Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Samankaltaiset tiedostot
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Johdatus regressioanalyysiin. Heliövaara 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Harjoitus 9: Excel - Tilastollinen analyysi

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

2. Teoriaharjoitukset

Yleinen lineaarinen malli

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Yleistetyistä lineaarisista malleista

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Korrelaatiokertoinen määrittely 165

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Lohkoasetelmat. Vilkkumaa / Kuusinen 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Dynaamiset regressiomallit

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Mat Tilastollisen analyysin perusteet, kevät 2007

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Todennäköisyyden ominaisuuksia

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Johdatus tilastotieteeseen Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2004) 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Yhden selittäjän lineaarinen regressiomalli

Osa 2: Otokset, otosjakaumat ja estimointi

Lohkoasetelmat. Heliövaara 1

Harha mallin arvioinnissa

pitkittäisaineistoissa

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Lohkoasetelmat. Kuusinen/Heliövaara 1

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

Johdatus regressioanalyysiin

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

Sovellettu todennäköisyyslaskenta B

pitkittäisaineistoissa

Sovellettu todennäköisyyslaskenta B

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Harjoitus 3: Regressiomallit (Matlab)

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2007) 1

Väliestimointi (jatkoa) Heliövaara 1

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Lineaarialgebra, kertausta aiheita

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

Estimointi. Vilkkumaa / Kuusinen 1

Tilastollinen aineisto Luottamusväli

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

Regressiodiagnostiikka ja regressiomallin valinta

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Moniulotteisia todennäköisyysjakaumia

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Regressiodiagnostiikka ja regressiomallin valinta

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Harjoitus 3: Regressiomallit (Matlab)

Inversio-ongelmien laskennallinen peruskurssi Luento 4

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

MS-C1340 Lineaarialgebra ja

2. Tietokoneharjoitukset

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Mat Tilastollisen analyysin perusteet, kevät 2007

Sovellettu todennäköisyyslaskenta B

tilastotieteen kertaus

Transkriptio:

Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen

Sisältö lineaarinen lineaarinen

lineaarinen

Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n ), pareja (x, y). Oletetaan, että arvot y i ovat muuttujan y satunnaisia havaittuja arvoja ja oletetaan, että arvot x i ovat muuttujan x p-ulotteisia ei-satunnaisia havaittuja arvoja. (Oletamme siis, että x i on p-ulotteinen vektori.) Oletetaan, että p < n. Oletetaan, että muuttujan y arvot riippuvat muuttujan x arvoista lineaarisesti. voidaan nyt esittää seuraavalla tavoin. y i = b 0 + b T x i + ε i, i 1,..., n, missä kertoimet b 0 ja b = (b 1,..., b p ) T ovat tuntemattomia vakioita ja virhetermien (jäännöstermien) ε i odotusarvo E[ε i ] = 0. Malli voidaan esittää myös muodossa lineaarinen y i = b 0 + b 1 (x i ) 1 + b 2 (x i ) 2 + + b p (x i ) p + ε i, i 1,..., n.

Lineaarinen, yleiset oletukset Lineaarisia malleja käytettäessä tehdään yleensä seuraavat yleiset oletukset. Vektorimuuttujan x arvot x i on mitattu virheettömästi. Arvot (x i ) s, (x i ) k, s k ovat toisistaan riippumattomia. Virhetermit ovat riippumattomia muuttujan x arvoista. Virhetermit ovat samoin jakautuneita. Virhetermien odotusarvo E[ε i ] = 0, kaikilla i 1,..., n. Virhetermit ovat homoskedastisia eli niillä on kaikilla sama varianssi E[ε 2 i ] = σ2. Virhetermit ovat korreloimattomia eli ρ(ε i, ε j ) = 0, i j. lineaarinen

Lineaarinen Kun edellä esitetyt yleiset oletukset pätevät, niin muuttujalla y on seuraavat ominaisuudet. Odotusarvo E[y i ] = b 0 + b T x i i 1,..., n, Varianssi var(y i ) = var(ε i ) = σ 2. Korrelaatiokerroin ρ(y i, y j ) = 0, i j. lineaarinen

lineaarinen

Lineaarisen n y i = b 0 + b T x i + ε i, i 1,..., n, lineaarinen parametrit ovat kertoimet b 0 ja b = (b 1,..., b p ) T ja jäännöstermien varianssi E[ε 2 i ] = σ2. Nämä parametrit ovat yleensä tuntemattomia ja ne halutaan estimoida havainnoista.

