Vastepintamenetelmä Kuusinen/Heliövaara 1
Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla, jota kutsutaan vastepintamalliksi. Polynomimuotoisten vastepintamallien avulla on helppo etsiä vasteeseen vaikuttavien tekijöiden optimaalista kombinaatiota. Vastepintamenetelmä on vaiheittain etenevä mallinrakentamisstrategia, jonka aikana joudutaan tavallisesti keräämään myös uusia havaintoja. Kuusinen/Heliövaara 2
Vastepintamenetelmä Oletetaan, että vastemuuttujan y havaittujen arvojen riippuvuutta tekijöiden x 1, x 2,..., x k tasoista voidaan kuvata funktiolla y = f(x 1, x 2,..., x k ) + ε, jossa jäännöstermi ε edustaa satunnaisvirhettä muuttujan y havaituissa arvoissa. Vastepintamenetelmän tavoitteena on löytää sellainen tekijöiden x 1, x 2,..., x k tasojen kombinaatio, joka optimoi (minimoi tai maksimoi) vastefunktion arvon. f(x 1, x 2,..., x k ) Kuusinen/Heliövaara 3
Vastepintamenetelmä Funktion f muoto on tavallisesti tuntematon ja siksi funktiota pyritään approksimoimaan sopivasti valitulla faktoreiden polynomilla. Tällöin on tärkeää selvittää, riittääkö funktiolle f faktoreiden kelvollisella arvoalueella lineaarinen approksimaatio vai tarvitaanko jotakin korkeampiasteista approksimaatiota. Tällä kurssilla tarkastelemme vastepintamenetelmää 2 2 -faktorikokeiden yhteydessä. Kuusinen/Heliövaara 4
Vastepintamenetelmä 2 2 -faktorikokeissa Kuusinen/Heliövaara 5
Luonnolliset muuttujat Kutsumme tekijöitä A ja B luonnollisiksi muuttujiksi, jos niiden arvot on annettu tekijöiden oikeissa, luonnollisissa mittayksiköissä. Olkoon X + =Tekijän X arvo, kun tekijän X taso on korkea (+) X =Tekijän X arvo, kun tekijän X taso on matala ( ) 2 2 -faktorikokeiden tapauksessa X = A tai X = B. Kuusinen/Heliövaara 6
Koodatut muuttujat Olkoon x = X (X + + X )/2 (X + X )/2 luonnollista muuttujaa X vastaava koodattu muuttuja. Tällöin x = +1, jos X = X + 1, jos X = X Kääntäen, luonnollisen muuttujan X arvot saadaan koodatun muuttujan x arvoista kaavalla X = 1 2 (X + X )x + 1 2 (X + + X ) Kuusinen/Heliövaara 7
1. asteen lineaarinen vastepintamalli Määritellään 1. asteen lineaarinen vastepintamalli kaavalla jossa y = β 0 + β 1 x 1 + β 2 x 2 + ε, x 1 x 2 =tekijää A vastaava koodattu muuttuja =tekijää B vastaava koodattu muuttuja Mallin avulla voidaan mallintaa tekijöiden A ja B päävaikutukset. Malli ei kykene huomioimaan vastefunktion f mahdollista kaarevuutta. Kuusinen/Heliövaara 8
1. asteen vastepintamalli 1/2 Lisäämällä 1. asteen lineaariseen vastepintamalliin koodattujen muuttujien x 1 ja x 2 tulotermin, joka kuvaa tekijöiden A ja B yhdysvaikutusta, saadaan 1. asteen vastepintamalli y = β 0 + β 1 x 1 + β 2 x 2 + β 12 x 1 x 2 + ε Mallin avulla voidaan mallintaa tekijöiden A ja B päävaikutukset ja yhdysvaikutus eli interaktio. Malli kykenee jonkin verran huomioimaan vastefunktion f mahdollista kaarevuutta tekijöiden A ja B vaikutuksien suhteen. Kuusinen/Heliövaara 9
1. asteen vastepintamalli 2/2 Vastepintamallit ovat parametrien suhteen tavanomaisia lineaarisia regressiomalleja, joiden parametrit voidaan estimoida pienimmän neliösumman menetelmällä. 1. asteen vastepintamallin parametrien β 0, β 1, β 2, β 12 PNS-estimaattorit ovat b 0 = ȳ b 2 = X B /2 b 1 = X A /2 b 12 = X AB /2 Estimoitu 1. asteen vastepinnan yhtälö on siis muotoa ŷ = ȳ + ( XA 2 ) x 1 + ( XB 2 ) x 2 + ( XAB 2 ) x 1 x 2 Kuusinen/Heliövaara 10
