Kemiallinen reaktio

Samankaltaiset tiedostot
REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

Reaktiolämpö KINEETTINEN ENERGIA POTENTIAALI- ENERGIA

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

HEIKOT SIDOKSET. Heikot sidokset ovat rakenneosasten välisiä sidoksia.

HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Lämpö- eli termokemiaa

Lämpöistä oppia ja energiaa Fysiikan ja kemian perusteet ja pedagogiikka

Määritelmä, metallisidos, metallihila:

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

Erilaisia entalpian muutoksia

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit

Erilaisia entalpian muutoksia

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

ULKOELEKTRONIRAKENNE JA METALLILUONNE

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

MUUTOKSET ELEKTRONI- RAKENTEESSA

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

KE1 KERTAUSTA SIDOKSISTA VASTAUKSET a) K ja Cl IONISIDOS, KOSKA KALIUM ON METALLI JA KLOORI EPÄMETALLI.

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

Lämpöopin pääsäännöt

1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli.

PHYS-A0120 Termodynamiikka syksy 2016

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.

Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

PHYS-A0120 Termodynamiikka syksy 2017

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Aineen olomuodot ja olomuodon muutokset

KE2 Kemian mikromaailma

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

KOTITEKOINEN PALOSAMMUTIN (OSA II)

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIAN MIKROMAAILMA, KE2 VESI

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan?

Ionisidos ja ionihila:

Johdantoa. Kemia on elektronien liikkumista/siirtymistä. Miksi?

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

S , Fysiikka III (Sf) tentti/välikoeuusinta

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

Voima ja potentiaalienergia II Energian kvantittuminen

6. Yhteenvetoa kurssista

Törmäysteoria. Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa

Orgaanisten yhdisteiden rakenne ja ominaisuudet

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

W el = W = 1 2 kx2 1

13 KALORIMETRI Johdanto Kalorimetrin lämmönvaihto

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

Kohti entalpiamuutoksiin liittyviä laskuja

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

PHYS-A0120 Termodynamiikka syksy 2016

Alikuoret eli orbitaalit

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

Infrapunaspektroskopia

Kemian opiskelun avuksi

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luku Pääsääntö (The Second Law)

Tasapainotilaan vaikuttavia tekijöitä

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

782630S Pintakemia I, 3 op

Luento 9: Potentiaalienergia

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

CHEM-A1250 KEMIAN PERUSTEET kevät 2016

MAOL:n pistesuositus kemian reaalikokeen tehtäviin syksyllä 2011.

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?

FY9 Fysiikan kokonaiskuva

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

FYSA242 Statistinen fysiikka, Harjoitustentti

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

1 Eksergia ja termodynaamiset potentiaalit

Ohjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3

Termodynamiikka. Fysiikka III Ilkka Tittonen & Jukka Tulkki

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

Molaariset ominaislämpökapasiteetit

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

PHYS-A0120 Termodynamiikka syksy 2016

1-12 R1-R3. 21, 22 T4 Tutkielman palautus kurssin lopussa (Työ 2 ja Työ 3), (R4-R6) Sopii myös itsenäiseen opiskeluun Työ 4 R7 - R8

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Transkriptio:

Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa, vapautuu energiaa varastointi tai käyttö (liikkuminen, ajattelu jne.). Kemiallisten reaktioiden kautta tuotettu lämpö- ja sähköenergia (jopa yli 90%) on peräisin kemiallisista reaktioista. Kemiallisen reaktion energian muutoksia tutkivaa osa-aluetta sanotaan termokemiaksi koska energia havaitaan yleensä lämmön siirtymisenä. Termokemia on osa termodynamiikkaa (kreikka: therme = lämpö ja dynamis = voima). Huom! Tarkasti ottaen käsitteet lämpö ja lämpöenergia ovat kaksi eri asiaa ja ne sekoitetaan usein keskenään. Lämpö( sisä)energia on tilasuure, lämpö ei. Lämpö on energia, joka siirtyy systeemin ja ympäristön välillä lämpötilaerojen seurauksena (atomitason törmäykset). Lämpöenergialla eli lämpömäärällä tarkoitetaan atomitason energiaa (molekyylien liike ja sidoksiin varastoitunut potentiaalienergia). 1

Auringosta bioenergiaa klorofylli a Glukoosin rengasrakenteinen muoto Määritelmä, kemiallinen reaktio: Kemiallinen reaktio on tapahtuma, jossa lähtöaineiden sisäiset sidokset katkeavat ja uusia sidoksia syntyy samalla, kun atomit järjestyvät uudelleen. Toisin sanoen syntyvät tuotteet ovat eri aineita kuin lähtöaineet. Ovatko olomuodon muutokset kemiallisia reaktioita? Vertaa heikkojen ja vahvojen sidosten katkeamisia ja uusien syntymisiä. Aineen rakenneosilla on sekä vahvoista että heikoista sidoksista aiheutuvaa potentiaalienergiaa että lämpöliikkeestä aiheutuvaa liike-energiaa (yht lämpöenergia). Koska reaktioissa sidoksia katkeaa ja uusia muodostuu, niin kemiassa usein riittää, että tarkastellaan vain rakenneosien heikkoihin ja vahvoihin sidoksiin varastoitunutta potentiaalienergiaa. Määritelmä, kemiallinen energia (kemiallisiin sidoksiin varastoitunut energia): Edellä esiteltyä potentiaalienergiaa kutsutaan kemialliseksi energiaksi ja se voi muuttua reaktioissa muiksi energian muodoiksi. Vahvat sidokset Ionisidos Metallisidos Kovalenttinen sidos Heikot sidokset Ioni-dipoli-sidos Dipoli-dipoli-sidos (vetysidos erikoistapauksena) Dispersiovoimat (van Der Waals, Londonin voimat) 2

