Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Samankaltaiset tiedostot
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Johdatus tekoälyn taustalla olevaan matematiikkaan

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Matematiikan tukikurssi

MS-A0102 Differentiaali- ja integraalilaskenta 1

Matematiikan tukikurssi

Matematiikka B1 - TUDI

1.7 Gradientti ja suunnatut derivaatat

Vektorianalyysi II (MAT21020), syksy 2018

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

r > y x z x = z y + y x z y + y x = r y x + y x = r

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi

Matematiikka B1 - avoin yliopisto

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

Matematiikan tukikurssi

Matematiikan perusteet taloustieteilij oille I

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

4. Derivointi useammassa ulottuvuudessa

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

12. Hessen matriisi. Ääriarvoteoriaa

= + + = 4. Derivointi useammassa ulottuvuudessa

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

3.4 Käänteiskuvauslause ja implisiittifunktiolause

Matematiikan tukikurssi

Luento 9: Yhtälörajoitukset optimoinnissa

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Konjugaattigradienttimenetelmä

1 Rajoittamaton optimointi

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Mat Matematiikan peruskurssi C2

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

Differentiaali- ja integraalilaskenta 2

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Vastaa kaikkiin kysymyksiin (kokeessa ei saa käyttää laskinta)

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Analyysi I (sivuaineopiskelijoille)

Matematiikan tukikurssi

Johdatus reaalifunktioihin P, 5op

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Matematiikan tukikurssi

Taloustieteen matemaattiset menetelmät - pikakertausta ja toimintaohjeita Kurssin 1. osa

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

(d) f (x,y,z) = x2 y. (d)

Matematiikan tukikurssi. Toinen välikoe

2.6 Funktioiden kuvaajat ja tasa-arvojoukot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

Viikon aiheet. Funktion lineaarinen approksimointi

Fr ( ) Fxyz (,, ), täytyy integroida:

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Taustatietoja ja perusteita

BM20A0300, Matematiikka KoTiB1

2 Osittaisderivaattojen sovelluksia

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Transkriptio:

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 1 / 16

Vektoriarvoiset funktiot Olkoon D R n ja f = (f 1, f 2,..., f m ) vektori, missä jokainen funktion f komponentti on funktio f j : D R ja m, n 2. Huomaa, että f j :t ovat tässä vektorin f komponentteja (eivät siis osittaisderivaattoja). Tällainen vektori määrittelee vektoriarvoisen funktion f : R n R m, jota kutsutaan myös vektorikentäksi. Usein käytetään merkintää y = f(x). Vektoriarvoisia funktiota esiintyy usein mm. fysiikassa sellaisten suureiden yhteydessä, joilla on voimakkuus ja suunta (esimerkiksi nopeus- ja voimakentät). Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 2 / 16

Vektoriarvoisen funktion derivointi Derivaatan luonnollinen vastine vektoriarvoisen funktion f = (f 1, f 2,..., f m ) tapauksessa on Jacobin matriisi Df(x) =. f 1 f 1 x 1 f 2 f 2 x 1 f m x 1 x 2 x 2. f m x 2 f 1 x n f 2 x n. f m x n. Jos m = n, Jacobin matriisi on neliömatriisi ja sen determinattia sanotaan funktion f Jacobin determinantiksi pisteessä x. Tätä determinanttia tullaan tarvitaan kurssin loppuosassa. Tätä notaatiota käyttäen ketjusääntö voidaan kirjoittaa yleisessä muodossa D(g f)(x) = Dg ( f(x) ) Df(x). Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 3 / 16

Sovellus: implisiittifunktiolause Tutkitaan yhtälöryhmää F (1) (x 1, x 2,..., x m, y 1, y 2,..., y n ) = 0, F (2) (x 1, x 2,..., x m, y 1, y 2,..., y n ) = 0,. F (n) (x 1, x 2,..., x m, y 1, y 2,..., y n ) = 0, pisteen P 0 = (a 1, a 2,..., a m, b 1, b 2,..., b n ) lähellä. Muuttujat y = (y 1,..., y n ) voidaan esittää muuttujien x = (x 1,..., x m ) funktioina jos pisteen P 0 lähellä, jos funktion F(y) = (F (1),..., F (n) )(y) Jacobin determinatti det DF(y) 0. P0 Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 4 / 16

