että Higgsin bosonin massan neliön M^2 tulee olla negatiivinen Standardimallin kokoluokassa, jotta Higgsin kentän arvo on suurempi kuin nolla. Standardimalli ei selitä higgsin bosonin massan neliön negatiivista arvoa. Supersymmetrinen teoria sen sijaan tarjoaa vastauksen. Supersymmetrinen teoria muotoillaan lähellä planckin skaalaa (lyhintä mahdollista etäisyyttä, erittäin suurilla energioilla), jossa voimat yhtenäistyvät ja teoria on yksinkertaisempi. Tässä tilassa massan neliö on positiivinen luku. Massan neliön arvo muuttuu siirryttäessä Standardimallin etäisyysskaalaan (etäisyydet suuremmat, energiat pienemmät). Tämä muutos voidaan laskea. Massan neliö laskee etäisyyksien kasvaessa ja energian pienentyessä. Ennen Standardimallin etäisyysskaalaa massan neliö menee negatiiviseksi ja on siis myös negatiivinen standardimallin etäisyysskaalassa. Tämä mahdollistaa Higgsin kentän olemassaolon maailmankaikkeuden pienimmässä energiatilassa. Seuraavat kuvaajat ovat periaatteellisia kuvaajia, joissa E on maailmankaikkeuden energiatila ja h on higgsin kentän arvo. f(e)=m^2*h^2+a*h^4.

5 Higgsin bosonin massan neliö energiaskaalan funktiona: Yhtälöstä, josta selviää missä kohdassa massan neliö menee negatiiviseksi selviää myös tosikvarkin massa, jonka tuli olla W- ja Z-bosonin suuruusluokkaa. Tosi-kvarkin löytyminen luvulla tältä massa-alueelta valoi uskoa supersymmetriateoriaan. Teoria oli ennustanut massan oikein. Samalla tavoin on myös ennustettu, että supersymmetristen hiukkasten massat eivät eroa paljon Z-bosonin massasta. Tämän takia uskotaan, että on mahdollista tuottaa supersymmetrisiä hiukkasia hiukkaskiihdyttimissä. Hierarkiaongelma On erikoista, että standardimallin etäisyysskaala (10^-17m) on niin kaukana perusteoriassa vallitsevasta Planckin skaalasta (10^-35m). Tämä on erikoista sen takia, että perusteoria vaikuttaa standardimalliin, jolloin olisi luonnollista, että standardimalli toimisi perusteorian skaalan tuntumassa. Tämä olisi mahdollista vain, jos kaikki hiukkaset olisivat massattomia tai korkeintaan Planckin massan suuruisia. Miksi Standardimallin skaala on juuri 10^-17m? Entä miten suuri ero voidaan selittää matemaattisesti? Supersymmetrinen Standardimalli selittää suuren eron fermionien ja bosonien välisellä yhteydellä. Näiden hiukkasten skaaloja lähentävät vaikutukset kumoavat toinen toisensa estäen skaalojen sekoittumisen.

