Kunnallisten rakennushankkeiden kestävät energiaratkaisut aluenäkökulmasta



Samankaltaiset tiedostot
Kurken kyselyn yhteenveto. Mari Sepponen ja Pekka Lahti, VTT

Uudet energiatehokkuusmääräykset, E- luku

Kokemuksia energia- ja päästölaskennasta asemakaavoituksessa

Myyrmäen keskusta Kasvihuonekaasupäästöjen mallinnus KEKO-ekolaskurilla

REMA Rakennuskannan energiatehokkuuden. arviointimalli Keskeisimmät tulokset. Julkisivumessut

8637_OJALA I EHDOTUSVAIHEEN KEKO- TARKASTELU TULOKSET

Skaftkärr energiatehokasta kaupunkisuunnittelua Porvoossa Jarek Kurnitski

Pääkaupunkiseudun ilmastoindikaattorit Alatunniste 1

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy

SKAFTKÄRR. Kokemuksia Porvoon energiakaavoituksesta Maija-Riitta Kontio

ENERGIAKAAVOITUKSEN MALLIT HANKKEEN TULOKSET

KOTKAN KAAVOITUKSESSA OLEVIEN ASUINALUEIDEN LIIKENTEEN ILMASTOVAIKUTUSTEN VERTAILU. Esa Partanen & Antti Harju Kotkan kaupunki, kaavoitus 4.12.

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari

AURINKOLÄMMÖN LIIKETOIMINTAMAHDOLLISUUDET KAUKOLÄMMÖN YHTEYDESSÄ SUOMESSA

Äänekosken energiatase Keski-Suomen Energiatoimisto/ Benet Oy

EKOTEHOKKUUDEN EDISTÄMINEN KOTKAN RÄSKIN ASEMAKAAVA-ALUEELLA

Ilmastoindikaattorit Kymenlaakson tuloksia

Alue-energiamalli. Ratkaisuja alueiden energiasuunnitteluun

Jyväskylän seudun rakennemalli 20X0 Ekotehokkuuden arviointi

ALUEELLISTEN ENERGIARATKAISUJEN KONSEPTIT. Pöyry Management Consulting Oy Perttu Lahtinen

Kestävän energiankäytön toimenpideohjelma (Sustainable energy action plan, SEAP)

Uusien rakennusten energiamääräykset 2012 Valtioneuvoston tiedotustila

Kestävä liikenne ja matkailu

UUDENMAAN KUNTIEN KHK- PÄÄSTÖT JA TIEKARTAT Tulkinta- ja käyttöohjeet. Johannes Lounasheimo Suomen ympäristökeskus SYKE

Kohti nollaenergiarakentamista SSTY Sairaaloiden sähkötekniikan ajankohtaispäivä Erja Reinikainen / Granlund Oy

Iltapäivän teeman rajaus

Kohti lähes nollaenergiarakennusta FInZEB-hankkeen tulokulmia

Matalaenergiarakentaminen

Ilmasto- tai energiakaava, Energiansäästötavoitteet ja kaavoitus

Energiatehokkuus ja rakennuksen automaation luokitus

-päästöjään ainakin 20 % vuoteen 2020 mennessä.

Uuraisten energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Muuramen energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Ympäristövaikutukset Ratamopalveluverkon vaihtoehdoissa

Lisäselvitys Porvoon kaupungin asiassa 01677/16/4114 antamaan lausuntoon OMENATARHAN ALUE OSANA SKAFTKÄRRIN ENERGIATEHOKASTA KAUPUNGINOSAA

ENERGIATEHOKKUUS OSANA ASUMISTA JA RAKENTAMISTA. Energiatehokkuusvaatimukset uudisrakentamisen lupamenettelyssä

Asuinrakennusten rakenteellisen energiatehokkuuden elinkaarihyödyt. Panu Pasanen Bionova Oy / One Click LCA 30. tammikuuta 2019

Jyväskylän energiatase 2014

Jyväskylän energiatase 2014

ILMASTOTAVOITTEITA TOTEUTTAVA KAAVOITUS

Energiatehokas Engelinranta. Vähähiilinen maankäyttö ja kaavoitus Päijät-Hämeessä

Saavutettavuusanalyysit Helsingin seudun MAL-aiesopimuksen valmistelussa

Hiilineutraali Vantaa Miia Berger Ympäristösuunnittelija Ympäristökeskus

Keski-Suomen energiatase Lauri Penttinen Keski-Suomen Energiatoimisto/ Benet Oy

Laukaan energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Hämeenlinnan Engelinrannan alueen energiakaavan valmistelu. Julkinen tiivistelmä loppuraportista,

MUUTTUVA UUSIMAA. Uudenmaan ympäristökeskuksen materiaaliin perustuva esitys. Henrik Sandsrtröm

Kuopion kaupunki Pöytäkirja 5/ (1) Ympäristö- ja rakennuslautakunta Asianro 6336/ /2017

ETELÄ-SAVON MAAKUNTALIITON ASIANTUNTIJALAUSUNNON LIITE

Sun Zeb laskentatuloksia ja muita havaintoja. FinnZEB workshop Jari Shemeikka, tiimipäällikkö VTT

HIILIJALANJÄLKI- RAPORTTI

Yhdyskuntarakenteen vyöhykkeet aineiston päivitys ja soveltaminen

Suomen rakennettu ympäristö vuonna Bio Rex Miimu Airaksinen, VTT

Keski-Suomen energiatase 2016

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

EKOTEHOKKUUDEN EDISTÄMINEN KOTKAN KAUPUNKISUUNNITTELUSSA

Plusenergiaklinikka Tulosseminaari Pellervo Matilainen, Skanska

FinZEB- loppuraportti; Lähes nollaenergiarakentaminen Suomessa

Rakennuskannan energiatehokkuuden kehittyminen

Alueellinen energiatehokkuus

Lahtelaisten liikkuminen ja siitä aiheutuvat kasvihuonekaasupäästöt sekä erilaisten taustatekijöiden vaikutus näihin

Suomenlinnan kestävän kehityksen mukaiset energiaratkaisut pitkällä aikavälillä

Kartanonranta Energia- ja ympäristöselvitykset

Kotkan Haminan seudun energiavahvuuksien huomiointi strategisessa yleiskaavassa. Kaavaselostuksen liite X x

RAKENTAMISEN HIILIJALANJÄLKI. Kunnat portinvartijoina CO 2? Puurakentamisen ja energiatehokkaan rakentamisen RoadShow 2011.

Keski Suomen energiatase Keski Suomen Energiatoimisto

GIS-pohjainen toimintamalli henkilöautoliikenteen tuottaman CO2-päästön arviointiin

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

Uusiutuvan energian yhdistäminen kaasulämmitykseen

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

KESKON KÄYTÖSSÄ OLEVIEN KIINTEISTÖJEN ENERGIAKULUTUKSEN YMPÄRISTÖPROFIILI 2014

ENERGIATODISTUS. LUONNOSVERSIO - virallinen todistus ARA:n valvontajärjestelmästä. Uudisrakennusten. määräystaso 2012

Huom. laadintaan tarvitaan huomattava määrä muiden kuin varsinaisen laatijan aikaa ja työtä.

Uusiutuva energia ja hajautettu energiantuotanto

Hiilineutraali Helsinki Anni Sinnemäki Helsingin kaupunkiympäristön apulaispormestari

Hiilineutraalin energiatulevaisuuden haasteet

A4 Rakennuksen käyttö- ja huolto-ohje

Kuopion kaupunki Pöytäkirja 5/ (1) Ympäristö- ja rakennuslautakunta Asianro 3644/ /2016

Pienimuotoisen energiantuotannon edistämistyöryhmän tulokset

Lämmitysverkoston lämmönsiirrin (KL) Asuntokohtainen tulo- ja poistoilmajärjestelmä. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö Kaukolämpö

5/13 Ympäristöministeriön asetus

Kuntien mahdollisuudet vähentää kustannustehokkaasti ilmastopäästöjä

Energiaeksperttikoulutus, osa 1 -Taustaa tuleville eksperteille. Keski-Suomen Energiatoimisto energianeuvonta@kesto.