Esimerkki 1 Osoitetaan, että (u, v) voidaan ratkaista muuttujien (x, y, z) funktiona systeemistä { F (x, y, z, u, v) = xy 2 + xzu + yv 2 3, G(x, y, z, u, v) = x 3 yz + 2xv u 2 v 2 2, pisteen P 0 = (1, 1, 1, 1, 1) lähellä. Muodostetaan Jacobin determinatti F F u v = xz 2yv P0 2uv 2 2x 2u 2 v = P0 G u G v Koska determinantti ei ole nolla, ratkaisu on olemassa. 1 2 2 0 = 4. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 5 / 16

Gradientti Olkoon f : D R n R, n 2, derivoituva pisteessä x D. Määritelmä Funktion f gradientti pisteessä x on vektori f = grad f = ( x 1 f, x 2 f,..., ) f R n. x n Gradientti kertoo funktion f nopeimman kasvun suunnan. Se on vektoriarvoinen funktio f : D R n. Gradientti voidaan tulkita Jacobin matriisin erikoistapauksena (m = 1). Tapauksessa n = 3 voidaan kirjoittaa = i x + j y + k z. Tapauksessa n = 2 kolmas termi jää pois. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 6 / 16

Esimerkki 2 Olkoon f (x, y) = x 2 + y 2. Saadaan f = 2xi + 2yj. Erityisesti f on kohtisuorassa jokaista origokeskisen ympyrän tangenttisuoraa vastaan. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 7 / 16

Gradientti ja tasa-arvokäyrät Lause Olkoon D R 2, (a, b) D ja f : D R derivoituva pisteessä (a, b) siten, että f (a, b) 0. Tällöin f (a, b) on kohtisuorassa pisteen (a, b) kautta kulkevaa funktion f tasa-arvokäyrää vasten. Seuraus: Jos piste x D on funktion f paikallinen ääriarvo (minimi tai maksimi), niin f (x) = 0. Tällainen piste ei kuitenkaan välttämättä ole funktion ääriarvo. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 8 / 16

Todistus Olkoon 0 I ja r(t): I R 2 tasa-arvokäyrän sellainen parametrisointi, että r(0) = (a, b). Koska r on tasa-arvokäyrä, kaikilla t I pätee f (x(t), y(t)) = f (a, b) eli vakio, missä r(t) = x(t)j + y(t)j. Ketjusäännöstä saadaan (koska vakiofunktion derivaatta on nolla) f 1 ( x(t), y(t) ) x (t) + f 2 ( x(t), y(t) ) y (t) = 0. Erityisesti pisteessä t = 0 tämä tarkoittaa, että f (a, b) r (0) = 0, eli toisin sanoen vektori f ja r (0) ovat kohtisuorassa. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 9 / 16

Suunnattu derivaatta Lause Edellinen tulos voidaan tulkita niin, että funktio kasvaa jyrkimmin gradienttinsa suuntaan. Tasa-arvokäyrä puolestaan antaa suunnan, johon edettäessä funktio ei kasva eikä vähene. Tämä johtaa kysymykseen funktion arvon kasvunopeudesta muihin suuntiin liikuttessa, mitä kutsutaan suunnatuksi derivaataksi. Suunnattu derivaatta voidaan löytää seuraavaa tulosta käyttäen: Olkoon f : D R 2 R funktio, (a, b) D ja u sellainen vektori, että u = 1. Tällöin funktion f suunnattu derivaatta suuntaan u saadaan kaavasta D u f (a, b) = u f (a, b). Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 10 / 16