Oletuksen E[ε i ] = 0, kaikilla i 1,..., n pätiessä lineaarinen voidaan esittää muodossa y i = E[y i ] + ε i, i 1,..., n, lineaarinen missä E[y i ] = b 0 + b T x i on n ns. systemaattinen osa ja ε i on n satunnainen osa.

Regressiotaso Lineaarisen n systemaattinen osa määrittää tason E[y i ] = b 0 + b T x i lineaarinen y = b 0 + b T x. Virhetermien varianssi E[ε 2 i ] = σ2 kuvaa havaintopisteiden vaihtelua tason ympärillä.

lineaarinen Lineaarisessa analyysissä tavoitteena on etsiä kertoimille b 0 ja b = (b 1,..., b p ) T sellaiset estimaatit, että niiden määräämä taso selittäisi mahdollisimman hyvin selitettävän muuttujan arvojen vaihtelun.

Pienimmän neliösumman menetelmä Olkoon β = (b 0, b 1,..., b p ) T, olkoon X n (p + 1) datamatriisi, jonka ensimmäinen sarake koostuu luvuista 1 ja sarakkeet 2 p + 1 havainnoista x i ja olkoon Y n 1 datavektori, joka koostuu havainnoista y i. Nyt kertoimille b 0 ja b = (b 1,..., b p ) T voidaan käyttää estimaattia ˆβ = (ˆb 0, ˆb 1,..., ˆb p ) T = (X T X) 1 X T Y. lineaarinen Tämä estimaatti minimoi jäännöstermien neliösumman n ε 2 i = i=1 n (y i b 0 b T x i ) 2 i=1 kertoimien b 0 ja b = (b 1,..., b p ) T suhteen.

Käänteismatriisin olemassaolo Edellä oletimme, että matriisilla X T X on käänteismatriisi. Jos näin ei ole, niin jotkin selittävistä muuttujista riippuvat toisistaan lineaarisesti (täydellisesti). Tällöin osa muuttujista voidaan jättää pois ilman, että mitään informaatiota menetetään. lineaarinen

lineaarinen Pienimmän neliösumman estimaatti määrittää nyt estimoidun tason ŷ = ˆb 0 + ˆb T x.

Sovitteet ja residuaalit Muuttujan y i sovite havaintopisteessä x i on ŷ i = ˆb 0 + ˆb T x i, i 1,..., n. Estimoidun n residuaali ˆε i on selitettävän muuttujan y havaitun arvon y i ja sovitteen ŷ i antaman arvon erotus ˆε i = y i ŷ i, i 1,..., n. lineaarinen Huomaa että y i = ŷ i + ˆε i, i 1,..., n. Regressio selittää selitettävän muuttujan havaittujen arvojen vaihtelun sitä paremmin mitä lähempänä sovitteet ovat selitettävän muuttujan havaittuja arvoja. Toisin sanoen, selittää selitettävän muuttujan havaittujen arvojen vaihtelun sitä paremmin mitä pienempiä ovat estimoidun n residuaalit.

Jäännösvarianssin estimointi Jos lineaarisen n yleiset oletukset pätevät, niin jäännösvarianssin var(ε i ) = σ 2 harhaton estimaatti on var(ˆε) = 1 n p 1 n ˆε 2 i. i=1 lineaarinen (Oheisessa kaavassa otoskoosta n vähennetään estimoitujen parametrien (b 0, b 1,..., b p ) lukumäärä.) Jäännösvarianssin estimaatti kuvaa havaintopisteiden vaihtelua estimoidun tason ympärillä.