6 Voimien yhdistyminen Fysiikan tavoitteena on pitkään ollut yhdistää luonnonvoimat. Jo Standardimallin yhtälöiden mukaan voimat käyttäytyvät yhä enemmän toistensa lailla lyhyemmillä etäisyyksillä. Supersymmetrisessä standardimallissa voimat ovat olennaisesti yhtä suuret noin 100 kertaa Planckin etäisyyksillä. Ei oikeastaan ole mitään selitystä miksi näin tapahtuu tai miksi näin edes pitäisi tapahtua. Joidenkin arvioiden mukaan myös gravitaatiovuorovaikutus yhtyy Planckin skaalassa muihin vuorovaikutuksiin. Tämä on johtanut ajattelemaan, että kaikki vuorovaikutukset saattaisivat olla saman vuorovaikutuksen eri ilmentymiä pidemmillä välimatkoilla. Jo aikaisemmin sähköinen ja magneettinen vuorovaikutus yhdistettiin sähkömagneettiseksi vuorovaikutukseksi. Lisäksi sähkömagneettinen ja heikko vuorovaikutus on onnistuttu yhdistämään sähköheikoksi vuorovaikutukseksi. Säieteoria Säieteorian tavoitteena on yhdistää kaikki luonnon perusvoimat ja hiukkaset, ja selittää, miksi kaikki toimii niin kuin toimii. Säieteoriassa on perimmiltään vain yksi voima, kymmenulotteisessa avaruudessa vaikuttava painovoima ja neliulotteisesta avaruudesta katsottuna ylimääräiset ulottuvuudet ilmenevät muina voimina. Supersymmetria on edellytys useimmille säieteorioille. Supersymmetria myös helpottaa yhtälöiden ratkaisuja, sillä se asettaa voimakkaita lisäehtoja. Aine-epäsymmetria Maailmankaikkeudessa vallitsee epäsymmetria aineen ja antiaineen välillä. Tämä on ongelma, sillä voidaan olettaa, että jos maailmankaikkeus on syntynyt jollain tavoin tyhjästä, ei sillä olisi minkään ominaisuuden suhteen ylimäärää mihinkään suuntaan. Siis maailmankaikkeuden alkuvaiheessa ainetta ja antiainetta on ollut yhtä paljon, kun taas nykyään voidaan tutkimusten perusteella sanoa, että maailmankaikkeus koostuu suurimmalta osin aineesta ja antiaineen osuus on hyvin vähäinen. Mikä selittää tämän eron? Aineen epäsymmetrian selittäminen on tällä hetkellä kiivaan tutkimuksen kohteena ja nykyisen käsityksen mukaan epäsymmetrian synnylle on kolme mahdollista mekanismia. Kahdessa näistä supersymmetria on pääosassa, ja vaikuttaa kolmannessakin epäsuorasti. Harvinaiset hajoamiset Supersymmetria auttaa ratkaisemaan myös harvinaisten hajoamisten ongelman. On olemassa joukko hajoamisia, jotka ovat Standardimallin mukaan kiellettyjä. Yksi tälläinen on myonin hajoaminen elektroniksi ja fotoniksi. Hajoaminen on energian säilymisen kannalta mahdollinen, sillä elektronin ja fotonin yhteenlaskettu massa on pienempi kuin myonin massa. Kuitenkaan tätä hajoamista ei saa muodostetuksi Standardimallin vuorovaikutuksista, vaan lisäksi tarvitaan Supersymmetrian teorioita. Tällaista myonin hajoamista ei ole vielä havaittu, mutta jos sellainen onnistuttaisiin havaitsemaan, olisi se tärkeä epäsuora lisätodiste supersymmetrian olemassaolosta. Kaiken teoria Supersymmetria antaa mahdollisuuden tutkia Planckin skaalan ilmiöitä ja mahdollista kaiken teoriaa.