Rakenneosien sidoksiin varastoitunut energia Energian muutoksia havainnollistetaan energiakaavioilla. Niihin piirretään lähtöaineiden ja reaktiotuotteiden energiatasot. Tasojen korkeusero kuvaa vapautuvan tai sitoutuvan energian määrän. Nuoli alaspäin kuvaa energian vapautumista ja nuoli ylöspäin energian sitoutumista. Jännittyneet molekyylit Palamisessa vapautuvan lämpöenergian määrän riippuvuus CH 2 -yksikköön varastoituneesta energiasta. 3

Molekyylien konformaatiot Jännitetyn jousen energia on potentiaalienergiaa. Jännittyneillä molekyyleillä on vastaavasti kemiallista energiaa. Rakenneosien liike-energia lämpöliike Jään molekyylihilassa vesimolekyylit värähtelevät. Vetysidokset pitävät molekyylit tiukasti kiinni toisissaan. Vedessä molekyylien väliset vetysidosverkostot muuttuvat jatkuvasti, kun vesimolekyylit liukuvat toistensa ohi. Vesihöyryssä vetysidokset ovat purkautuneet. Vesimolekyylit liikkuvat vapaasti. 4

Nesteen ja kaasun rakenneosilla on myös pyörimisestä johtuvaa liikeenergiaa (kaksois- ja kolmoissidokset ovat jäykkiä). Rakenneosilla on sidosten venytys- ja taivutusvärähtelystä johtuvaa liike- ja potentiaalienergiaa. Molekyylit myös keinahtelevat. Milloin kemiallinen reaktio tapahtuu Havaitaan, että kemiallisen reaktion edellytyksiä ovat: Reaktiokykyiset lähtöaineet Oikea suuntautuminen Riittävä törmäysenergia eli riittävän korkea lämpötila 5

Yleisesti kaasumaisten atomien, molekyylien ja ionien (yleisesti hiukkasten) käyttäytymistä kemiallisissa reaktioissa mallinnetaan kuvaamalla ne pieniksi kimmoisiksi palloiksi. Osalla hiukkasista on suuri liike-energia, osalla pieni. Valtaosan liike-energia on kuitenkin lähellä keskimääräistä arvoa (ns. Brownin liike). Lämpötilan kasvattaminen nostaa hiukkasten liike-energiaa ja näin ollen reaktioon johtavien suotuisien törmäysten lukumäärä kasvaa. Muita, reaktion etenemiseen (nopeuteen) vaikuttavia suotuisia tekijöitä ovat: pitoisuus, pinta-ala, säteily, katalyytti/inhibiitti, sekoittaminen (mikäli aineet eri faasissa) ja kaasuilla paine/tilav. Ulkoisilla tekijöillä vaikutetaan reaktion saantoon, nopeuteen ja reaktiotuotteiden laatuun. HUOM! Vain pieni osa törmäyksistä johtaa kemiallisen reaktion tapahtumiseen! Määritelmä, spontaani reaktio: Sanotaan, että reaktio on spontaani, eli tapahtuu ilman ulkoista energiaa, jos reaktion tapahtuessa systeemin kokonaisenergia pienenee. Mikä on systeemi? Mikä on kokonaisenergia? Määritelmä, systeemi ja ympäristö: Systeemillä tarkoitetaan yleisesti niitä kappaleita (hiukkasia), joiden liikettä tarkastellaan ja analysoidaan. Kemiallisella systeemillä tarkoitetaan erityisesti kemiallisen reaktion lähtöaineita ja reaktiotuotteita. Ympäristö on systeemin ulkoinen puoli ( alue, josta käsin systeemiä tutkitaan). ympäristö ympäristö sisään Ainetta sisään systeemi ulos Ainetta ulos Avoin systeemi: ja ainetta voi siirtyä vapaasti systeemin ja ympäristön rajapinnan yli. sisään systeemi Suljettu systeemi: voi siirtyä systeemin ja ympäristön rajapinnan yli, mutta ei ainetta. Eristetty systeemi: Systeemin ja ympäristön rajapinnan yli ei siirry energiaa eikä ainetta. ulos 6

Määritelmä, spontaani reaktio: Sanotaan, että reaktio on spontaani, eli tapahtuu ilman ulkoista energiaa, jos reaktion tapahtuessa systeemin kokonaisenergia pienenee. Mikä on systeemi? Mikä on kokonaisenergia? Kokonaisenergialla tai oikeammin energian muutoksella kuvataan systeemiin tuodun ja systeemin antaman energian välistä erotusta. Mikäli erotus on negatiivinen, niin systeemi tekee työtä ympäristölle tai luovuttaa lämpöä ympäristölle (tai valoa). Vastaavasti, jos erotus on positiivinen, niin ympäristö tekee työtä systeemille tai luovuttaa lämpöä systeemille. Systeemistä vapautuva energia havaitaan siis lämpönä tai valona tai entropian kasvuna. Määritelmä, entropia: Entropia on ns. tilafunktio, joka kuvaa systeemin epäjärjestystä. Spontaanin reaktion seurauksena systeemin epäjärjestys kasvaa. Esimerkiksi kaasu pyrkii leviämään kaikkialle säiliöön, kotona vaatteet leviävät pitkin poikin lattialle odottaako meitä lopulta ns. lämpökuolema. Termodynamiikan toinen pääsääntö. 7