Rakentamisen energianeuvonta Rakentajien info Jyväskylä

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi

RAKENTAMINEN JA ENERGIATEHOKKUUS

Yksikkö

Pääkaupunkiseudun ilmastoraportti

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

Pirkko Harsia Yliopettaja, sähköinen talotekniikka Koulutuspäällikkö, talotekniikka ASTA/ RT. P Harsia 1

Marja-Vantaa - Urbaanin ekologisen rakentamisen suuri mahdollisuus

Ratapihaan liittyvien alueiden sekä kaupungintalon tontin asemakaavamuutoksen tärinäselvitys Suonenjoen kaupunki

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö

Pirkanmaan ilmasto- ja energiastrategian

Uusiutuvan (lähi)energian säädösympäristö

Transkriptio:

30.11.2012 1 / 59 Kunnallisten rakennushankkeiden kestävät energiaratkaisut aluenäkökulmasta Pekka Lahti, Mari Sepponen & Mikko Virtanen VTT Tutkimusraportti VTT-R-07915-12 Espoo 30.11.2012

30.11.2012 2 / 59 kansikuva: Helsingin Viikin Ympäristötalo 14.10.2012 P. Lahti

30.11.2012 3 / 59 Esipuhe Tämä raportti on KURKE -projektin (Kunnallisen rakentamisen kestävät energiaratkaisut) alueellista energiatehokkuutta koskevan osan loppuraportti. Projektin tarkoitus on kehittää kunnallisten rakennushankkeiden energiatehokkuuden arviointimenetelmiä. Tässä raportoidun VTT:n osuuden rinnalla raportoidaan Aalto-yliopiston osuudet Aalto-yliopiston Energiatekniikan laitoksen ja Rakenne- ja rakennustuotantotekniikan laitoksen julkaisusarjoissa (projektin vastuuhenkilöt prof. Kai Sirén ja TkT Arto Saari). Projektia ovat rahoittaneet Tekes, Aalto-yliopisto, VTT, Espoon kaupunki, Jyväskylän kaupunki, Keravan kaupunki, Kotkan kaupunki, Vantaan kaupunki, Helsingin energia (Helen), Oy Turku Energia, Vantaan Energia Oy, Fortum Power and Heat Oy, YIT Kiinteistötekniikka Oy, Suomen Lämpöpumppuyhdistys SULPU ry ja Carrier Oy. Tutkimus- ja kehitystyöhön sekä raportin laatimiseen ovat osallistuneet seuraavat tutkijat VTT:ltä: johtava tutkija Pekka Lahti (projektipäällikkö), tutkijat Mari Sepponen ja Mikko Virtanen.

30.11.2012 4 / 59 Sisällysluettelo 1 Johdanto... 5 2 Kunnallisen rakennushankkeen energiatehokkuuden alueelliset ulottuvuudet... 6 3 Kunnallisen rakennushankkeen energiatehokkuuden arviointitarpeet... 7 3.1 Käytetyt energiatehokkuuden arviointimenetelmät... 7 3.2 Energiatehokkuus rakennushankkeen määrittelyvaiheessa... 7 3.3 Yleis- ja asemakaavoituksen vaikutus hankkeen energiatehokkuuteen... 8 3.4 Mitä olisi ihanteellinen energiakaavoitus?... 8 3.5 Kenellä on suurin vaikutusvalta hankkeen energiatehokkuuden kannalta?...10 3.6 Valintojen vaikutus energiatehokkuuteen suunnittelu- ja rakennusvaiheessa...10 3.7 Mistä tarvitaan lisätietoa energiatehokkaassa suunnittelussa?...10 3.8 Mitkä energiatehokkuutta parantavat toimet ovat helppoja toteuttaa?...10 3.9 Energiatehokkuutta arvioivien työkalujen tarve...11 4 Alueellisen energiatarpeen ja -tehokkuuden arviointityökalun rakenne...12 4.1 Rakennusten energiatarve, energiantuotantotavat, energiankulutus ja päästöt...12 4.2 Henkilöliikenteen suoritteet, energiankulutus ja päästöt...17 5 Työkalun testaus esimerkkialueilla...21 5.1 Marja-Vantaan Kivistö...21 5.1.1 Lähtötiedot...21 5.1.2 Liikenneratkaisujen energiankulutuksen ja päästöjen arviointi...22 5.1.3 Rakennusten energiankulutus...23 5.1.4 Energiantuotantovaihtoehdot ja niiden CO 2 -ekvivalenttipäästöt...25 5.2 Sibbesborg, Eriksnäs...26 5.2.1 Lähtötiedot...26 5.2.2 Liikenneratkaisut...26 5.2.3 Rakennusten energiankulutus...28 5.2.4 Energiantuotantovaihtoehdot ja niiden CO 2 -ekvivalenttipäästöt...29 5.3 Yhteenveto kokemuksista...30 6 Arviointityökalun lopullinen muoto ja käyttöohje...32 7 Yhteenveto...38 Lähteet...39 Liite A...40 Liite B...50 Liite C...58 Liite D...59

30.11.2012 5 / 59 1 Johdanto KURKE-projektin loppuraportti on yhteenveto tutkimushankkeen keskeisistä tuloksista. Projektin tavoitteena on kehittää menettelytapoja ja työkaluja alueellisen energiatehokkuuden huomioon ottamiseksi ja arvioimiseksi kunnallisten rakennushankkeiden alueellisessa suunnittelussa. Rakennetun ympäristön energiatehokkuutta ohjataan monilla valinnoilla ja päätöksillä jo kaavoitusvaiheessa, myös kaavoitusprosessin ulkopuolella: erilaisilla energiantuotantotavoilla niin keskitetyllä valtakunnallisella tuotannolla kuin myös paikallisilla energiantuotantotavoilla, on erilaiset alueisiin kohdistuvat odotukset ja vaatimukset ja näistä osa voidaan viedä kaavan sisältövaatimuksiin ja esim. aluevarauksiin paikallinen energiantuotanto voi olla keskitettyä tai hajautettua. energiatehokkuuden aluenäkökohtien huomioonottaminen kaavoituksessa edellyttää nykyisen prosessin osapuolien, heidän odotustensa ja ongelmakohtien tunnistamista. rakennusten lämmöntarpeen pienentyessä erilaisten energiantuotantotapojen ja käytettävien polttoaineiden edullisuussuhteet muuttuvat ja esimerkiksi hajautetut järjestelmät muuttuvat aiempaa edullisemmiksi. energiajärjestelmien valintaan vaikuttaa myös se, millaisia riskejä niihin sisältyy, tarvitaanko varajärjestelmiä ja jos kyllä, niin millaisia? raskasta perusrakennetta vaativat järjestelmät edellyttävät suuria käyttäjämääriä riittävällä tiheydellä (aluetehokkuudella) ollakseen kannattavia (tämä on olennaista muun muassa kaukolämpö- ja kaukojäähdytysratkaisuissa). energiaverkon rakenne riippuu myös kortteli- ja liikenneverkon rakenteesta, koska pääverkon tulee seurata rakennetun kerrosalan painopisteitä. sekä kaava- että rakennussuunnittelussa kaivataan työkaluja, joilla voidaan arvioida erilaisten suunnitteluvalintojen vaikutuksia suunnittelukohteen energiatehokkuuteen ja arviointityökaluja tarvitaan eri tarkkuustasoisina ja erilaisiin suunnittelutilanteisiin soveltuvina. lisäksi tulee varautua tulevan rakentamisen energiatarpeisiin riittävästi etukäteen, suunnittelemalla ja päättämällä energiahuollon ratkaisuista pitkällä aikavälillä. Tutkimus- ja kehittämisprojekti toteutettiin seuraavissa osissa: suoritettiin kysely kunnallisen rakentamisen, suunnittelun, hankekehityksen ja energiajärjestelmien asiantuntijoiden joukossa (tavoitteena selvittää tarpeita ja odotuksia kunnallisten rakennushankkeiden energiatehokkuuden arvioinnissa tarvittavista tiedoista ja työkaluista). perehdyttiin alueellisen energiatehokkuuden laskenta- ja arviointimenettelyihin kirjallisuuden ja aiempien työkalukehityshankkeiden tulosten kautta. rakennettiin pilottiversio laskentatyökalusta, jolla alueellista energiatehokkuutta voidaan arvioida. testattiin työkalua kahdessa todellisessa aluesuunnittelutapauksessa. arvioitiin kokemukset ja viimeisteltiin niiden pohjalta helppokäyttöinen taulukkolaskentapohjainen työkalu. raportoitiin hankkeen tulokset.