7 Pimeä aine Havaintojen perusteella galaksit liikkuvat liian nopeasti toistensa suhteen. Tästä voidaan päätellä, että galakseissa on enemmän ainetta, ja täten massaa, kuin näkyvän valon perusteella voidaan havaita. Tätä näkymätöntä ainetta kutsutaan pimeäksi aineeksi. Pimeä aine vuorovaikuttaa massallaan tavalliseen aineeseen aiheuttaen tavallista lyhyemmät kiertoratojen säteet. Eräänä selityksenä pimeän aineen rakenteeksi on esitetty supersymmetriset hiukkaset sammmuneiden ja syttymättömien tähtien, neutriinojen, mustien aukkojen, ruskeiden kääpiötähtien ja eksoottisten hiukkasten lisäksi. Vahvin ehdokas pimeäksi aineeksi on Supersymmetriateorian LSP (lightest supersymmetric particle), eli kevein supersymmetrinen hiukkanen. Oletetaan, että LSP:t olisivat neutraliinoja, (Zbosonin, fotonin ja neutraalin Higgsin bosonin superpartneri) joita olisi muodostunut erittäin paljon heti alkuräjähdyksen jälkeen. Neutraliinot ovat hyviä ehdokkaita pimeäksi aineeksi, sillä kevyimponä superpartnereina ne ovat vakaita, eivätkä hajoa, ja ne olisivat neutriinojen tapaan erittäin hankalia havaittavia, sillä ne vuorovaikuttaisivat vain vetovoiman ja heikon voiman välityksellä. Tämä selittäisi miksi pimeää ainetta ei ole vielä havaittu. Myös neutraliinojenn massa ( protonin massaa) sopisi hyvin pimeän aineen kannalta.. Kokeellinen etsintä Supersymmetriateoria yritetään todistaa käytännössä hiukkaskiihdyttimien avulla. Hiukkaskiihdyttimissä kaksi hiukkasta törmää toisiinsa erittäin suurella nopeudella (energialla), jolloin törmäystilanteessa osa hiukkasten energiasta voi muuttua massaksi (E=mc^2), eli syntyy uusia hiukkasia. Näiden hiukkasten joukosta sitten pyritään ilmaisimien avulla löytämään meille uusia hiukkasia, esimerkiksi Higgsin bosoneita tai supersymmetrisia hiukkasia. Törmäyttimen kyky tuottaa superhiukkasia riippuu törmäävien hiukkassuihkujen energiasta ja intensiteetistä sekä tuotettavien superhiukkasten massoista. Mitä raskaampia supersymmetrisiä hiukkasia yritetään tuottaa, sitä enemmän tarvitaan energiaa. Suurta intensiteettiä taas tarvitaan törmäysten määrän nostamiseen, jolloin myös syntyvien hiukkasten määrä nousee ja uusien hiukkasten syntymisen todennäiköisyys kasvaa. Nykyisillä hiukkaskiihdyttimillä supersymmetrisia hiukkasia ei vielä ole pystytty luomaan, ja epäilläänkin, että hiukkasten tuottamiseen vaaditaan niin korkeaenergisiä törmäyksiä, että nykyiset kiihdyttimet eivät niitä pysty luomaan.

8 Lähteet Kane, Gordon: Kvarkkitarha: Alkeishiukkasten maailma. (The particle garden: Our universe as understood by particle physicists, 1995.) Suomentanut Kimmo Pietiläinen. Helsinki: Art House, Kane, Gordon: Supersymmetria: Skvarkit, fotiinot luonnontieteiden rajoja etsimässä. (Supersymmetry: Squarks, photinos, and the unveiling [of] the ultimate laws of nature, 2000.) Suomentanut Jukka Maalampi. Helsinki: Art House, Tähtinen, Leena & Flynn, Chris: Universumin pimeä puoli: Tieteen suurimmat arvoitukset pimeä aine ja pimeä energia. Ursa, 2008 Syksy Räsäsen luento: Johdatus (teoreettiseen) hiukkasfysiikkaan, aineen rakenteen standardimalli ja kosmologia

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli

Lisätiedot

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi 8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto

Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter

Lisätiedot

Alkeishiukkaset. Standarimalliin pohjautuen:

Alkeishiukkaset. Standarimalliin pohjautuen: Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi

Lisätiedot

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.

Lisätiedot

Hiukkasfysiikkaa. Tapio Hansson

Hiukkasfysiikkaa. Tapio Hansson Hiukkasfysiikkaa Tapio Hansson Aineen Rakenne Thomson onnistui irrottamaan elektronin atomista. Rutherfordin kokeessa löytyi atomin ydin. Niels Bohrin pohdintojen tuloksena elektronit laitettiin kiertämään

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa

Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Fysiikkaa runoilijoille Osa 7: kohti kaiken teoriaa Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka

Lisätiedot

Higgsin fysiikkaa. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos

Higgsin fysiikkaa. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos Higgsin fysiikkaa Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos Sisällys: Higgsin teoriaa Tarkkuusmittauksia Standardimallin Higgs Supersymmetriset Higgsit Vahvasti vuorovaikuttava Higgsin sektori