Vastefunktion kaarevuuden testaaminen Kuusinen/Heliövaara 11
Kvadraattisen kaarevuuden testaaminen 2 2 -koeasetelmassa sovellettavan 1. asteen vastepintamallin y = β 0 + β 1 x 1 + β 2 x 2 + β 12 x 1 x 2 + ε riittävyyttä vastefunktion f(x 1, x 2 ) approksimaationa tarkastellaan tavallisesti testaamalla tarvitaanko mallissa puhdasta kvadraattista kaarevuutta kuvaavia neliöllisiä termejä x 2 1 ja x2 2. Kuusinen/Heliövaara 12
Keskipisteen lisääminen Kaarevuutta voidaan testata lisäämällä 2 2 -koeasetelmaa + b ab vastaavaan neliöön sen keskipiste CP = (C A, C B ), B (C,C ) A B jossa (1) a C A = A + + A 2 A + C B = B + + B 2 Koodattujen muuttujien arvoissa keskipiste on origo (0, 0). Kuusinen/Heliövaara 13
Kulmapistehavainnot ja keskipistehavainnot Oletetaan, että kustakin neliön kulmapisteestä on kerätty n havaintoa. Tällöin kulmapistehavaintojen kokonaislukumäärä on 2 2 n = n F (merkintä) Kerätään neliön keskipisteestä n C > 1 havaintoa. Merkitään mitattuja vastemuuttujan y arvoja z 1, z 2,..., z nc Merkitään kulmapistehavaintojen keskiarvoa ȳ F :llä ja keskipistehavaintojen keskiarvoa ȳ C :llä. Kuusinen/Heliövaara 14
Kaarevuus Jos kulmapistehavaintojen ja keskipistehavaintojen keskiarvojen erotus ȳ F ȳ C on pieni, ovat keskipistehavainnot lähellä kulmapistehavaintojen määräämää tasoa ja vastefunktion kaarevuus on pientä. Kuusinen/Heliövaara 15
Nollahypoteesi 1/2 Vastefunktion kaarevuutta koskeva nollahypoteesi H P Q : Ei puhdasta kvadraattista kaarevuutta voidaan ilmaista 2. asteen vastepintamallin y = β 0 + k β i x i + i<j β ij x i x j + k β ii x 2 i + ε i=1 i=1 parametrien avulla muodossa H P Q : k i=1 β ii = 0 Kuusinen/Heliövaara 16
Nollahypoteesi 2/2 Kaarevuutta koskeva nollahypoteesi on ekvivalentti nollahypoteesin H P Q : k i=1 β ii = 0 H P Q : µ F µ C = 0, kanssa, missä µ F on kulmapistehavaintojen ja µ C keskipistehavaintojen odotusarvo. Kuusinen/Heliövaara 17
Kaarevuutta ja virhettä kuvaavat neliösummat Koska erotus µ F µ C on kontrasti, saadaan puhdasta kvadraattista kaarevuutta kuvaava neliösumma kaavalla SSP Q = n F n C n F + n C (ȳ F ȳ C ) 2 Määritellään puhdasta virhettä kuvaava neliösumma kaavalla SSP E = 2 2 n (y kij ȳ ij ) 2 + n C (z k ȳ C ) 2 i=1 j=1 k=1 k=1 Kuusinen/Heliövaara 18
Testi puhtaalle kvadraattiselle kaarevuudelle Määritellään F -testisuure Jos nollahypoteesi F P Q = (n F + n C 5) SSP Q SSP E H P Q : Ei puhdasta kvadraattista kaarevuutta pätee, niin F P Q F (1, n F + n C 5) Suuret testisuureen F P Q arvot johtavat nollahypoteesin hylkäämiseen. Kuusinen/Heliövaara 19
Varianssianalyysihajotelma Jos 2 2 -faktorikokeeseen on liitetty keskipiste, pätee varianssianalyysihajotelma SST = SSA + SSB + SSAB + SSP Q + SSP E Keskipistehavaintojen lisääminen on mahdollistanut 2 2 -faktorikokeen tavanomaisen varianssianalyysihajotelman SST = SSA + SSB + SSAB + SSE virhetermin SSE pilkkomisen puhdasta kvadraattista kaarevuutta ja puhdasta virhettä kuvaavaan neliösummaan: SSE = SSP Q + SSP E Kuusinen/Heliövaara 20
Varianssianalyysitaulukko Varianssianalyysitaulukko 2 2 -faktorikokeelle, johon on lisätty keskipiste: Vaihtelun lähde SS df M S F A SSA 1 MSA = SSA/df F A = MSA/MSP E B SSB 1 MSB = SSB/df F B = MSB/MSP E AB SSAB 1 MSAB = SSAB/df F AB = MSAB/MSP E P Q SSP Q 1 MSP Q = SSP Q/df F P Q = MSP Q/MSP E P E SSP E n F + n C 5 MSP E = SSP E/df E SSE n F + n C 4 MSE = SSE/df T SST n F + n C 1 Kuusinen/Heliövaara 21