30.11.2012 6 / 59 2 Kunnallisen rakennushankkeen energiatehokkuuden alueelliset ulottuvuudet Rakennetun ympäristön energiatehokkuutta ohjataan kaavoituksella, alkaen maakunta- ja seututasoilta ja päätyen yksityiskohtaiseen asemakaavoitukseen. Energiatehokkuudella tarkoitetaan tässä sekä energiankulutuksen että energiantuotannosta aiheutuneiden päästöjen määrää esimerkiksi kerrosneliötä tai henkilöä kohti. Yleispiirteisessä kaavoituksessa valitaan rakennettavien alueiden ja myöhemmin asemakaavoitettavien alueiden sijainnit, esimerkiksi tietyn kaupunkiseudun sisällä. Samalla määrittyvät edellytykset liittyä seudullisiin keskitettyihin energiajärjestelmiin ja mahdollisuudet tuottaa energiaa hajautetusti, esimerkiksi aurinko- tai tuulivoimaloilla tai lämpöpumpuilla. Liikenteen ja siinä kuluvan energian osalta sijainti määrittelee etäisyydet alueella asuvien työpaikkoihin, kouluihin, päiväkoteihin ja muihin palveluihin. Aluetehokkuus määrittelee alueen perusrakenteen (myös kaukolämpöverkon, sähköverkon ja kaasuverkon) tehokkuuden (verkostopituus kerrosneliötä tai asukasta kohti) ja sillä on vaikutusta energiansiirtoverkkojen siirtohäviöihin. Asemakaavoitusvaiheessa tulee ottaa huomioon erilaisten, sekä keskitettyjen että hajautettujen energiantuottotapojen edellyttämät tilavaraukset kaavassa. Energiatehokkuuden aluenäkökohtien huomioonottaminen kaavoituksessa edellyttää nykyisen prosessin osapuolien sekä ongelmakohtien tunnistamista. Näin varmistetaan myös tulevissa hankkeissa osapuolien roolit ja vastuut yhteistyön sujumiseksi. Paikallinen energiantuotanto voi olla keskitettyä tai hajautettua. Rakennusten lämmöntarpeen pienentyessä erilaisten tuotantotapojen edullisuussuhteet muuttuvat. Hajautetut järjestelmät muuttuvat aiempaa edullisemmiksi. Raskasta perusrakennetta vaativat järjestelmät edellyttävät suuria käyttäjämääriä riittävällä tiheydellä (aluetehokkuudella) ollakseen kannattavia. Energiaverkon rakenne riippuu myös kortteli- ja liikenneverkon rakenteesta, koska pääverkon tulee seurata rakennetun kerrosalan painopisteitä. Alueen sijainti määrittelee alueen synnyttämien henkilömatkojen suuntautumisen ja keskimatkapituudet läheisiin työpaikka- ja palvelualueisiin. Tätä kautta voidaan arvioida todennäköiset (keskimääräiset) henkilömatkasuoritteet (henkilökilometriä asukasta kohti) kulkutavoittain. Mitä lyhyemmät etäisyydet, sitä suurempi on kävelyn ja pyöräilyn osuus ja sitä pienempi on moottoriajoneuvoilla tapahtuvan liikenteen osuus. Alueellisesta joukkoliikennetarjonnasta riippuu kuinka suuri osuus moottoroidusta liikenteestä on linjaautoilla, junilla, raitiovaunuilla tai metrolla ja kuinka suuri henkilöautoilla. Kulkutapajakaumalla on ratkaiseva vaikutus liikennesuoritteen kokonaisenergiankulutukseen. Kävelyn, pyöräilyn ja joukkoliikenteen osuuksien kasvu vähentää liikenteen suhteellista energiankulutusta ja päästöjä. Kaavoituksessa tehtävillä valinnoilla voidaan edistää tai vaikeuttaa kävelyn ja pyöräilyn olosuhteita samoin kuin joukkoliikenteen toimintaedellytyksiä. Sekä kaava- että rakennussuunnittelussa tarvitaan työkaluja, joilla voidaan arvioida erilaisten suunnitteluvalintojen vaikutuksia suunnittelukohteen energiatehokkuuteen. Arviointityökaluja tarvitaan eri tarkkuustasoisina ja erilaisiin tyypillisiin suunnittelutilanteisiin soveltuvina. Lisäksi tulee varautua tulevan rakentamisen energiatarpeisiin riittävästi etukäteen, suunnittelemalla ja päättämällä energiahuollon ratkaisuista pitkällä aikavälillä.

30.11.2012 7 / 59 3 Kunnallisen rakennushankkeen energiatehokkuuden arviointitarpeet Rakennus- ja aluehankkeiden energiatehokkuuden arvioinnin tarpeita kartoitettiin asiantuntijoille suunnatulla verkkokyselyllä (Digium). Tarkempi yhteenveto tuloksista on esitetty liitteessä A. Kysely toteutettiin 24.11.2011 2.3.2012 välisenä aikana. KURKE-verkoston kautta lähetettiin 113 kutsua asiantuntijoille, joista 19 vastasi kyselyyn. Kyselyn vastausprosentti jäi näin ollen 19 %:iin. Vastanneet edustivat kuitenkin hyvin alueiden energiatehokkuuden toimijakenttää eri näkökulmista. 9 vastaajaa (eli 47 % vastaajista), edusti julkista tahoa, eli kuntia, rahoittajia ja tutkimusorganisaatiota. Yksityisten yritysten puolelta saatiin 53 % eli 10 vastaajaa, jotka työskentelivät insinööri- ja arkkitehtitoimistoissa, rakennusyrityksessä tai energiantuotantojärjestelmien valmistajalla. Asiantuntijoiden vastuualueita olivat: toimitusjohtaja, kehitysjohtaja, johtaja, kehittämisinsinööri, johtava asiantuntija, kaavoituspäällikkö, yhdyskuntasuunnittelija, arkkitehti, projektipäällikkö, projekti-insinööri, tuotepäällikkö, myyntipäällikkö sekä tutkija. Kyselyn vastaamiseen oli käytetty keskimäärin 42 minuuttia. Kyselyn päätavoitteena oli selvittää, miten kunnallisen rakentamisen energiatehokkuutta voidaan asiantuntijoiden mielestä parantaa. Yhteenvetona kyselyn annista voidaan todeta seuraavasti: Tärkeää on kokonaisuuksien käsittely ja hallinta, sekä kokonaisstrategia. Huomio on kiinnitettävä eniten vaikuttaviin asioihin. Eri alojen ja asiantuntijoiden tiivis yhteistyö on tärkeää. Tarvitaan kaukonäköisyyttä pitkälle tulevaisuuteen vähintään 2030 asti. Paikalliset olosuhteet on otettava huomioon. Paikalliset energialähteet ja niiden potentiaali eri osa-alueilla tulee selvittää. Huomioitava kokonaisuutena kaupunki-, liikennejärjestelmä- ja palvelurakenne. Korjausrakentaminen on myös olennaista mitä tehdään vanhoille rakennuksille? Kaavan ja muiden toimenpiteiden välinen työnjako, miten parhaiten vaikuttaa energiatehokkuuteen? Työkalulla varmistetaan ja perustellaan energiatehokas lopputulos, karsitaan huonot vaihtoehdot. Työkalun on oltava yksinkertainen ja havainnollinen, ensisijaisesti ammattilaisille tarkoitettu ja säännöllisesti päivitetty. Työkalun käytön keston tulisi olla enintään 1 2 työpäivää ja kustannukset 1 000 2 000 /arvio, vaativampi työkaluversio erikseen. Työkalun lisäksi tarvitaan neuvontaa (verkkopalveluna tai online-ohjeistuksena) sekä mahdollisuus tallentaa. 3.1 Käytetyt energiatehokkuuden arviointimenetelmät Vastaajat kertoivat käyttäneensä energiatehokkuuden arviointimenetelmiä erilaisten rakennuskohteiden arvioinnissa, sekä hankkeiden laatuarvioinnissa ja tarjousvaiheessa. Lisäksi mainittiin aluetason suunnitelmien arviointi esimerkiksi suunnittelukilpailujen yhteydessä. Suosituimpia energiatehokkuuden arviointimenetelmiä olivat Yhdysvalloissa kehitetty rakennushankkeiden ympäristövaikutusten arviointityökalu LEED, jota oli käyttänyt 37 % vastaajista, sekä samantyyppinen Iso-Britanniassa kehitetty BREEAM, jota 26 % vastaajista kertoi käyttäneensä. Kolmanneksi tunnetuin oli suomalainen PROMISE, joka on rakentamisen ja hankesuunnittelun toimivuuden arviointikehikko, ja jota 11 % vastaajista oli käyttänyt. Lisäksi oli käytetty yhdeksää muuta laskenta- tai arviointityökalua sekä itse kehitettyjä menettelytapoja. 3.2 Energiatehokkuus rakennushankkeen määrittelyvaiheessa Rakennushankkeen määrittelyvaiheessa on monia asioita, jotka vastaajien mielestä tulee huomioida. Kaikki vastaajat pitivät merkittävänä tai hyvin merkittävänä sitä, että toteutetun kohteen käytön aikana kuluu mahdollisimman vähän energiaa. Samoin vastaajat olivat yhtä mieltä siitä, että kaikki energiankäyttömuodot tulee huomioida (mukaan lukien lämmitys, jäähdytys, valaistus, ilmanvaihto ja muut laitteet). Valtaosan (94 %) mielestä hanke tulisi arvioida elinkaariperiaatteella, missä huomioidaan kokonaisvaltainen energiatehokkuus, lähtien raaka-ainehankinnasta aina rakennuksen purkamiseen asti.