Lisätiedot

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava

Lisätiedot

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008

Lisätiedot

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria

Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka

Lisätiedot

Hiukkasten lumo: uuden fysiikan alku. Oili Kemppainen

Hiukkasten lumo: uuden fysiikan alku. Oili Kemppainen Hiukkasten lumo: uuden fysiikan alku Oili Kemppainen 29.09.2009 Hiukkasfysiikka tutkii luonnon perusrakenteita Käsitykset aineen rakenteesta ja luonnonlaeista muuttuneet radikaalisti Viimeisin murros 1960-

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011

Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011 Higgsin bosonin etsintä CMS-kokeessa LHC:n vuosien 2010 ja 2011 datasta CERN, 13 joulukuuta 2011 Higgsin bosoni on ainoa hiukkasfysiikan standardimallin (SM) ennustama hiukkanen, jota ei ole vielä löydetty

Lisätiedot

Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa. Kari Rummukainen

Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa. Kari Rummukainen Teoreettinen hiukkasfysiikka ja kosmologia Oulun yliopistossa Kari Rummukainen Mitä hiukkasfysiikka tutkii? Mitä Oulussa tutkitaan? Opiskelu ja sijoittuminen työelämässä Teoreettinen fysiikka: työkaluja

Lisätiedot

Havainto uudesta 125 GeV painavasta hiukkasesta

Havainto uudesta 125 GeV painavasta hiukkasesta Havainto uudesta 125 GeV painavasta hiukkasesta CMS-koe CERN 4. heinäkuuta 2012 Yhteenveto CERNin Large Hadron Collider (LHC) -törmäyttimen Compact Muon Solenoid (CMS) -kokeen tutkijat ovat tänään julkistaneet

Lisätiedot

Neutriino-oskillaatiot

Neutriino-oskillaatiot Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set

STANDARDIMALLI. Perus- Sähkö- Elektronin Myonin Taun hiukka- varaus perhe perhe perhe set STANDARDIMALLI Fysiikan standardimalli on hiukkasmaailman malli, joka liittää yhteen alkeishiukkaset ja niiden vuorovaikutukset gravitaatiota lukuun ottamatta. Standardimallin mukaan kaikki aine koostuu

Lisätiedot

Fysiikan nykytila ja saavutukset

Fysiikan nykytila ja saavutukset Fysiikan nykytila ja saavutukset Jako osa-alueisiin Nykyfysiikan jako pääaloihin voidaan tehdä sen perusteella mitä fysiikassa tällä hetkellä tutkitaan aktiivisesti (eli tutkimuskohteen mukaan). Näitä

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Mahtuuko kaikkeus liitutaululle?

Mahtuuko kaikkeus liitutaululle? Mahtuuko kaikkeus liitutaululle? Teoreettinen näkökulma hiukkasfysiikkaan Jaana Heikkilä, CERN, 304-1-007 7.2.2017 Ylioppilas, 2010, Madetojan musiikkilukio, Oulu LuK (Fysiikka, teor. fysiikka), 2013,

Lisätiedot

Uusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä

Uusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä Uusimmat tulokset ATLAS-kokeen Higgs hiukkasen etsinnästä 4. kesäkuuta 2012 ATLAS koe esitteli uusimmat tuloksensa Higgs-hiukkasen etsinnästä. Tulokset esiteltiin CERNissä pidetyssä seminaarissa joka välitettiin

Lisätiedot

LHC -riskianalyysi. Emmi Ruokokoski

LHC -riskianalyysi. Emmi Ruokokoski LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

Vuorovaikutuksien mittamallit

Vuorovaikutuksien mittamallit Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla

Lisätiedot

Hiukkasfysiikan uudet teoriat. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos

Hiukkasfysiikan uudet teoriat. Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos Hiukkasfysiikan uudet teoriat Katri Huitu Fysiikan laitos, AFO Fysiikan tutkimuslaitos Sisällys: Miksi tarvitaan uutta teoriaa? Supersymmetria Ylimääräiset ulottuvuudet Muita mahdollisuuksia Hiukkasfysiikan