Varianssihajotelma Kokonaisneliösumma SST (total sum of squares) n (y i ȳ) 2 i=1 kuvaa selitettävän muuttujan y havaittujen arvojen y i kokonaisvaihtelua. Jäännösneliösumma SSE (sum of squares of errors) n (ˆε i ) 2 i=1 kuvaa residuaalien ˆε i vaihtelua. Mallineliösumma SSM (model sum of squares) n (ŷ i ȳ) 2 i=1 kuvaa sitä osaa selitettävän muuttujan y havaittujen arvojen vaihtelusta, jonka lineaarinen on selittää. lineaarinen

Selitysaste Selitysaste R 2 = 1 SSE SST = SSM SST mittaa n selittämää osuutta selitettävän muuttujan havaittujen arvojen kokonaisvaihtelusta. Selitysasteelle pätee 0 R 2 1. lineaarinen Selitysaste ilmaistaan tavallisesti prosentteina 100R 2 %.

Numeerinen esimerkki usean selittävän muuttujan lineaarisesta sta lineaarinen Kallen keksifirman salaisessa laboratoriossa valmistetaan uudenlaista keksiä firman hittituotteeksi: Kallen superherkkumakuelämysnomparelli-suklaahippukeksejä. Salaisessa laboratoriossa tutkitaan nomparellien ja suklaahippujen määrän vaikutusta keksin massaan.

Nomparelli Suklaahippu Massa 15 5 24 13 7 28 12 9 26 11 7 27 10 10 29 9 12 31 17 2 19 16 4 21 12 8 25 3 15 36 lineaarinen Taulukko: Nomparellien ja suklaahippujen määrä ja mitattu keksin massa.

Regressiokertoimien (b 0, b 1, b 2 ) T estimaattit, jotka minimoivat jäännöstermien neliösumman, saadaan matriisien 1 15 5 24 1 13 7 28 1 12 9 26 1 11 7 27 X = 1 10 10 1 9 12 ja Y = 29 31 1 17 2 19 1 16 4 21 1 12 8 25 1 3 15 36 lineaarinen avulla. Estimaatit (ˆb 0, ˆb 1, ˆb 2 ) T = (X T X) 1 X T Y = (29.9718, 0.6562, 0.5533) T Estimaattien avulla voidaan laskea massalle sovite ŷ i = ˆb 0 + ˆb T x i ja laskea residuaalit ˆε i = y i ŷ i

Nomparelli Suklaahippu Massa Sovite Residuaali 15 5 24 22.8953 1.1047 13 7 28 25.3143 2.6857 12 9 26 27.0771-1.0771 11 7 27 26.6267 0.3733 10 10 29 28.9428 0.0572 9 12 31 30.7056 0.2944 17 2 19 19.9230-0.9230 16 4 21 21.6858-0.6858 12 8 25 26.5238-1.5238 3 15 36 36.3027-0.3027 lineaarinen Taulukko: Nomparellien ja sulkaahippujenmäärän vaikutus massaan. Taulukossa myös sovitteen sekä residuaalien arvot.

Massojen keskiarvo ȳ = 26.6 ja kokonaisneliösumma n SST = (y i ȳ) = i=1 Jännösneliösumma SSE = ja neliösumma 10 i=1 10 i 1 (y i 26.6) 2 = 214.4 (ˆε i ) 2 = 13.5586 lineaarinen SSM = n (ŷ i ȳ) 2 = i=1 10 i=1 (ŷ i 26.6) 2 = 200.8307 Selitysaste on näin ollen R 2 = SSM SST = 200.8307 = 0.9367 = 93.67%. 214.4

lineaarinen lineaarinen

lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n ), pareja (x, y). Oletetaan, että arvot y i ovat muuttujan y q-ulotteisia satunnaisia havaittuja arvoja ja oletetaan, että arvot x i ovat muuttujan x p-ulotteisia ei-satunnaisia havaittuja arvoja. (Oletamme siis, että y i on q-ulotteinen vektori ja että x i on p-ulotteinen vektori.) Oletetaan, että p < n. Oletetaan, että muuttujan y arvot riippuvat muuttujan x arvoista lineaarisesti. lineaarinen voidaan nyt esittää seuraavalla tavoin. lineaarinen y i = b o + B T x i + ε i, i 1,..., n, missä q 1 vektorin b 0 ja p q matriisin B alkiot ovat tuntemattomia vakioita ja virhetermien ε i odotusarvo E[ε i ] = 0.