30.11.2012 8 / 59 Kaikkien vastaajien mielestä rakennushankkeen määrittelyvaiheessa kasvihuonekaasupäästöjen (joko hiilijalanjäljen tai CO 2 -ekvivalenttipäästöjen) arviointi on hyvin merkittävää tai merkittävää. Valtaosa vastaajista (53 74 % vastaajista, riippuen päästöstä) piti myös muiden päästöjen, kuten pienhiukkasten, rikkidioksidipäästöjen tai muiden ekosysteemivaikutusten arviointia merkittävänä tai hyvin merkittävänä. Kommenteissa korostui tärkeänä seikkana kokonaisuuksien käsittely ja hallinta, mikä voidaan tulkita niin, että vastaajien mielestä kokonaisuudet eivät ehkä vielä ole hallinnassa. Tähän kuuluu yhtenä osana mukaan myös olemassa olevan rakennuskannan ns. uusiokäyttö. Paikalliset olosuhteet on myös otettava huomioon. Jo suunnitteluvaiheessa on huomioitava tilojen käyttötarve ja -aste, sekä tilankäytön muunneltavuus eri tarpeisiin. Tavoitteena voisi olla yli 90 % käytön osuus. Lisäksi esille nostettiin erilaisten energiavaihtoehtojen vertailun tarve. 3.3 Yleis- ja asemakaavoituksen vaikutus hankkeen energiatehokkuuteen Yleis- ja asemakaavoituksessa tehtyjen valintojen vaikutusta rakennushankkeen energiatehokkuuteen kartoitettiin myös kyselyssä. Erityisesti huomiota kiinnitettiin kaavoituksen suunnittelu- ja päätöksentekovaiheisiin. Lähes kaikkien (94 %) vastaajien mielestä energiatehokkuuden arviointi pitkällä aikavälillä (vähintään 2030 asti) oli merkittävää tai hyvin merkittävää. Vastaajat pitivät energiatehokkuuden kannalta tärkeimpänä rakennushankkeen sijaintia (yleensä tai suhteessa liikenneverkkoon), sekä paikallista ja uusiutuvaa energiantuotantoa. 84 % vastaajista arvioi aluetehokkuuden, eli kerrosalan määrän suhteessa kulutettuun maa-alaan, vaikutuksen energiatehokkuuteen olevan hyvin merkittävä tai merkittävä. Yli puolet (58 %) vastanneista piti hankkeen toteutusta korjaamalla ja laajentamalla vanhaa uudisrakentamisen sijaan merkittävänä tai hyvin merkittävänä. Mielipiteet vaihtelivat hieman siinä, miten tärkeää energiatehokkuuden kannalta on suunnittelun aikainen yhteistyö paikallisen energiantuottajan sekä liikennepalvelujen tuottajan kanssa. Suunnitteluvaiheen yhteistyötä energiantuottajan kanssa 53 % vastaajista piti merkittävänä tai hyvin merkittävänä, kun taas loput vastaajista arvioivat sen merkityksen vähäiseksi. Liikennepalvelujen tuottajan osalta yhteistyön arvioi 68 % merkittäväksi tai hyvin merkittäväksi. Sen sijaan kaasuverkon sijaintia ei pidetty kovinkaan merkittävänä tekijänä (74 % vastaajista), mihin todennäköisesti vaikuttaa paljon se, sijaitseeko vastaajan paikkakunta yleensäkään kaasuverkon palvelualueella. Avoimissa vastauksissa kerrottiin, että energiatehokkuutta kaavoituksessa voitaisiin parantaa suunnittelemalla laajempia kokonaisuuksia ja katsomalla kauas tulevaisuuteen. Tulisi tähdätä kaupunkirakenteen eheyttämiseen, hyviin liikenneyhteyksiin sekä monipuoliseen palvelurakenteeseen. Myös korjausrakentaminen on osa keinopalettia. Toisena painopisteenä nousi esiin, että paikalliset vaihtoehdot energiantuotannolle on selvitettävä kokonaistarkastelun ja optimaalisen ratkaisun etsinnän kannalta. Useiden energiamuotojen kohdalla tämä voitaisiin toteuttaa jo maakuntakaavatasolla, jotta tieto olisi saatavilla. Yhtenä ehdotuksena oli, että kaavassa tulisi voida ilmoittaa mahdollisen lähilämmön ja -kylmän osalta saatavilla olevat ja tulevat elinkaaren aikaiset liityntätehot ja vuosienergiat sekä käytetyt energialähteet ja päästövaikutukset. 3.4 Mitä olisi ihanteellinen energiakaavoitus? Asiantuntijat kuvasivat ihanteellisen energiakaavoituksen sisältöä seuraavasti: kokonaisvaltaista asiantuntijoiden sekä kaavoituksen ja muiden osa-alueiden, kuten energiantuotannon ja liikennepalvelun, välistä yhteistyötä ja vuorovaikutusta. Ensin tarvitaan kokonaisstrategia, jonka mukaan keinot valitaan. Kokonaisvaltainen suunnittelu ja (ympäristö)vaikutusten arviointi edellyttää eri tahojen yhteistyötä. Myös yleiskaava on saatettava ajan tasalle. Energiakaavoitus voisi pitää sisällään halutun energiatehokkuustason, sekä päästötasojen ja uusiutuvan energiantuotannon osuuksien määrittelyt. Siinä voitaisiin myös määritellä kaukolämmön ja -kylmän palvelualueita, liikenneverkkoa sekä paikallisten energialähteiden tuotantopotentiaalin kartoittamista.

30.11.2012 9 / 59 Vastaajat ehdottivat myös seuraavia näkökulmia energiakaavoitukseen: Arvioidaan 80/20 -periaatteella niitä asioita, joilla on oletettavasti suurin vaikutus energiankulutukseen ja päästöihin. Energiatehokkuus on ajattelutapana mukana heti hankkeen suunnittelusta lähtien, esim. Porvoon Skaftkärr hyvä case. Kaavassa tulisi ilmoittaa mahdollisen kaukolämmön ja -kylmän (ja lähilämmön & -kylmän) osalta saatavilla olevat elinkaarenaikaiset liityntätehot sekä käytetyt energialähteet ja päästöominaisuudet. Mahdollisimman väljä kaava ja muu arsenaali käyttöön. Kaava sallisi sekä keskitetyn energian tuotannon että yksityisten eri vaihtoehtojen valinnan. Kaikilla alueilla ei välttämätöntä suosia kaikkia energiavaihtoehtoja, kaavoittaja voi asiantuntijoiden avulla valita sopivimmat. Kaukolämpöalueiden määrittely palvelualueina, missä tulisi sallia ainoastaan paremmat vaihtoehtoiset ratkaisut. Ts. ei maalämpöä yhteistuotantokaukolämpöalueille, ellei itse tuota myös tarvitsemaansa sähköä. Uusiutuvien lisäenergiantuotannon tulisi olla yhteistuotantoalueilla sähköä. Pitäisi määritellä mitkä tuotantomuodot ovat sallittuja, pientuotantolaitosten paikat suojaetäisyydet, hiukkasrajat. Liikenneverkko toimiva. Kevyen liikenteen verkko toimiva myös yksityiskohdissaan eli toteutettuna. Pikapyörätiet. Joukkoliikenteen toimintamahdollisuudet huomioitu. Hyvin eriäviä mielipiteitä nostatti kysymys siitä, pitäisikö asemakaavassa (joko kaavamääräyksissä tai rakennustapaohjeissa) määritellä rakennusten energiatehokkuustaso ja sen laskentatapa. Puoltaneet vastaajat pitivät vaatimuksena yleisesti hyväksyttyä ja riittävän selkeää ja yhtenäistä laskentatapaa. Tämä kuitenkin tarkoittaisi sitä, että muita tekijöitä, kuten rakennusalaa ja materiaalivalintoja, pitäisi olla valmiita alistamaan energiatehokkuudelle. Energiatehokkuuden asettamista kaavassa vastustaneita puolestaan mietitytti muun muassa laskentatavan muuttuminen viedäänkö kaava tällöin aina valtuuston muutettavaksi? Tämän tarpeellisuutta epäiltiin, sillä EU-direktiivien alituisen tiukentumisen arveltiin kantavan tästä vastuun. Lisäksi todettiin, että voisi olla parempi ohjata määräyksissä olevilla porkkanoilla valintaa energiatehokkaammaksi. Aikataulu asettaa tälle myös haasteita, sillä kaavoituksen toteuttaminen voi joskus viedä yllättävän paljon aikaa, eikä käsiä haluta sitoa. Vastaajien avoimia kommentteja kysymykseen energiatehokkuuden määräämisestä kaavassa: Helpoin tapa kannustaa olisi syöttötariffit ja uudistuotannon E-luvulla. Pakkoa voisi olla kaukolämpöverkkoon liittymisessä. Tulisiko erottaa toisistaan verkko ja lämmöntuottaja? Tulisi liittyä, mutta lämmön voisi ostaa keneltä tahansa? Kuten sähkössäkin. Kaupungit voivat antaa myös omia energiatehokkuuden minimivaateita. Riippuu muista lähtökohdista, esim. kaukolämmön kanssa passiivitalo ei ole kannattava välttämättä. Alueittaiset tavoitteet voisi uusilla alueilla määritellä, rakennuskohtaisethan tulevat muutenkin normina käyttöön. Normeja kiristämällä ei saavuteta kestävää rakentamista, mutta minimitaso lienee määriteltävä. Tulevaisuudessa rakentamisenaikaisiin ja loppusijoittamisen päästöille vaatimukset, ehdot, ohjeet ja kannustimet.

