SOTERKON TUTKIMUSPÄIVÄ: VAIKUTTAVUUS: YKSILÖÖN VAI YHTEISÖÖN? Ultrapienet hiukkaset kaupunki-ilmassa Jaakko Kukkonen Ilmatieteen laitos
World Health Organisation, Report 25/3-2014 7 million deaths annually linked to air pollution This estimate is substantially higher than has been known previously Air pollution is the world s largest single environmental health risk A stronger link between air pollution exposure and cardiovascular diseases, such as strokes and ischaemic heart disease, as well as between air pollution and cancer. This is in addition to air pollution s role in the development of respiratory diseases. Regionally, low- and middle-income countries in the South-East Asia and Western Pacific Regions had the largest air pollution-related burden in 2012 In the case of outdoor air pollution, WHO estimates there were 3.7 million deaths in 2012 from urban and rural sources worldwide. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
WHO report 28/4-2015 600 000 premature deaths caused by air pollution in Europe (2010) Economic cost corresponds to 10 % of the gross domestic product of the EU
Total number of cases of premature deaths in Europe Calculated using the EVA model for 2000 A total of 680 000 cases decreasing to 570 000 in 2011 and 450 000 in 2020 Total external costs: 800 bn. Euros In Denmark: 3500 cases per year 4 bn. Euros per year (~2% of GDP) Brandt et al., 2013, Atmos. Chem. Phys., 13, 7747 7764
Loss in life expectancy (months) attributable to exposure to anthropogenic PM2.5 for year 2000 emissions (Source: EC, IIASA). Reference: M. Amann, I. Bertok, R. Cabala, J. Cofala, F. Gyarfas, C. Heyes, Z. Klimont, F. Wagner, W. Schöpp
The main challenge of regulating air pollution The knowns: there is a clear relationship between atmospheric particle concentrations (total PM 2.5 ) and health impacts health impacts are related to major costs for society and to our welfare The known unknowns: We do not know which parts of PM 2.5 are most harmful to human health Different emission sources have different emission profiles with respect to chemical composition Ref. Brandt et al., 2016
What is an atmospheric particle? Atmospheric particles can be divided into primary emitted or secondary formed particles. Other chemical species are attached to the particles. Sources are both anthropogenic and natural Primary aerosols Organic carbon (OC) Elemental carbon (BC/EC) Mineral dust sea salt, sand, soil, etc Pollen, bacteria Secondary inorganic aerosols (SIA) NO 3-, NH 4 + and SO 4 2- Secondary organic aerosols (SOA) Monoterpenes Other chemical species attached: Metals, dioxins, PAHs, POPs, etc Ref. Brandt et al., 2016
Premature mortality Health effects for Finnish population as premature mortality, caused by the emissions from traffic and domestic wood combustion in Finland in 2000. 2000 1200 1000 1089 800 600 400 200 248 475 356 0 Residential buildings 9 Recreational buildings Traffic exhaust Traffic nonexhaust Total Ahtoniemi, Pauliina, Marko Tainio, Jouni T. Tuomisto, Niko Karvosenoja, Kaarle Kupiainen, Petri Porvari, Ari Karppinen, Leena Kangas, Jaakko Kukkonen, 2010. Health Risks from Nearby Sources of Fine Particulate Matter: Domestic Wood Combustion and Road Traffic (PILTTI), Pienhiukkasten lähipäästöjen terveysriskit: puun pienpoltto ja tieliikenne (PILTTI). Report 3/2010. National Institute for Health and Welfare, Helsinki, 60 p. ISBN 978-952-245-223-8 (printed), ISBN 978-952-245-224-5 (pdf).
Premature mortality Premature mortality 1200 2000 2000 1000 1089 Health effects for Finnish population as premature mortality in 2000 and 2020. 800 600 400 200 0 248 Residential buildings 9 Recreational buildings 475 Traffic exhaust 356 Traffic nonexhaust Total 600 2020 2020 500 400 453 300 200 100 0 140 Domestic wood combustion 26 288 Traffic exhaust Traffic non-exhaust Total Ahtoniemi et al., 2010. Pienhiukkasten lähipäästöjen terveysriskit: puun pienpoltto ja tieliikenne (PILTTI). Report 3/2010. National Institute for Health and Welfare, Helsinki, 60 p. ISBN 978-952-245-223-8 (printed), ISBN 978-952-245-224-5 (pdf).