Lineaarinen, yleiset oletukset Lineaarisia malleja käytettäessä tehdään yleensä seuraavat yleiset oletukset. Vektorimuuttujan x arvot x i on mitattu virheettömästi. Arvot (x i ) s, (x i ) k, s k ovat toisistaan riippumattomia. Virhetermit ovat riippumattomia muuttujan x arvoista. Virhetermit ovat samoin jakautuneita. Virhetermien odotusarvo E[ε i ] = 0, kaikilla i 1,..., n. Virhetermeillä on kaikilla sama kovarianssimatriisi E[ε i ε T i ] = Σ. Virhetermeille pätee ρ((ε i ) k, (ε j ) k ) = 0, kaikilla k ja kaikilla i j. lineaarinen

Yleistetty pienimmän neliösumman menetelmä Olkoon β = [b 0, B T ] T, olkoon X n (p + 1) datamatriisi, jonka ensimmäinen sarake koostuu luvuista 1 ja sarakkeet 2 p + 1 havainnoista x i ja olkoon Y n q datamatriisi, joka koostuu havainnoista y i. Nyt parametreille b 0 ja B voidaan käyttää estimaattia lineaarinen ˆβ = [ˆb 0, ˆB T ] T = (X T X) 1 X T Y.

Sovitteet ja residuaalit Muuttujan y i sovite havaintopisteessä x i on ŷ i = ˆb 0 + ˆB T x i, i 1,..., n. Sovitteet voidaan esittää myös matriisimuodossa Ŷ = X ˆβ. lineaarinen Estimoidun n residuaali ˆε i on selitettävän muuttujan y havaitun arvon y i ja sovitteen ŷ i antaman arvon erotus ˆε i = y i ŷ i, i 1,..., n. Huomaa, että y i = ŷ i + ˆε i, i 1,..., n.

Selitysaste Olkoon Y n q datamatriisi, joka koostuu keskistetyistä havainnoista y i. (Tällöin siis alkuperäisistä havainnoista on vähennetty niiden keskiarvo.) Olkoon X n (p + 1) datamatriisi, jonka ensimmäinen sarake koostuu luvuista 1 ja sarakkeet 2 p + 1 havainnoista x i ja olkoon ˆβ keskistetylle aineistolle laskettu kerroinmatriisi. Olkoon Ŷ = X ˆβ, lineaarinen ja olkoon Ê = Y X ˆβ D = (Y T Y ) 1 Ê T Ê. T Selvästi matriisi Ê Ê vaihtelee nollamatriisin, jolloin kaikki Y :n vaihtelu selittyy lla, ja matriisin Y T Y, jolloin X ei selitä Y :n vaihtelua lainkaan, välillä.

Jälkikorrelaatio ja determinanttikorrelaatio Olisi mukavaa, että myös moniulotteisen selitysasteen arvo vaihtelisi välillä [0, 1]. Tämä toivottu ominaisuus toteutuu, kun käytetään selitysasteen mittana jälkikorrelaatiota (trace correlation) r T tai determinanttikorrelaatiota (determinant correlation) r D : rt 2 = 1 tr(i D), p lineaarinen r 2 D = det(i D). Huomaa, että kerroin r D on nolla jos ja vain jos ainakin yksi matriisin I D ominaisarvoista on nolla, ja r T on nolla jos ja vain jos kaikki matriisin I D ominaisarvot ovat nollia.

Testit ja luottamusvälit Kuten yhden selittävän muuttujan analyysissä, voidaan myös usean selittävän muuttujan analyysissä ja moniulotteisessa analyysissä konstruoida testejä ja luottamusvälejä parametreille. Muuttujan y arvoa ja odotusarvoa ennustetaan kuten yhden selittävän muuttujan analyysissä ja myös näille ennusteille voidaan konstruoida luottamusvälejä. lineaarinen

lineaarinen

muuttujan analyysissä ja moniulotteisessa analyysissä selittävien muuttujien oletetaan olevan toisistaan riippumattomia. Aivan täydellistä riippumattomuutta ei useinkaan käytännössä kyetä saavuttamaan, jos in halutaan valita useampia kuin yksi selittävä muuttuja. Selittävät muuttujat eivät kuitenkaan saa riippua toisistaan lineaarisesti kovin voimakkaasti. Multikollineaarisuus tekee sta epävakaan ja estää yksittäisten muuttujien muutoksen vaikutuksen tarkastelun. lineaarinen