30.11.2012 10 / 59 Asemakaavalla ei saisi sitoa ratkaisuja liikaa - kaava ei saa estää uusia energiainnovaatioita. 3.5 Kenellä on suurin vaikutusvalta hankkeen energiatehokkuuden kannalta? Vastauksissa nousi esiin koko ketju kaavoituksesta rakentajaan olennaisena energiatehokkuuden kannalta. Kansallisella määräystasolla asetetaan vaatimukset. Seuraavalla portaalla ovat kunta ja sen johtavat luottamus- ja virkamiehet, kaavoittaja sekä rakennusvalvonta; ja näissä erityisesti olennaista on kunnan kaavoitus- ja maankäyttöpolitiikka. Kaavoituksen kannalta tasoina ovat yleiskaava asemakaava rakentamistapaohje hankesuunnittelu luonnossuunnittelu rakennuslupa toteutus. Suunnitteluvaiheessa rakennushankkeen tilaaja on määräävässä asemassa, ja toisaalta rakennuttaja niiltä osin, joissa hän voi vaikuttaa tilaajan tekemiin ratkaisuihin. Yleisesti todettiin energiatehokkuuden olevan tahdon asia. Organisaatiossa olisi hyvä olla energianeuvontaan erikoistunut henkilö tai osasto. Toisaalta yksi vastaaja totesi, ettei henkilöillä ja osapuolilla ole merkitystä, sillä kaikki toimivat järkevästi omasta näkökulmastaan. Sen sijaan pelisäännöt pitäisi muuttaa siten, että osaoptimointi ja omaan pussiin pelaaminen lakkaisi. 3.6 Valintojen vaikutus energiatehokkuuteen suunnittelu- ja rakennusvaiheessa Enemmistö vastaajista (84 %) piti tärkeänä valita rakennuksen energiatehokkuustaso tulevien (vuoden 2020 ja siitä eteenpäin) määräysten mukaan. Tyytyminen nykyiseen määräystasoon epäilytti monia vastaajia (42 %). Paikallisesta energiantuotannosta suosituimpia ratkaisuja olivat 1) maa/vesilämmön hyödyntämismahdollisuudet, 2) aurinkoenergia ja myös 3) tuulienergia, johon kiinnostus tosin oli matalampi kuin muihin kahteen edelliseen ratkaisuun (Liite A). Paikallisesta energiantuotannosta todettiin, että järjestelmien huolellinen suunnittelu ja eri asiantuntijoiden ja alojen välinen yhteistyö on tärkeintä, mahdollisimman varhaisesta vaiheesta alkaen. Suunnitteluun kaivattiin pakettiratkaisuja, joita kunnat voisivat hyödyntää ja päättäjät ymmärtää päätöstä tehdessään. Jälleen kokonaisuuden hallintaa pidettiin tärkeänä. Kannustusta toivottiin myös minimivaatimukset ylittäviin ja kunnianhimoisiin ratkaisuihin. Piloteilla ja referenssikohteilla tunnistettiin olevan tärkeä rooli esimerkkeinä ja oppimisen sekä oppien levittämisen lähteinä. Lisäksi mainittiin eri vaihtoehtojen simulointi ja valintojen vaikutusten arviointi. 3.7 Mistä tarvitaan lisätietoa energiatehokkaassa suunnittelussa? Kokonaisuuden hallinnassa koettiin tarvittavan lisätietoa. On vaikeaa arvioida, mitkä valinnat vaikuttavat vähän, ja mitkä paljon. Erilaisia menettelytapoja on paljon, eikä mikään niistä ole saavuttanut standardin asemaa tai yleistynyt. Tästä aiheutuu ristiriitaisia tuloksia ja näkemyksiä, vaikka keskustelua toki tarvitaankin. Lisäksi kaivattiin osaavia suunnittelijoita sekä vuorovaikutusta eri alojen välillä. Yhtenä lisätiedon tarpeena mainittiin myös energiatehokkuuden laskeminen sekä sen mittarit. Jotkut kaipasivat puolestaan lisätietoa uusiutuvasta ja paikallisesta energiantuotannosta, sekä energiaverkkojen ja tuotantolaitteiden omistuksesta. Rakennuksiin liittyen lisätiedon tarpeita nousi esille useita. Rakennuksen käyttökoulutus on yleensä vähäistä ja ohjaustekniikka liian vaikeaselkoista. Lisäksi vastaajia mietitytti ilmanvaihdon energiatehokkuus, sähköjärjestelmät ja jäähdytyksen tarpeen nousu. 3.8 Mitkä energiatehokkuutta parantavat toimet ovat helppoja toteuttaa? Helppoina energiatehokkuustoimina esiin nousivat rakennuksissa seuraavat keinot: talotekniikan ja erityisesti ilmastoinnin tason parantaminen, sekä rakennuksen suuntaus ja sijoitus tontilla, massoittelu ja vaipparakenne. Esimerkiksi Riihimäen Peltosaaressa oli saatu yksinkertaisilla toimenpiteillä vedenlämmityksessä ja veden paineen laskemisella 10 000 euron vuosisäästöt asuntoyhtiötä kohden.

30.11.2012 11 / 59 Teknisten ratkaisujen lisäksi ehdotettiin vaikuttamista ihmisen käyttäytymiseen, joka ei aina edes vaadi investointeja, mutta vaikutus voisi olla suuri. 3.9 Energiatehokkuutta arvioivien työkalujen tarve Kaikki vastaajat pitivät tärkeänä, että työkalu olisi yksinkertainen ja havainnollisessa muodossa, sekä sitä, että työkalu vastaa kaava-, rakennus- ja hankesuunnittelun oleellisiin kysymyksiin. Sen tulisi myös olla yleisesti tunnettu ja käytetty. 74 % vastaajista asetti painoarvoa työkalun sertifioinnille tai ympäristöministeriön suositukselle. Hieman vähemmän (68 % vastaajista) koettiin tarvetta laskentatulosten perusteella myönnettävälle energiatehokkuussertifikaatille. Työkalun toivottiin tuovan esiin eri valintojen ja vaihtoehtojen vaikutukset energiatehokkuuteen. Toisaalta arviointityökaluja tarvitaan myös osoittamaan asukkaille ja päätöksentekijöille, mitä kannattaa tehdä. Se voisi tarjota tukea myös muun muassa kaavamääräysten perusteluun tyyliin: tähän energiatasoon päästään näillä valinnoilla. Mielipiteet arviointityökalun käytön kestosta ja kohtuullisista kustannuksista yhdessä käyttökohteessa vaihtelivat keskimäärin 1 2 työpäivän ja 1 000 2 000 välillä. Työkalun tulisi myös kaikkien mielestä soveltua täydennys- ja korjausrakentamisalueille, sekä 94 % mielestä ainakin uudisrakentamisalueille. Suurin osa vastaajista (89 %) näki tarpeen eritasoisille työkaluille strategisesta suunnittelusta kaavoitukseen ja rakennussuunnitteluun. Suurin tarve nähtiin suunnittelijoille ja muille ammattilaisille suunnatulla työkalulle (100 % vastaajista). Toisaalta avoimissa kommenteissa todettiin, että asian popularisoimiseksi olisi hyvä saada tietoa myös tavallisille ihmisille. Avoimissa kommenteissa ehdotettiin, että tarjolla voisi olla kaksi eri versiota: Lite- ja Full- versio. Liteversion käyttö voisi kestää puolesta tunnista kahteen tuntiin, ja se olisi suunnattu suurelle yleisölle ja aiheeseen johdatteluun ja opiskeluun. Tämä ei kuitenkaan voisi olla minkään luvan edellytys tai päätöksenteon peruste. Full-versiossa puolestaan jo pelkästään tietojen keruu monista lähteistä kestää useampia päiviä, ja tuloksena olisi sertifikaatti. Tällöin puhutaan jo tuhansien eurojen kustannuksesta, ja sen laatijana voisi olla yksityinen yritys. Tosin tämä Full-versio olisi jo raskas menettely, eikä sen pitäisi koskea pientalorakentajia tai pieniä hankkeita, joten ehkä näiden väliin tarvitaan jonkinlainen väliporras. Työkalujen lisäksi todettiin avoimissa vastauksissa, että tarvitaan arvioinnin tueksi neuvontaa (esim. online help desk), ainakin siirtymävaiheessa. Ohjeistus tulee mielellään olla työkalun yhteydessä, ja työkalulle tarvitaan tekninen tuki. Lisäksi mainittiin mahdollisuus tallentaa erilaisia versioita.

30.11.2012 12 / 59 4 Alueellisen energiatarpeen ja -tehokkuuden arviointityökalun rakenne Tutkimus- ja kehityshankkeessa toteutettiin taulukkolaskentapohjainen työkalu (KURKE-työkalu) alueellisen energiatehokkuuden arviointiin. KURKE-työkalu on tarkoitettu kunnallisen rakennushankkeen alueellisen energiatehokkuuden (energiantuotannon ja -kulutuksen) vertailuun. Aluetason KURKE-työkalun tarvitsemat lähtötiedot ja tulostus on kuvattu luvussa 6. Työkalu on vapaasti ladattavissa KURKE-projektin internetsivuilla 1. Rakennustason energiaratkaisuiden ja niiden kustannusten arviointiin kehitetty KURKEtyökalu on toteutettu ja raportoitu erikseen hankkeen Aalto yliopiston toteuttamassa osuudessa, ja se on myös saatavilla hankkeen internetsivuilta. Tehokkuuden mittareina ovat suhteellinen energiankulutus ja hiilidioksidipäästöt kerrosneliötä ja henkilöä (asukasta ja työpaikkaa) kohden. Työkalulla arvioidaan alueen rakennuksien käyttöä ja muuta toimintaa varten tuotettua ja rakennuksissa kulutettua energiaa (lämmitys-, sähkö- ja jäähdytysenergiaa) sekä henkilöliikennettä varten tuotettua ja kulutettua energiaa. Työkalu arvioi sekä energiantuotannon määrät että sen aikana aiheutuneet päästöt. Rakenteisiin (talot + infra) sitoutunut energia ei sisälly laskentamalliin. Alueen suunnittelijan ja työkalun käyttäjän kannalta keskeistä on miettiä sitä, millä energia- ja liikennejärjestelmillä (keskitetty/hajautettu, uusiutumattomat/uusiutuvat energialähteet, polttoainevalinnat, joukkoliikenne/kävely/pyöräily jne.) alueen on ajateltu toimivan sen jälkeen kun se on rakennettu. Osa energiajärjestelmien tehokkuudesta riippuu voimakkaasti jo alueen sijaintivalinnoista, esimerkiksi siitä miten alue sijoittuu suhteessa muuhun kaupunkirakenteeseen, olemassa oleviin energia- ja liikennejärjestelmiin, palveluihin ja työpaikkoihin. Sijainti antaa tietyt reunaehdot energia- ja liikennejärjestelmien suunnittelulle. Jos esimerkiksi kahden aluesuunnitelman vaihtoehdon välillä on vaihtelua em. sijaintimuuttujissa, syntyy myös eroja laskentatuloksissa. Työkalua voidaan käyttää myös sellaisessa tapauksessa, että halutaan arvioida tietyn (yhden) maankäyttösuunnitelman toteuttamista erilaisilla energiajärjestelmillä ja/tai erilaisilla liikennejärjestelmillä. Kehitetyllä alueellisella energiatehokkuusmallilla voidaan laskea ja vertailla näiden vaihtoehtojen välisiä eroja saman maankäyttösuunnitelman sisällä. Jos esimerkiksi lopputulos näyttää hyvältä tai huonolta jonkun järjestelmän suhteen, arvioidaan sen jälkeen pitääkö maankäyttösuunnitelmaa muuttaa sen takia johonkin suuntaan esimerkiksi sen takia, että hajautettua energiaa pystyttäisiin tuottamaan alueella edullisemmin. 4.1 Rakennusten energiatarve, energiantuotantotavat, energiankulutus ja päästöt Rakennusten energiankulutusta arvioitaessa työkaluun on mahdollista syöttää kuusi erilaista rakennustyyppiä. Kullekin rakennustyypille määritellään yhteenlaskettu kerrosala, jonka voi asettaa työkaluun joko suoraan, tai sen voi laskea syöttämällä asukkaiden lukumäärän (yhteensä samantyyppisissä rakennuksissa) sekä keskimääräisen kerrosalan asukasta tai työpaikkaa kohden. Oletuksina olevia kuutta rakennustyyppiä voi lisäksi työkalussa vapaasti muunnella, jolloin niille on määriteltävä omat energiankulutuslukunsa. Oletuksena työkalussa olevat rakennustyypit ovat: Asuinkerrostalot Olemassa olevat asuinkerrostalot Asuinpientalot Olemassa olevat asuinpientalot Julkiset palvelutilat Toimistotilat Rakennustyyppien keskimääräinen energiankulutus annetaan tunnuslukuina rakennuksen kerrosalaa kohden. Energiankulutus arvioidaan neljän ominaiskulutuskertoimen (kwh/k-m 2,a) kautta: Tilojen lämmitys Lämmin käyttövesi 1 ks. http://ene.aalto.fi/fi/tutkimus/kurke/