Lisätiedot

Aineen rakenteesta. Tapio Hansson

Aineen rakenteesta. Tapio Hansson Aineen rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

Hyvä käyttäjä! Ystävällisin terveisin. Toimitus

Hyvä käyttäjä! Ystävällisin terveisin. Toimitus Hyvä käyttäjä! Tämä pdf-tiedosto on ladattu Tieteen Kuvalehden verkkosivuilta (www.tieteenkuvalehti.com). Tiedosto on tarkoitettu henkilökohtaiseen käyttöön, eikä sitä saa luovuttaa kolmannelle osapuolelle.

Lisätiedot

(Hiukkas)fysiikan standardimalli

(Hiukkas)fysiikan standardimalli Alkeishiukkasista maailmankaikkeuteen: (Hiukkas)fysiikan standardimalli Helsingin Yliopisto Kaikki koostuu alkeishiukkasista: Aine koostuu protoneista, neutroneista ja elektroneista Protonit ja neutronit

Lisätiedot

Kvarkeista kvanttipainovoimaan ja takaisin

Kvarkeista kvanttipainovoimaan ja takaisin 1/31 Kvarkeista kvanttipainovoimaan ja takaisin Niko Jokela Hiukkasfysiikan kesäkoulu Helsinki 18. toukokuuta 2017 2/31 Säieteorian perusidea Hieman historiaa 1 Säieteorian perusidea Hieman historiaa 2

Lisätiedot

Flrysikko Higgs iuhli. löytymistä 4. z.totz

Flrysikko Higgs iuhli. löytymistä 4. z.totz H elsin 6tN S.rrwonÄ1..7.A0,S Vahva todiste himoitusta Higgsistä Higgsin hiukkasta on kaivattu tukemaan fysiikan perusteoriaa. Mutta vielä pitäisi varrnistaa pari asiaa. Nyt on löytynyt sen näköinen hiukkanen'

Lisätiedot

Harvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa

Harvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa Harvinainen standardimallin ennustama B- mesonin hajoaminen havaittu CMS- kokeessa CMS- koe raportoi uusissa tuloksissaan Bs- mesonin (B- sub- s) hajoamisesta kahteen myoniin, jolle Standardimalli (SM)

Lisätiedot

KVANTTIKOSMOLOGIAA VIRKAANASTUJAISESITELMÄ, PROFESSORI KIMMO KAINULAINEN. Arvoisa Dekaani, hyvä yleisö,

KVANTTIKOSMOLOGIAA VIRKAANASTUJAISESITELMÄ, PROFESSORI KIMMO KAINULAINEN. Arvoisa Dekaani, hyvä yleisö, VIRKAANASTUJAISESITELMÄ, 12.12.2012 PROFESSORI KIMMO KAINULAINEN KVANTTIKOSMOLOGIAA Arvoisa Dekaani, hyvä yleisö, Kosmologia on tiede joka tutkii maailmankaikkeutta kokonaisuutena ja sen kehityshistoriaa.

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

Robert Brout. Higgsin bosoni. S. Lehti Fysiikan tutkimuslaitos Helsinki. Francois Englert. sami.lehti@cern.ch. Peter Higgs

Robert Brout. Higgsin bosoni. S. Lehti Fysiikan tutkimuslaitos Helsinki. Francois Englert. sami.lehti@cern.ch. Peter Higgs Robert Brout Higgsin bosoni Francois Englert S. Lehti Fysiikan tutkimuslaitos Helsinki sami.lehti@cern.ch Peter Higgs G.Landsberg in EPS-HEP 2013 2 Muutamia peruskäsitteitä 3 Leptonit: alkeishiukkasia,

Lisätiedot

Maailmankaikkeuden kriittinen tiheys

Maailmankaikkeuden kriittinen tiheys Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden

Lisätiedot

Hiukkasfysiikka, kosmologia, ja kaikki se?