Mortality due to vegetation-fire originated PM 2.5 exposure in Europe assessment for the years 2005 and 2008 Virpi Kollanus, Marje Prank, Alexandra Gens, Joana Soares, Julius Vira, Jaakko Kukkonen, Mikhail Sofiev, Raimo O. Salonen, Timo Lanki On final internal review, Environmental Health Perspectives. First detailed assessment on exposures to vegetation-fire originated PM 2.5 in Europe About 1500 and 1100 premature deaths were attributable to the vegetationfire originated PM 2.5 in 2005 and 2008, respectively. Impacts were highest in southern and eastern Europe, but all countries were affected Modelled PM2.5 concentrations for 2005, SILAM model. Left: total anthropogenic concentrations, Right: fraction of wild-land fire originated concentrations.
For the health effects of particulate matter, it is necessary to consider the sizes and composition of particles The first multi-city evaluation of particle numbers We present particle number concentrations in five major European cities, namely Helsinki, Oslo, London, Rotterdam and Athens, in 2008, based mainly on modelling. the influence of the main source categories and regional background, spatial Proof concentration in check for ACP. distributions, inter-city comparisons
Spatial distribution of anthropogenic particulate number emissions in Europe in 2005, on a longitude vs. latitude grid, on a resolution of 1/8º x 1/16º. The unit of the legend is 10 24 particles per computational cell per annum. Kukkonen, J. et al., 2016. Modelling the dispersion of particle numbers in five European cities. Geoscientific Model Development, in print.
Predicted annual average particle number concentrations in Europe for 2005. The modelled particulate matter size range is from 10 to 1000 nm. The unit in the legend is 10 3 particles cm -3. Kukkonen, J. et al., 2016. Modelling the dispersion of particle numbers in five European cities. Geoscientific Model Development, in print.
Helsinki Oslo The predicted urban spatial distributions of particle number concentrations in 2008. The location of the centre of London is shown in panel d as a rectangle. The concentration unit in all the legends is particles per cm 3. The legends are identical for the panels a-e, but different for the panel f (the center of London). The most important sources: Vehicular pollution (all) Regional background (especially for RDAM) Shipping (especially for OSL, ATH) Aviation (especially for ATH) Tunnel entrances (OSL) Refineries (RDAM) Rotterdam Athens London Center of London
An ongoing project: The Influence of Air Pollution, Pollen and Ambient Temperature on Asthma and Allergies in Changing Climate (APTA) Rahoitus: Suomen Akatemia, 2013-2017, www.oulu.fi/apta/ Oulun yliopisto ja Ilmatieteen laitos Astma ja allergiat ovat yleisiä sairauksia. Ilmastonmuutokseen liittyy ympäristömuutoksia, mm. siitepölyissä, joilla on merkittäviä vaikutuksia astmaan ja allergioihin. Selvitämme ilmastoon liittyvien ympäristötekijöiden lyhyt- ja pitkäaikaisia vaikutuksia astmaan, allergioihin ja kuolleisuuteen kahdessa väestöpohjaisessa tutkimuksessa: Espoon kohortti sekä Suomen Ympäristö ja astma. Tutkimme erityisesti ilmansaasteiden, siitepölyjen sekä äärisääolosuhteiden terveysvaikutuksia herkissä väestönosissa. Sovellamme mallintamista ilmansaasteisiin ja siitepölyihin, ympäristötilastotieteellisiä, informaatioteknologisia, geneettisiä, kliinisen lääketieteen ja epidemiologisia menetelmiä. Tutkimus tuottaa hyödyllistä tietoa terveydenhuoltoon ja yhdyskuntasuunnitteluun sekä hälytysjärjestelmien luomiseen. Ympäristöterveyden kattava aineisto tukee valmiusjärjestelmiä sekä terveyspoliittista päätöksentekoa.
The approach of the APTA project
Environmental impact assessment of airborne particulate matter: the effects of abatement and management strategies (BATMAN) Funding granted by Academy of Finland, 2015-2018, total funding from SA for the project 631 ke. Aim: to provide new quantitative and reliable information on the optimal procedures for the reduction of PM air pollution and the associated environmental burden of disease in Finland and in Europe. Coordinator: Adj.prof., Ph.D. Otto Hänninen, National Institute for Health and Welfare (THL) and University of Eastern Finland (UEF). Sites of research: National Institute for Health and Welfare (THL), Finnish Environmental Institute (SYKE), Finnish Meteorological Institute (FMI).