30.11.2012 13 / 59 Sähkö Jäähdytys Rakennusten energiankulutusta määriteltäessä on myös valittavissa onko rakennuksissa reaaliaikainen sähkön kulutuksen seuranta asukkaille. Reaaliaikaisen sähkönkulutus tiedon jakamisen vaikutus sähkönkulutuksen pienenemiseen on arvioitu olevan keskimäärin 8 %, joka on yli 20 reaaliaikaisen sähkön mittarointi tutkimuksen keskiarvo kertyneestä energiansäästöstä. [Neenan ja Hemphill, 2008] Keskitetyissä energiantuotantoratkaisuissa energiaa tuotetaan keskitetysti ja sitä siirretään verkostoja pitkin rakennuksiin. Esimerkiksi lämmönsiirrosta kaukolämpöverkossa aiheutuu siirtohäviöitä, jotka on myös tuotettava rakennusten energiantarpeen lisäksi. Työkalussa kauko- ja aluelämpöverkon häviöitä arvioidaan aluetehokkuuden kautta. Aluetehokkuus on kytköksissä kulutustiheyteen, joka puolestaan vaikuttaa kaukolämmön verkostopituuksiin ja sitä kautta lämpöverkon häviöiden osuuteen alueen lämpöenergiantarpeesta. Kaukolämpöverkon siirtohäviöiden kertoimet ovat asiantuntija-arvioita, jotka tehtiin KURKE-hankkeessa aiempien tutkimusten ja alueiden energia-analyysien pohjalta. Työkalussa käytetyt aluetehokkuusluokat, niiden kuvaus sekä aluetehokkuuden numeeriset arvot on esitetty taulukossa 4.1. Aluetehokkuus on kokonaiskerrosala jaettuna maa-alalla. Se on yleensä 0,4 0,7 kertaa alueen keskimääräinen tontti- tai korttelitehokkuus riippuen siitä kuinka paljon viheralueita tai muita vapaa-alueita sisältyy kohdealueen rajauksen sisään. Taulukossa on esitetty myös aluetehokkuuteen sidoksissa olevat lämpöhäviöiden osuudet suhteessa alueen lämpöenergiankulutukseen. Taulukko 4.1. Aluetehokkuusluokat ja niiden määrittelyjen keskinäinen vastaavuus lämpöverkon häviöiden määrittelyssä aluetehokkuuden luokka aluetehokkuuden kuvaus kaavoituksessa yleisesti käytetty aluetehokkuusluku lämpöverkon häviöiden määrittelyssä käytetty kerroin erittäin väljä haja-asutusalue alle 0,1 0,18 väljä väljä pientaloalue 0,1-0,2 0,12 keskiverto tiivis pientaloalue 0,2-0,3 0,09 tiivis väljä kerrostaloalue 0,3-0,4 0,04 erittäin tiivis tiivis kerrostaloalue yli 0,4 0,03 Työkalussa on joukko valmiiksi määriteltyjä energiantuotantovaihtoehtoja. Valmiiksi määritellyt vaihtoehdot ovat t sekä hajautettuja, talokohtaisia että keskitettyjä energiaratkaisuja. Energiaratkaisut on eritelty lämmön ja sähkön tuotannolle. Myös valmiiksi määritellyt vaihtoehdot ovat jossain määrin käyttäjän muunneltavissa, esimerkiksi lämpöpumpun vuosihyötysuhteen (COP) muodossa. Valmiiksi määritellyt energiantuotantoratkaisut on esitetty taulukossa 4.2. Taulukko 4.2. Energiantuotantovaihtoehdot Lämmöntuotanto Kaukolämpö Sähkölämmitys Maalämpö (talokohtainen) Maalämpö (alue) Pellettikattila Puuhake kaukolämpö Kaukolämpö Aurinkolämpö + kaukolämpö Aurinkolämpö + puuhake-kl Kaukolämpö Sähköntuotanto Sähköverkko Sähköverkko Sähköverkko Sähköverkko Sähköverkko Sähköverkko Aurinkosähkö + verkko Sähköverkko Sähköverkko Tuulisähkö + verkko Valmiiksi määriteltyjen energiantuotantovaihtoehtojen lisäksi työkalussa on mahdollista määritellä kaksi hybridienergiantuotantoratkaisua vapaammin. Kullekin kuudelle rakennustyypille on määriteltävissä kolme erilaista lämmöntuotantotapaa sekä kolme erilaista sähköntuotantotapaa. Jokaiselle lämmön- ja sähköntuotantotavalle tulee lisäksi määrittää osuus kyseisen rakennustyypin lämmön- tai sähköntuotannosta. Lämmitystavoista valittavissa ovat:

30.11.2012 14 / 59 Kaukolämpö Sähkölämmitys Maalämpö (talo) Maalämpö (alue) Pellettikattila Puuhake kaukolämpö Aurinkolämpö Sähköntuotantotavoista valittavissa ovat: Aurinkosähkö Tuulisähkö Sähköverkko Työkalun käyttäjälle on mahdollista valita lämmitykseen käytetyn sähkön päästökertoimen laskentatapa kolmesta vaihtoehdosta (Kuva 4.1). Lämmitykseen käytetty sähkö sisältää sähkölämmitteisten rakennusten lämmitykseen käytetyn sähkön sekä maalämmöllä lämmitettävien rakennusten lämpöpumppujen kuluttaman sähkön. Ensimmäinen vaihtoehto käyttää lämmityssähkön päästökertoimena keskimääräistä päästökerrointa suomalaiselle keskiarvosähkölle. Toisessa vaihtoehdossa lämmityssähkö oletetaan tuotettavan talvikuukausina erillistuotantona, joka nostaa lämmityssähkön päästökerrointa suhteessa keskimääräiseen päästökertoimeen. Tällöin talvikuukausiksi lasketaan joulu-, tammi- sekä helmikuu, joiden aikana rakennuksissa kulutetaan noin 40 % vuotuisesta lämmityssähkön tarpeesta. Kolmannessa vaihtoehdossa kaikki lämmityssähkö on oletettu tuotettavan erillistuotantona, jonka päästökerroin on moninkertainen Suomen sähkön keskiarvoon verrattuna. Lämmityssähkön päästökertoimien laskentamenetelmä on kehitetty Geoener-hankkeessa. [Holopainen et al., 2010] Kuva 4.1. Lämmitykseen käytetyn sähkön päästökertoimen valinta Työkalu laskee alueen energiankulutuksen rakennusten, mahdollisten lämpöverkkojen ja liikenteen osalta. Tuloksissa eritellään rakennusten energiankulutus rakennustyypeittäin, energiankulutus henkilöä sekä kerrosneliömetriä kohden. Esimerkkejä energiankulutuslaskennan tuloksista on esitetty kuvassa 4.2.