Vastefunktion optimin etsiminen ja gradienttimenetelmä Kuusinen/Heliövaara 22
1. asteen vastepintamalli ja tekijöiden optimaalisten tasojen etsiminen Jos vastefunktion f kvadraattinen kaarevuus ei ole tilastollisesti merkitsevää, riittää 1. asteen vastepintamalli vastefunktion muodon approksimointiin. Oletetaan, että haluamme löytää estimoidun 1. asteen vastepintamallin ŷ = b 0 + b 1 x 1 + b 2 x 2 + b 12 x 1 x 2 avulla koodattuja muuttujia x 1 ja x 2 vastaavien tekijöiden A ja B tasot, jotka optimoivat (minimoivat/maksimoivat) vastefunktion arvon. f(x 1, x 2 ) Kuusinen/Heliövaara 23
Gradienttimenetelmä Kuten tunnettua, funktio kasvaa voimakkaimmin sen gradientin suuntaan. Keskipisteessä CP, eli x 1 x 2 -koordinaatiston origossa, 1. asteen vastepinnan gradientti on muotoa b = [b 1, b 2 ] T Gradienttimenetelmässä poimitaan uusia havaintoja niillä tekijöiden A ja B tasoilla, jotka määräytyvät liikkumalla keskipisteestä CP tasaisin askelin gradientin b suuntaan (maksimoitaessa), tai sitä vastaan (minimoitaessa). Uusia havaintoja poimitaan, kunnes vasteen arvo ei enää parane (kasva tai vähene). Kuusinen/Heliövaara 24
Askelpituuksien määrääminen 1/2 Askeleet, joilla siirtyminen vektorin b (tai b) suuntaan tapahtuu, voidaan määrätä seuraavasti: (i) Valitaan vasteeseen vaikuttavista tekijöistä tärkeämpi (oletetaan, tekijä B on tärkeämpi). Olkoon x 2 tärkeämpää faktoria B vastaava koodattu muuttuja. Valitaan tärkeämmälle muuttujalle x 2 askelpituudeksi x 2. (ii) Valitaan muuttujalle x 1 askelpituus kaavalla x 1 = b 1 b 2 x 2 (iii) Konvertoidaan askelpituudet koodattujen muuttujien arvoista luonnollisten muuttujien arvoiksi kaavalla X = x X + X 2 Kuusinen/Heliövaara 25
2. asteen vastepintamalli ja tekijöiden optimaaliset tasot Jos vastefunktion f kvadraattinen kaarevuus on tilastollisesti merkitsevää, tarvitaan vastefunktion muodon approksimointiin 2. asteen vastepintamalli. Oletetaan, että haluamme löytää estimoidun 2. asteen vastepintamallin ŷ = b 0 + b 1 x 1 + b 2 x 2 + b 12 x 1 x 2 + b 11 x 2 1 + b 22 x 2 2 avulla koodattuja muuttujia x 1 ja x 2 vastaavien tekijöiden A ja B tasot, jotka optimoivat (minimoivat/maksimoivat) vastefunktion arvon. f(x 1, x 2 ) Kuusinen/Heliövaara 26
Tekijöiden optimaaliset tasot ja vastemuuttujan arvo optimipisteessä Tekijöiden optimaaliset tasot toteuttavat yhtälöt ŷ x 1 = 0, ŷ x 2 = 0 Olkoon (x 1,s, x 2,s ) tekijöiden optimaalisia tasoja vastaava optimipiste. Vastemuuttujan arvo optimipisteessä on ŷ = b 0 + b 1 x 1,s + b 2 x 2,s + b 12 x 1,s x 2,s + b 11 x 2 1,s + b 22 x 2 2,s Kuusinen/Heliövaara 27
Lisähavaintojen tekeminen Jos havaintoja on kerätty vain 2 2 -koeasetelmaan liittyvän neliön kulmapisteissä ja keskipisteessä, joudutaan 2. asteen vastepinnan parametrien estimoimiseksi keräämään lisähavaintoja. Suosittu valinta on kerätä lisähavainnot (koodattujen muuttujien arvoissa) koordinaattiakseleilta, etäisyyden k päässä origosta olevissa pisteissä, ns. tähtipistehavainnot. Nämä pisteet ovat saman ympyrän kehällä kuin 2 2 -koeasetelmaan liittyvän neliön kulmapisteet ja niissä 2. asteen vastepinnan vastemuuttujan arvoille antamien ennusteiden varianssi on vakio. Kuusinen/Heliövaara 28