Hiukkasfysiikka, kosmologia, ja kaikki se? Hiukkasfysiikka, kosmologia, ja kaikki se? Kari Rummukainen Fysiikan laitos & Fysiikan tutkimuslaitos (HIP) Helsingin Yliopisto Kari Rummukainen Hiukkasfysiikka + kosmologia Varhainen maailmankaikkeus

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia

Lisätiedot

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)

Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)

Lisätiedot

Suomalainen tutkimus LHC:llä. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos

Suomalainen tutkimus LHC:llä. Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitos 2.12.2009 Mitä hiukkasfysiikka tutkii? Hiukkasfysiikka tutkii aineen pienimpiä rakennusosia ja niiden välisiä vuorovaikutuksia.

Lisätiedot

Osassa 1 käsiteltiin siirtymää klassisesta fysiikasta moderniin fysiikkaan, fysiikan suhdetta muihin tieteenaloihin ja roolia tieteellisessä

Osassa 1 käsiteltiin siirtymää klassisesta fysiikasta moderniin fysiikkaan, fysiikan suhdetta muihin tieteenaloihin ja roolia tieteellisessä Yhteenveto Tällä kurssilla on keskitytty fysiikan suuriin linjoihin ja pyritty antamaan yleiskuvaa mitä fysiikka pitää sisällään. Kurssin punaisena lankana on ollut siirtyminen klassisesta 1800-luvun fysiikasta

Lisätiedot

Mikä on CERN? Conseil Européen pour la Recherche Nucléaire

Mikä on CERN? Conseil Européen pour la Recherche Nucléaire Mikä on CERN? Conseil Européen pour la Recherche Nucléaire CERN on maailman suurin hiukkasfysiikan tutkimuslaitos Ranskan ja Sveitsin rajalla lähellä Geneveä Peruste;u 1954 Suomi lii;yi 1991 21 jäsenmaata

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Teoreettisen fysiikan tulevaisuuden näkymiä

Teoreettisen fysiikan tulevaisuuden näkymiä Teoreettisen fysiikan tulevaisuuden näkymiä Tämä on teoreettisen fysiikan professori Erkki Thunebergin virkaanastujaisesitelmä, jonka hän piti Oulun yliopistossa 8.11.2001. Esitys on omistettu professori

Lisätiedot

Paula Eerola 17.1.2012

Paula Eerola 17.1.2012 Suomalainen tutkimus LHC:llä Paula Eerola Fysiikan laitos ja Fysiikan tutkimuslaitostki it 17.1.2012 Mikä on LHC? LHC Large Hadron Collider Suuri Hiukkastörmäytin on CERN:ssä sijaitseva it kiihdytin, toiminnassa

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 5 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 04 Hiukkasfysiikka Hiukkaskiihdyttimet Ydin- ja hiukkasfysiikan varhaisvaiheessa

Lisätiedot

Kvan%fysiikan historiaa

Kvan%fysiikan historiaa Kvan%fysiikan historiaa (hiukkasfysiikkaan painottunut katsaus!) 1900: Planckin säteilylaki 1905: Einsteinin selitys valosähköilmiölle 1913: Bohrin atomimalli 1924: de Broglien aaltohiukkasdualismi 1925:

Lisätiedot

Hiukkasfysiikkaa ja kosmologiaa teoreetikon näkökulmasta

Hiukkasfysiikkaa ja kosmologiaa teoreetikon näkökulmasta teoreetikon näkökulmasta Aleksi Vuorinen Bielefeldin yliopisto CERN, 3.6.2013 Sisältö Johdanto Motivaatiota Luonnon skaalat ja effektiiviset teoriat Alkeishiukkaset ja vuorovaikutukset Standardimallin

Lisätiedot

Alkeishiukkaset. perushiukkaset. hadronit eli kvarkeista muodostuneet sidotut tilat