Understanding the link between Air pollution and Distribution of related Health Impacts and Welfare in the Nordic countries NordicWelfAir, 2015 2018, about 3.2 Me funding by Nordforsk. Aim: to to investigate and assess the effects of air pollution on the distribution of related health impacts, socio-economics and welfare in the Nordic countries. Coordinator: Jørgen Brandt, Århus University, Denmark. Participants: Air quality and health scientists from all five Nordic countries, from Finland FMI, SYKE, THL http://projects.au.dk/nordicwelfair/
Johtopäätökset Ultrapienillä hiukkasilla on huomattavia terveysvaikutuksia: Maailmanlaajuisesti ilmansaasteet aiheuttivat noin 7 miljoonaa ennenaikaista kuolemantapausta sisä- ja ulkoilmassa vuonna 2012 (WHO) Euroopan laajuisesti ennenaikaisia kuolemantapauksia on eri arvioiden mukaan luokkaa 600 000 700 000 (WHO, Århus Univ.) Kotimaiset päästöt aiheuttivat Suomessa noin 1100 ennenaikaista kuolemantapausta vuonna 2000 (THL, IL, SYKE; PILTTI-hankkeen mukaan) ; kaikki päästöt mukaan lukien on arvioitu luokkaa 1600 (EEA, 2005)* Tunnetaan huonosti, mitkä hiukkasten ominaisuudet ovat tärkeimmät terveysvaikutusten kannalta (kokojakauma, kemialliset yhdisteet, hiukkasten lukumäärä, päästölähteet, ilmakemiallinen muutunta) Ultrapienten (tai nanohiukkasten) ominaisuudet, sekä niiden terveysvaikutukset, tunnetaan paljon huonommin kuin hiukkasten massaperusteise pitoisuudet Jos tunnettaisiin paremmin ultrapienten hiukkasten ominaisuudet, pitoisuudet ja vaikutukset, erityisesti kaupunki-ilmassa, voitaisiin kehittää kustannustehokkaita keinoja vaikutusten vähentämiseksi * EEA Technical report No 1/2009
Some research needs on ultrafine particles in urban air The relations of particle properties and health New particulate matter measures, such as ultrafines, particle number and chemical composition Integrated evaluation of the health effects caused by air pollution, meteorological factors and allergenic pollen Cost-efficient abatement measures and strategies The feasibility of different policies should also be compared The effects on health, climate change, the economy and the society (e.g., to reduce fossil fuel consumption) E.g., the increased use of small-scale biomass combustion, the use of biofuels in vehicles, changes in housing design to increase energy efficiency, urban planning Developing countries, especially China and India Early warning and alarm systems Examples: heat waves, cold spells, and other extreme meteorological conditions hazardous air pollutants and allergenic pollen species pollutant plumes originated from wild-land fires The evaluation of the impacts and effectiveness of such systems
Additional slides
Particle number concentration (#/cm 3 ) 40000 35000 30000 Observed Modelled urban contributions Modelled regional background 40000 35000 30000 25000 25000 20000 20000 15000 15000 10000 10000 5000 5000 0 Helsinki, traffic site Oslo, urban background site Oslo, traffic site Rotterdam, urban background site Rotterdam, traffic site London, urban background site London, traffic site 0 Comparison of the predicted and measured annual average particle number concentrations in four cities. The total predicted concentration is the sum of regional background and urban contributions. Kukkonen, J. et al., 2016. Modelling the dispersion of particle numbers in five European cities. Geoscientific Model Development, in print.
The BATMAN project
The SA BATMAN project
60 50 Episode-mass closure Forest fires in Russia in spring 2006 The measured concentrations of PM2.5 in Helsinki, Kumpula (urban background) 16 April 10 May 2006 EC = Elemental carbon OC = Organic carbon POM = Particulate organic matter SO4 = sulphate WIS = water insoluble WS = water soluble µg/m 3 µg/m 3 40 30 20 10 0 20 15 10 5 0 10.4.06 12.4.06 14.4.06 PM 2.5 EC POM Other ions SO 4 Episode-carbonaceous EC WISOC WSOC 16.4.06 18.4.06 20.4.06 22.4.06 24.4.06 26.4.06 28.4.06 30.4.06 2.5.06 4.5.06 6.5.06 8.5.06 10.5.06 12.5.06 14.5.06 16.5.06 18.5.06 Ref. Saarikoski et al., 2006. Major wildland fire episode in Northern Europe: chemical composition and atmospheric chemistry of aerosols. Atmos. Environ. 41 (2007), 3577 3589.