Esimerkki 3 1/2 Olkoon f (x, y) = y 4 + 2xy 3 + x 2 y 2. Etsitään D u (0, 1), kun u on (a) i + 2j, (b) j + 2i, (c) 3i, (d) i + j. Ratkaisu: Lasketaan f (x, y) = (2y 3 + 2xy 2 )i + (4y 3 + 6xy 2 + 2x 2 y)j, f (0, 1) = 2i + 4j. (a) i + 2j = 5 ja siten u = (i + 2j)/ 5. Saadaan D u f (0, 1) = 1 5 (i + 2j) (2i + 4j) = 2 + 8 5 = 2 5. Huomaa, että tässä u ja f (0, 1) ovat yhdensuuntaiset. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 11 / 16

Esimerkki 3 2/2 (b) j 2i = 5 ja siten u = (j 2i)/ 5. Saadaan D u f (0, 1) = 1 5 (j 2i) (2i + 4j) = 4 + 4 5 = 0. Vektorit u ja f (0, 1) ovat siis kohtisuorassa. (c) 3i = 3 ja siten u = i. Saadaan D u f (0, 1) = i (2i + 4j) = 2. Tämä on sama kuin f 1 (0, 1). (d) i + j = 2 ja siten u = (i + j)/ 2. Saadaan D u f (0, 1) = 1 2 (i + j) (2i + 4j) = 2 + 4 2 = 3 2. Huomaa, että 3 2 4.243 < 2 5 4.472. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 12 / 16

Taylorin kaava Yhden muuttujan tapauksessa m + 1 kertaa jatkuvasti derivoituvaa funktiota f : I R voidaan approksimoida kaavalla f (x) f (a) + f (a)(x a) + f (a) 2! kun a, x I. (x a) 2 +... + f (m) (a) (x a) m. m! Tämä idea yleistyy usean muuttujan tapaukseen: Jos a, h R n, n 2 ja funktiolla F : D R n R on jatkuvat kertaluvun (m + 1) osittaisderivaatat pisteitä a, a + h yhdistävällä janalla, niin F (a + h) m j=0 (h ) j f (a). j! Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 13 / 16

Esimerkki 4 Olkoon (a, b) R 2 ja f (x, y) neljä kertaa jatkuvasti derivoituva kiekossa (a, b)-keskisessä r-säteisessä kiekossa. Etsitään 3. asteen approksimaatio. Jos h = (h, k), niin f (a+h, b +k) f (a, b)+(hd 1 +kd 2 )f (a, b)+ 1 2! (hd 1 +kd 2 ) 2 f (a, b) + 1 3! (hd 1 + kd 2 ) 3 f (a, b) = f (a, b) + hf 1 (a, b) + kf 2 (a, b) + 1 ( ) h 2 f 11 (a, b) + 2hkf 12 (a, b) + k 2 f 22 (a, b) 2! + 1 ( ) h 3 f 111 (a, b) + 3h 2 kf 112 (a, b) + 3hk 2 f 122 (a, b) + k 3 f 222 (a, b). 3! Huom. 1. asteen Taylor-approksimaatio on sama kuin tangenttitaso. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 14 / 16

Esimerkki 5 1/2 Etsitään 2. asteen Taylor-approksimaatio funktiolle f (x, y) = x 2 + y 3 pisteen (1, 2) ympäristössä. Lasketaan f (1, 2) = 3, f 1 (x, y) = eli f 1 (1, 2) = 1/3 ja f 2 (1, 2) = 2. Edelleen f 11 (x, y) = x x 2 + y 3, f 2(x, y) = 3y 2 2 x 2 + y 3, y 3 (x 2 + y 3 ) 3/2, f 11(1, 2) = 8 27, Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 15 / 16

Esimerkki 5 2/2 f 12 (x, y) = 3xy 2 2(x 2 + y 3 ) 3/2, f 12(1, 2) = 2 9, f 22 (x, y) = 12x2 y + 3y 4 4(x 2 + y 3 ) 3/2, f 22(1, 2) = 2 3. Siten f (1 + h, 2 + k) 3 + 1 3 2!( h + 2k + 1 8 ( 27 h2 + 2 2 ) hk + 2 9 3 k2). Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät 2016 16 / 16