VIF-kerroin Selittävien muuttujien multikollineaarisuutta voidaan mitata VIF-kertoimen avulla (VIF - variance inflation factor). Selittävälle muuttujalle (x i ) k VIF-kerroin määritellään seuraavasti: 1 VIF k = 1 Rk 2, missä Rk 2 on sellaisen lineaarisen n selitysaste, jossa muuttuja (x i ) k on selitettävä muuttuja ja loput (x i ) s ovat selittäviä muuttujia. VIF-kerroin määritetään siis erikseen jokaiselle selittävälle muuttujalle (x i ) k. Jos muuttuja (x i ) k on riippumaton muista selittävistä muuttujista, niin VIF-kerroin on 1. Jos VIF-kerroin on suurempi tai yhtäsuuri kuin 10, niin sitä pidetään jo voimakkaana merkkinä multikollineaarisuudesta. lineaarinen

muuttujan ssa ja moniulotteisessa ssa selittävät muuttujat pyritään valitsemaan siten, että n selitysaste on mahdollisimman korkea ja selittävät muuttujat ovat mahdollisimman riippumattomia toisistaan. Muuttujien valinnassa voidaan käyttää apuna VIF-kertoimia (tai jotakin muuta riippuvuuden mittaa). Muuttujia voidaan lisätä tai vähentää yksi kerrallaan ja seurata selitysasteen ja VIF-kertoimien muutosta. lineaarinen

Numeerinen esimerkki VIF-kertoimelle. Selvitetään ovatko edellisen esimerkin nomparellien määrä ja suklaahippujen määrä multikollineaarisia VIF-kertoimen avulla. Esimerkin aineisto löytyyy edellä olevasta taulukosta. Nomparelli Suklaahippu 15 5 13 7 12 9 11 7 10 10 9 12 17 2 16 4 12 8 3 15 lineaarinen Taulukko: Nomparellien ja sulkaahippujen määrä.

Selitysastetta varten tarvitaan otoskeskihajonnat nomparellien määrälle s x = 4.022161 ja suklaahippujen määrälle s y = 3.842742, otoskeskiarvot x = 11.8 ja ȳ = 7.9 sekä otoskorrelaatiokerroin ˆρ(x, y) = 0.9647379. Sovite ŷ i = ȳ+ˆρ(x, y) s y s x (x i x) = 7.8+( 0.9647379) 3.842742 4.022161 (x i 11.8) Näin kokonaismeliösummaksi SST = 133, jäännösneliösummaksi SSE = 9.307418 ja neliösummaksi SSM = 123.6926. Selitysasteeksi saadaan ja VIF-kertoimeksi R 2 = SSM SST = 123.6926 = 0.9300195 133 VIF = 1 1 R 2 = 1 1 0.930... = 14.28969 Nomparellien ja sulkaahippujen määrät näyttäisivät riippuvan toisistaan! lineaarinen

lineaarinen

- vielä kerran Regressioa ei pidä käyttää ennustamiseen muuttujan x havaitun arvojoukon ulkopuolella. Häntäkäyttäytyminen voi poiketa yleisestä! Edellä kuvattu menetelmä ei sovellu tilanteeseen, jossa muuttujien x ja y välillä on ei-lineaarinen yhteys. Pienimmän neliösumman menetelmä (l 2 ) on hyvin herkkä poikkeaville havainnoille. lineaarinen

K. V. Mardia, J. T. Kent, J. M. Bibby: Multivariate Analysis, Academic Press 2003 (reprint of 1979). J. S. Milton, J. C. Arnold: Introduction to Probability and Statistics, McGraw-Hill Inc 1995. R. V. Hogg, J. W. McKean, A. T. Craig: Introduction to Mathematical Statistics, Pearson Education 2005. P. Laininen: Todennäköisyys ja sen tilastollinen soveltaminen, Otatieto 1998, numero 586. I. Mellin: Tilastolliset menetelmät, http://math.aalto.fi/opetus/sovtoda/materiaali.html. lineaarinen