Alkeishiukkaset. perushiukkaset. hadronit eli kvarkeista muodostuneet sidotut tilat Alkeishiukkaset perushiukkaset kvarkit (antikvarkit) leptonit (antileptonit) hadronit eli kvarkeista muodostuneet sidotut tilat baryonit mesonit mittabosonit eli vuorovaikutuksien välittäjähiukkaset Higgsin

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

8. Hiukkasfysiikka ja kosmologia

8. Hiukkasfysiikka ja kosmologia 8. Hiukkasfysiikka ja kosmologia Aineen alkeellisin rakenne Miten hiukkasia tutkitaan? Hiukkaset ja vuorovaikutukset Kvarkit Symmetriat ja vuorovaikutuksien yhtenäistäminen Maailmankaikkeuden rakenne Varhainen

Lisätiedot

PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat

Lisätiedot

Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi?

Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi? Uudet kokeet testaavat maailmankaikkeuden kohtalon: Muuttuuko kaikki aine lopulta säteilyksi? Ainetta ja sen perusosasia, protoneja, pidetään ikuisesti pysyvinä. Eräät hiukkasfysiikan teoriat ennustavat

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä Kertausta 1.kurssista Hiilen isotoopit 1 Isotoopeilla oli ytimessä sama määrä protoneja, mutta eri määrä neutroneja. Ne käyttäytyvät kemiallisissa

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Hiukkasfysiikan kokeet

Hiukkasfysiikan kokeet Hiukkasfysiikan kokeet Santeri Laurila Helsingin yliopisto Fysiikan tutkimuslaitos (HIP) kalvot: Santeri Laurila, Kati Lassila-Perini, Mikko Voutilainen, Lauri A. Wendland Hiukkasfysiikan kokeet 1 / 54

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Hiukkasfysiikan kokeet

Hiukkasfysiikan kokeet Helsingin yliopisto Fysiikan tutkimuslaitos (HIP) kalvot: Santeri Laurila,, Mikko Voutilainen, Lauri A. Wendland 1 / 54 Fysiikan teoria ja kokeet Teoria Kokeet 1. Hiukkaskiihdyttimet 2. Ilmaisimet 3. Data-analyysi

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio

KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio KVANTTITELEPORTAATIO Janne Tapiovaara Rauman Lyseon lukio BEAM ME UP SCOTTY! Teleportaatio eli kaukosiirto on scifi-kirjailijoiden luoma. Star Trekin luoja Gene Roddenberry: on huomattavasti halvempaa

Lisätiedot

Perusvuorovaikutukset

Perusvuorovaikutukset Perusvuorovaikutukset Mikko Mustonen Mika Kainulainen CERN tutkielma Nurmeksen lukio Syksy 2009 Sisältö 1 Johdanto... 3 2 Perusvuorovaikutusten historia... 3 3 Teoria... 6 3.1 Gravitaatio... 6 3.2 Sähkömagneettinen

Lisätiedot

Hei, Tässä lähetän sinulle eilisen esitykseni kalvot! Leo Näreaho

Hei, Tässä lähetän sinulle eilisen esitykseni kalvot! Leo Näreaho 1 Panpsykismi (2010) Keskustelijat Heikki Mäntylä Leo Näreaho Kullervo Rainio 1.12.2010 Leo Näreaho Hei, Tässä lähetän sinulle eilisen esitykseni kalvot! Leo Näreaho 2 3 4 5 6 7 8 9 10 11 1.12.2010 Heikki

Lisätiedot

Valkoineni Kääpiö. Gammapurkauksen jälkihehku Tähtikuvioiden mytologiaa

Valkoineni Kääpiö. Gammapurkauksen jälkihehku Tähtikuvioiden mytologiaa Valkoineni Kääpiö Gammapurkauksen jälkihehku Tähtikuvioiden mytologiaa Jyväskylän Sirius VALKOINEN ry KÄÄPIÖ 2/2008 2 Kesä 2008 1 2 Kesä 2008 VALKOINEN KÄÄPIÖ 25. vuosikerta TÄSSÄ NUMEROSSA: Hanna Parviaisen