30.11.2012 15 / 59 Kuva 4.2. Energiankulutuslaskennan tuloksia Energiantuotantovaihtoehdoille lasketaan kasvihuonekaasupäästöt eli hiilidioksidiekvivalenttipäästöt. Päästölaskennassa erotellaan lämmityksen, sähkön, jäähdytyksen sekä liikenteen päästöt. Lisäksi vaihtoehdoissa, joissa lämmityksessä käytetään sähköä, on eritelty päästöt lämmityssähkölle (Kuva 4.3). CO 2 -ekvivalenttipäästöt lasketaan sekä henkilöä (asukasta ja työpaikkaa) että kerrosneliömetriä kohden. Sähkön ja kaukolämmön päästökertoimet ovat keskimääräisiä päästökertoimia Suomessa vuosilta 2000 2007. (Keto, 2010) Päästöjen allokointi CHP-tuotannon osalta on tehty hyödynjakomenetelmällä.

30.11.2012 16 / 59 Kuva 4.3. Kasvihuonekaasupäästöt eri energiantuotantovaihtoehdoille Työkalulla on myös mahdollista tarkastella päästökertoimien muutoksesta aiheutunutta muutosta energiantuotantovaihtoehtojen kasvihuonekaasupäästöjen määrään. Lähtötietoina annetaan päästökertoimien muutosnopeus vuodessa sekä tarkasteluajanjakson alkamis- ja loppumisvuosi. Työkalu laskee päästökertoimien suuruuden tarkastelujakson päättyessä ja vertaa kasvihuonekaasupäästöjen määrää nykytilanteeseen eri energiantuotantovaihtoehtojen osalta. (Kuva 4.4) Kuva 4.4. Päästökertoimien muutoksen vaikutus eri energiantuotantovaihtoehtojen CO 2 - ekvivalenttipäästöihin

30.11.2012 17 / 59 4.2 Henkilöliikenteen suoritteet, energiankulutus ja päästöt Arvioitavan alueen aiheuttaman henkilöliikenteen laskentamallin on katettava kaikki tyypilliset suomalaiset kaavoituksen kohteena olevien alueiden olosuhteet. Liikennesuoritteista merkittävä osa määräytyy alueen sijainnin perusteella eli niistä keskimääräisistä etäisyyksistä, joita alueella on suhteessa lähiseudun työpaikkoihin, palveluihin ja virkistysalueille. Myös asemakaavatasolla on syytä tietää, miten alueen sijainti yhdyskuntarakenteessa tai sitä laajemmassa kaupunkiseudullisessa tai jopa valtakunnallisessa kokonaisuudessa vaikuttaa alueen synnyttämään liikennesuoritteeseen ja sitä kautta energiankulutukseen ja päästöihin. Asemakaavatason valinnoilla voi sijaintivalintoihin vaikuttaa enää rajoitetusti, mutta erityisesti kevyen liikenteen verkkoihin kohdistuvilla suunnittelupäätöksillä voidaan vaikuttaa ihmisten kulkutapavalintoihin. Kävelyn tai pyöräilyn reitit voivat olla enemmän tai vähemmän sujuvia, miellyttäviä ja turvallisia. Matkan päätepisteissä tarjolla olevien polkupyörien säilytystilojen laatu ja suihkumahdollisuudet vaikuttavat myös siihen valitaanko pyöräily vai ei. Koko Suomea kattavia henkilöliikennettä koskevia tutkimustietoja on saatavissa noin 5-6 vuoden välein tehdyistä henkilöliikennetutkimuksista (HLT). Viimeisin julkinen tieto on HLT 2010 11 tutkimuksesta, joka julkaistiin maaliskuussa 2012. HLT-tutkimukset perustuvat maanlaajuiseen kyselyyn ja matkapäiväkirjoihin, jotka yleistetään ja tyypitellään koko maan kattaviksi aluetyyppi- ja kulkutapakohtaisiksi ominaistiedoiksi. Aineistoa ja sen edustavuutta pidetään hyvinä, joten niiden käyttöä voidaan perustella liikenteen energiatehokkuutta koskevan arviointimallin lähtötietoina. Joka tapauksessa parempaa koko Suomea kattavaa liikennetietoa ei edes ole saatavissa. Mikäli suunnittelun kohteena olevalta alueelta tai sitä ympäröivältä laajemmalta kaupunkiseudulta on saatavissa HLT:tä tuoreempaa ja tarkempaa liikennetutkimustietoa, voidaan niitä käyttää HLT-tietojen sijaan. Seuraavassa esitetään keskeisimpiä HLT 2010 11 tutkimuksen tuloksia koskien aluetyyppien luokituksia ja niiden mukaisia kulkutapakohtaisia liikennesuoritteita. Alueiden tyypittely niiden ominaisuuksien mukaan helpottaa tarkasteltavan, kaavoituksen kohteena olevan alueen liikenteellisten ominaisuuksien määrittelyä. HLT 2010 11 tutkimuksen mukaan henkilöliikenteen suoritteet (henkilökilometrit asukasta kohti) riippuvat kohteena olevan alueen yhdyskuntarakenteellisista ja kaupunkiseudullisista ominaisuuksista. Tätä empiiristä tutkimustietoa voidaan hyödyntää myös uusien alueiden liikenteellisten ominaisuuksien määrittelyssä. Vastaavilla uusilla alueilla asukkaiden liikennekäyttäytyminen on todennäköisesti samanlaista kuin tutkimuksen kohteena olleiden todellisten alueiden liikennekäyttäytyminen. Aluetyyppien luokitukseen liittyvät esimerkkikartat (liite B) helpottavat arvioitavan alueen sijoittamista käytettävissä olevassa aluetypologiassa. Tutkimuksessa käytetty henkilömatkojen kulkutapojen typologia on seuraava: jalankulku (mukaan lukien sukset, rullaluistimet, potkukelkat yms.) polkupyöräily henkilöauton kuljettaja henkilöauton matkustaja linja-auto metro tai raitiovaunu juna muu (sisältää sekä julkista (taksit, lentokoneet, lautat) että yksityistä ajoneuvoliikennettä (mopot, moottoripyörät, mopoautot, mönkijät, traktorit jne.) Vastaava henkilömatkojen tarkoituksen eli matkatyypin mukainen typologia on seuraava: työmatka koulu- ja opiskelumatka työasiamatka ostos- ja asiointimatka vierailumatka mökkimatka muu vapaa-ajan matka

30.11.2012 18 / 59 Keskimääräiset matkasuoritteet (henkilökilometriä/henkilö vuorokaudessa) ovat alue- ja kulkutavoittain HLT 2010 11:n mukaan taulukon 4.3 mukaisia. Taulukko 4.3. Keskimääräiset matkasuoritteet (henkilökilometriä/henkilö vuorokaudessa kaupunkikoon mukaan ja kulkutavoittain [HLT 2010 11) Pääkaupunkiseutu Suuret kaupungit Keskisuuret kaupungit Pienet kaupungit Muut kunnat kaikki jalankulku 1,2 1,3 1,0 1,1 0,8 1,1 polkupyörä 0,7 1,0 0,8 0,8 0,5 0,7 HA kuljettaja 15,5 19,0 21,7 23,3 23,2 20,8 HA matkustaja 7,4 10,9 8,5 9,0 9,7 9,1 linja-auto 4,3 2,8 1,7 3,0 2,8 3,0 metro, raitiovaunu 1,9 0,0 0,0 0,0 0,0 0,2 juna 4,1 2,8 2,7 3,6 1,0 2,7 muu 2,2 2,8 3,2 5,8 5,2 3,9 yhteensä 36,4 40,8 39,5 46,1 42,9 41,4 Kaupunkikoon lisäksi aluetyyppi vaikuttaa henkilöliikenteen suoritteisiin monin tavoin (Liite B). HLT 2010 11 tutkimuksen mukaisia aluetyyppikohtaisia keskiarvolukuja voidaan tapauskohtaisesti korjata vastaamaan paremmin alueen todellisia ominaisuuksia. Sen tulisi kuitenkin perustua paikalliseen tutkittuun tai kokemusperäiseen tietoon. Taulukoiden antamia liikennesuoritetietoja pidetään liikennemallin pääasiallisina lähdetietoina. Niitä voidaan kuitenkin tarkastella kriittisesti muiden lähdetietojen antamien viitteiden kautta. Keskiarvotietojen käyttö voi olla jossain tapauksessa liian epätarkkaa eli jos on esimerkiksi paikallisen liikenneolosuhteiden tuntemuksen perusteella tietoa, että matkojen keskipituudet ovat kohdealueella selvästi pitemmät tai lyhyemmät, on syytä soveltaa keskiarvoista poikkeavaa tietoa. Muunnos tai keskiarvoa korvaavan tiedon käyttö on kuitenkin syytä tehdä vain asiantuntevan henkilön toimesta tai opastuksella. Tukena muunnokseen voi käyttää HLT 2010-11 perustietoja matkojen keskipituuksista (km/matka), matka-ajoista (minuuttia/matka), kokonaismatka-ajoista (minuuttia/henkilö vuorokaudessa) ja matkaluvusta (matkojen lukumäärä/henkilö vuorokaudessa) tai vastaavia tietoja matkatyypeittäin. Jos esimerkiksi kohdealue sijaitsee oheisen luokittelun mukaan suuressa kaupungissa, mutta tiedetään, että kohdealueen keskietäisyys työpaikkojen painopisteestä on vain 5 km (keskiarvon 6,075 km sijasta), voidaan matkojen keskisuoritetta vähentää työmatkojen osuutta (kokonaissuoritteesta) vastaavasti. Henkilöliikenteen energiankulutus- ja päästötiedot perustuvat VTT:n LIPASTO-tietokantaan 2. Eri liikennevälineiden energiankulutuksen ja tuottamien kasvihuonekaasupäästöjen (CO 2, CH 4 ja N 2 O, yhdistettynä CO 2 -eq.) ominaisluvut perustuvat VTT:n LIPASTO-laskentamallin käyttämiin tuoreimpiin lukuihin vuoden 2010 tasolla (taulukko 4.4.) 2 LIPASTOn verkkosivut: http://lipasto.vtt.fi/

30.11.2012 19 / 59 Taulukko 4.4. Henkilöliikenteen energiankulutus- ja päästötiedot (VTT:n LIPASTO-tietokanta 3 ) Suomen henkilöautojen keskimääräiset khk-päästöt ja energiankulutus matkayksikköä kohden vuonna 2010 Kulutus Kulutus Energia Energia CH 4 N 2 O CO 2 CO 2 eq. [g/km] [l/100 km] [MJ/km] [kwh/km] Bensiinikäyttöiset, maantieajo 0,0059 0,0026 171 172 55 7,3 2,3 0,65 Bensiinikäyttöiset, katuajo 0,01 0,009 196 199 62 8,3 2,7 0,75 Bensiinikäyttöiset, keskimäärin 0,0075 0,0048 180 181 57 7,6 2,5 0,69 Dieselkäyttöiset, maantieajo 0,00061 0,0042 146 147 46 5,5 2 0,55 Dieselkäyttöiset, katuajo 0,0013 0,0076 222 225 71 8,4 3 0,84 Dieselkäyttöiset, keskimäärin 0,0009 0,0054 172 174 55 6,5 2,4 0,65 Maantieajo 0,0047 0,0029 168 169 54 7 2,3 0,64 Katuajo 0,008 0,0085 196 199 63 8,1 2,7 0,75 Keskimäärin 0,006 0,0049 178 180 57 7,4 2,4 0,68 Keskiarvoissa dieselajoneuvojen suoriteosuus on 22 % ja katuajon suoriteosuus 35 %. Linja-autoliikenteen osalta on käytettävissä vastaavat luvut diesel- ja kaasukäyttöisille busseille ja raideliikenteen osalta sähköjunille. Jos paikalliset olosuhteet poikkeavat merkittävästi keskiarvosta, on syytä käyttää ajoneuvotyyppi- tai liikenneverkkokohtaisia arvoja. Työkalulla on myös mahdollista tarkastella liikenteen päästökertoimien oletetusta muutoksesta aiheutunutta muutosta liikenteen kasvihuonekaasupäästöjen määrään. Lähtötietoina annetaan päästökertoimien muutosnopeus vuodessa sekä tarkasteluajanjakson alkamis- ja loppumisvuosi. Työkalu laskee päästökertoimien suuruuden tarkastelujakson päättyessä ja vertaa kasvihuonekaasupäästöjen määrää nykytilanteeseen. Jotta kaikkien kulkutapojen energiankulutus ja kasvihuonekaasupäästöt tulisivat tasapuolisesti laskentaan mukaan, on moottoriajoneuvojen lisäksi mukaan otettu myös kävelyn ja pyöräilyn energiankulutus ja hiilidioksidipäästöt. Arvion perustana on oletus, että sekä kävely että pyöräily kuluttavat energiaa enemmän kuin tilanne, jossa henkilö istuu ajoneuvossa (henkilöautossa, bussissa, junassa, raitiovaunussa tai metrossa) tai on muuten tekemättä mitään fyysisesti rasittavaa. Ihmisen ruumiintoimintojen energiankulutus on perustasollaan mukana kaikissa kulkutavoissa, joten tässä otetaan huomioon vain kävelyn ja pyöräilyn aiheuttama lisäkulutus verrattuna istumiseen. Tavanomaista työmatka-, asiointi- ym. liikkumista ei ole tässä pidetty urheilu- tai edes kuntoilutapahtuma, vaan melko kevyenä fyysisenä suorituksena. Laskennan pohjana on ihmisen päivittäinen keskimääräinen energiantarve noin 2 400 kcal/vrk eli noin 100 kcal/h (valveillaolon aikana noin 120 kcal/h). Sekä pyöräily että kävely aiheuttavat suurin piirtein samansuuruisen lisäkulutuksen noin 100 kcal/h, jolloin kävelyn tai pyöräilyn aikainen kokonaisenergiankulutus on 220 kcal/h. Koska arvioinnin pohjana on kuitenkin vain lisäkulutus verrattuna muihin kulkutapoihin, laskenta tehdään kulutusluvulla 100 kcal/h. Käytetyt keskinopeudet ovat kävelyssä 4,6 km/h ja pyöräilyssä 11,7 km/h (HSL 2010 11 tiedoista lasketut arvot), jolloin kävelyn lisäenergiantarve on 21,7 kcal/km ja pyöräilyn lisäenergiantarve 8,5 kcal/km (1 kcal = 1,163 MWh = 4,1868 kj). Päästöjen osalta kyse on hengityksen tuottamasta lisähiilidioksidista fyysisen lisärasituksen takia (verrattuna tilanteeseen ilman fyysistä ponnistelua). Laskenta perustuu oletukseen, että hiilidioksidin tuotannon lisäys vastaa energiankulutuksen lisäystä. Kummassakaan kevyen liikenteen muodossa, kävelyssä ja pyöräilyssä, ei oteta huomioon käytettyjen kulkuvälineiden tuottamisen kuluttamaa energiaa tai tuottamia päästöjä, aivan kuten ei muissakaan kulkutavoissa. Työkalulla voidaan arvioida henkilöautoliikenteen suhteellisen osuuden vähentämiseen tähtäävien toimenpiteiden vaikutusta. Valittavia toimenpiteitä ovat: Erilliset pyörätiet ja kunnolliset pyörien pysäköintitilat Keskitetyt autojen pysäköintiratkaisut Lähijunien asema alueella 3 LIPASTOn verkkosivut: http://lipasto.vtt.fi/

30.11.2012 20 / 59 Lähikauppa, lasten päivähoitotilat ja ala-aste 400 m etäisyydellä Tiheät ja laadukkaat bussi- ja ratikkalinjat Tiheät, laadukkaat ja turvalliset kävelyreitit Toimenpiteiden vaikutusvoimakkuutta voidaan säädellä välillä +/- 2 4 % (kulkutapajakauman %-yksikköä) valitsemalla valikoista toimenpidettä kuvaava sanallinen vaihtoehto (esim. lähijunan aseman etäisyys ei ole alueella, 600 800 m, 400 600 m tai alle 400 m ). Kulkutapajakauman muutos näkyy välittömästi työkalussa olevassa kaaviossa (kuva 4.5). 1 % 2 % 3 % 6 % 0 % 7 % Kulkutapajakauma (% hlö-km:stä) ennen toimenpiteitä 9 % 72 % Henkilöauto Kaupunkilinja-auto (diesel) Kaupunkilinja-auto (kaasu) Lähiliikennejuna (sähkö) Jalankulku Polkupyöräily Metro/raitiovaunu 3 % 0 % 1 % 5 % 11 % 13 % Kulkutapajakauma (% hlö-km:stä) toimenpiteiden jälkeen 9 % 58 % Henkilöauto Kaupunkilinja-auto (diesel) Kaupunkilinja-auto (kaasu) Lähiliikennejuna (sähkö) Jalankulku Polkupyöräily Metro/raitiovaunu Kuva 4.5. Kulkutapajakauma perusratkaisussa sekä paranneltujen suunnitteluvalintojen jälkeen. Laskentatulokset esitetään sekä energiankulutuksen osalta että aiheutettujen kasvihuonekaasupäästöjen osalta (kuvat 4.6 4.7). Liikenteen kasvihuonekaasupäästöt asukasta kohti vuodessa kg/asukas, a 900 950 1 000 1 050 1 100 1 150 1 200 perusvaihtoehto 1 069 63 24 4 paranneltu vaihtoehto 1 010 77 29 5 henkilöautot linja-autot rataliikenne kävely ja pyöräily Kuva 4.6. liikenteen kasvihuonekaasupäästöt sekä ns. perusvaihtoehdossa että eri toimenpiteiden avulla parannetussa vaihtoehdossa. Alueen kasvihuonekaasupäästöt vuodessa henkilöä kohden (asukas ja työntekijä) (kg/henkilö, a) kg/henkilö, a 0 500 1 000 1 500 2 000 2 500 3 000 3 500 Perustilanne: Kaukolämpö & sähkö Sähkölämmitys & sähkö Lämpöpumppu (talokohtainen) & sähkö Lämpöpumppu (aluekohtainen) & sähkö Pellettikattilat & sähkö Puuhakekaukolämpö & sähkö Aurinkosähköpaneelit & kaukolämpö & sähkö Aurinkolämpökeräin & kaukolämpö & sähkö Aurinkolämpökeräin & puuhake-kl & sähkö Tuulivoima & kaukolämpö & sähkö Vaihtoehto1 Vaihtoehto2 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 27 18 579 18 1150 579 18 1466 579 579 579 579 18 18 189 1859 586 586 504 18 1150 579 579 18 18 1150 442 18 1150 579 18 1466 Liikenne (toimenpiteiden jälkeen) Sähkö Jäähdytys Lämmityssähkö Lämpö Kuva 4.7. liikenteen kasvihuonekaasupäästöt (toimenpiteiden jälkeen) osana koko energiankäytön ja sen eri tuotantovaihtoehtojen kasvihuonekaasupäästöjä, jolloin liikenteen osuus pysyy samana.