Lisätiedot

Pimeän energian metsästys satelliittihavainnoin

Pimeän energian metsästys satelliittihavainnoin Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Tehtävän eri osat arvostellaan 1/3 pisteen tarkkuudella, ja loppusumma pyöristetään kokonaisiksi

Tehtävän eri osat arvostellaan 1/3 pisteen tarkkuudella, ja loppusumma pyöristetään kokonaisiksi FYSIIKAN KOE 11.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa arvostelussa käytettävistä

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Oppikirja (kertauksen vuoksi)

Oppikirja (kertauksen vuoksi) Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain

Lisätiedot

Hiukkaskiihdyttimet. Tapio Hansson

Hiukkaskiihdyttimet. Tapio Hansson Hiukkaskiihdyttimet Tapio Hansson Miksi kiihdyttää hiukkasia? Hiukkaskiihdyttimien kehittäminen on ollut ehkä tärkein yksittäinen kehityssuunta alkeishiukkasfysiikassa. Hyöty, joka saadaan hiukkasten kiihdyttämisestä

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia. Vinkkejä tenttiin lukemiseen Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä luentomuistiinpanojen

Lisätiedot

KERTAUSTEHTÄVIEN RATKAISUT

KERTAUSTEHTÄVIEN RATKAISUT KERTAUSTEHTÄVIEN RATKAISUT 1. a) Karkea virhe on seurausta mittaamisvälineen epätarkoituksenmukaisesta ja väärästä käsittelystä tai lukemavirheestä. Mittaussarjan karkeat virheet paljastuvat usein tuloksia

Lisätiedot

MAAILMANKAIKKEUDEN KEHITYS

MAAILMANKAIKKEUDEN KEHITYS MAAILMANKAIKKEUDEN KEHITYS Abstract At the moment of the beginning, there was not such a notion as time or space. All that we have come to know as the universe was at first an infinitely dense accumulation

Lisätiedot

Pimeä energia. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla

Pimeä energia. Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla Pimeä energia Hannu Kurki- Suonio Kosmologian kesäkoulu 2015 Solvalla 27.5.2015 Friedmann- Robertson- Walker - malli homogeeninen ja isotrooppinen approksimaa>o maailmankaikkeudelle Havaintoihin sopii

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Higgsin hiukkasta tutkimassa LHC:llä

Higgsin hiukkasta tutkimassa LHC:llä Higgsin hiukkasta tutkimassa LHC:llä 1. Johdanto Lyhenne LHC tarkoittaa CERNin Suurta Hadronitörmäytintä, Large Hadron Collider. CERN on yhteiseurooppalainen Euroopan hiukkasfysiikan laboratorio, jonka

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

QCD vahvojen vuorovaikutusten monimutkainen teoria

QCD vahvojen vuorovaikutusten monimutkainen teoria QCD vahvojen vuorovaikutusten monimutkainen teoria Aleksi Vuorinen Helsingin yliopisto Hiukkasfysiikan kesäkoulu Helsingin yliopisto, 18.5.2017 Päälähde: P. Hoyer, Introduction to QCD, http://www.helsinki.fi/~hoyer/talks/mugla_hoyer.pdf

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

MasterClass 14. Hiukkasfysiikan kokeet

MasterClass 14. Hiukkasfysiikan kokeet MasterClass 14 Hiukkasfysiikan kokeet Mikko Voutilainen Helsingin yliopisto osa kalvoista: Lauri A. Wendland Hiukkasfysiikan kokeet CERNissä 1 / 54 Koe ja teoria kohtaavat Teoria Kokeet Hiukkasfysiikan

Lisätiedot

7A.2 Ylihienosilppouma

7A.2 Ylihienosilppouma 7A.2 Ylihienosilppouma Vetyatomin perustilan kentän fotoni on λ 0 = 91,12670537 nm, jonka taajuus on f o = 3,289841949. 10 15 1/s. Tämä spektriviiva on kaksoisviiva, joiden ero on taajuuksina mitattuna

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot