Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Samankaltaiset tiedostot
NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

Pietarsaaren lukio Vesa Maanselkä

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

g-kentät ja voimat Haarto & Karhunen

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut.

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

HARJOITUS 4 1. (E 5.29):

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

Massakeskipiste Kosketusvoimat

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Kitka ja Newtonin lakien sovellukset

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

VUOROVAIKUTUS JA VOIMA

Luvun 5 laskuesimerkit

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Luvun 5 laskuesimerkit

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

Mekaniikka 1 Lukion fysiikan kertausta

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Massa ja paino. Jaana Ohtonen Språkskolan Kielikoulu. torsdag 9 januari 14

ELEC-A3110 Mekaniikka (5 op)

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Liikemäärä ja voima 1

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Integrointi ja sovellukset

Mekaniikkan jatkokurssi

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

3 Määrätty integraali

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

1 Johdanto. 2 Lähtökohdat

Liikkeet. Haarto & Karhunen.

FYSIIKAN HARJOITUSTEHTÄVIÄ

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

STATIIKKA. TF00BN89 5op

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

ELEC-A3110 Mekaniikka (5 op)

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

Luento 7: Voima ja Liikemäärä

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

E 3.15: Maan pinnalla levossa olevassa avaruusaluksessa pallo vierii pois pöydän vaakasuoralta pinnalta ja osuu lattiaan D:n etäisyydellä pöydän

1 Tieteellinen esitystapa, yksiköt ja dimensiot

ELEC-A3110 Mekaniikka (5 op)

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Muunnokset ja mittayksiköt

RASITUSKUVIOT (jatkuu)

LUKION FYSIIKKAKILPAILU PERUSSARJA

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

Differentiaalilaskenta 1.

Luento 10: Työ, energia ja teho

Laskun vaiheet ja matemaattiset mallit

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

1.5 Tasaisesti kiihtyvä liike

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Nyt kerrataan! Lukion FYS5-kurssi

1 Ensimmäisen asteen polynomifunktio

TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Fysiikan perusteet ja pedagogiikka (kertaus)

Luento 5: Voima ja Liikemäärä

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Luvun 10 laskuesimerkit

Fysiikan perusteet. Liikkeet. Antti Haarto

PRELIMINÄÄRIKOE. Lyhyt Matematiikka

Fysiikka 1. Fysiikka 1, Fysiikka luonnontieteenä, Tammi (2009) MAOL-taulukot, Otava

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Opetusmateriaali. Tutkimustehtävien tekeminen

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

MAB3 - Harjoitustehtävien ratkaisut:

Työ 5: Putoamiskiihtyvyys

1.1 Funktion määritelmä

5.3 Ensimmäisen asteen polynomifunktio

2.3 Voiman jakaminen komponentteihin

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe , malliratkaisut

Kpl 2: Vuorovaikutus ja voima

Transkriptio:

1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7 kn, 10-12s: 4,3 kn 2. Oletetaan, että suoraviivaisessa liikkeessä olevan kappaleen kiihtyvyys muuttuu oheisen kuvion mukaisesti. Hetkellä t = 0 kappaleen nopeus on v 0 = +1,0 m/s. Piirrä oheista ta-kuvaajaa vastaava tv-kuvaaja. (YO K80) 0-2s: tasaisesti kiihtyvä a=1m/s², 2-3s tasainen a=0m/s², 3-6s tasaisesti kiihtyvä a=-2m/s², 6-7 tasainen a=0m/s² v= v0+at saadaan kuvaaja: 3. Röntgensäteily (YO K80) -mitä röntgensäteily on - röntgenputki -jarrutussäteily -ominaissäteily -spektri (mittaus, spektrikuvio) -ominaisuudet (läpitunkevuus, ionisointikyky, interferenssi) -käyttö (lääketieteelliset, tekniset )

4. Tehtävään kuuluvat sekä a) että b) Hiilidioksidin mukana joutuu elävään organismiin kosmisen säteilyn synnyttämää radioaktiivista isotooppia 14 C, jonka puoliintumisaika on 5600 a. 14 C-ytimen ja stabiilien 12 C- ytimien lukumäärien suhde on elävässä organismissa vakio. Organismin kuollessa sen hiilidioksodin saanti loppuu ja 14 C-pitoisuus alkaa vähetä hajoamisen vuoksi. a) Täydennä asiaan liittyvät yhtälöt N + n C + C + e - 14 1 14 1 N + n C + p 7 0 6 1 14 14 0 C N + e 6 7-1 b) Elävästä organismista otettu hiilinäyte, jonka massa on 1,0 g, lähettää 14 β - -hiukkasta minuutissa ja tutkittava 1,0 g näyte 12 β - -hiukkasta minuutissa. Laske näytteen ikä. (YO K83) t = 1200 vuotta 5. Suoraviivaisessa liikkeessä olevien kappaleiden A ja B paikka ajan funktiona on esitetty oheisessa kuviossa. Määritä a) kappaleiden aikavälinä 0... 8,0 s kulkema matka ja b) kappaleiden keskinopeus aikavälinä 2,0...10,0 s. c) Milloin kappaleilla on sama nopeus? (YO K84) a) Xa=3m, Xb=1.4m b) 0.38 m/s c) t=7.3 s 6. Radioaktiivinen isotooppi 238 U hajoaa välivaiheiden kautta stabiiliksi isotoopiksi 206 Pb, jolloin puoliintumisaika on 4,47. 10 9 a. Kuusta tuotu kivinäyte sisältää näitä isotooppeja suhteessa N Pb : N U = 0,333. Laske näytteen ikä olettaen, että koko 206 Pb-määrä on syntynyt 238 U:n hajoamisen tuloksena. (YO K84) t = 1,85 * 10 ⁹ vuotta

7. Radioaktiivisen säteilyn käyttö ja säteilyltä suojautuminen. (YO K85) Säteilyn käyttö perustuu seuraaviin ominaisuuksiin -läpitunkevuus -detektoituvuus -ionisoiva vaikutus -hajoamislain mukainen heikkeneminen Esim. -merkkiainetekniikka (periaate, esimerkit) - läpivalaisu -paksuusmittaukset - sädehoito - iänmääritys (C14-menetelmä) Suojautuminen -miksi suojauduttava 8. Kappale voi liikkua suoraviivaisesti. Oheiset kuvaajat esittävät kappaleen paikkaa s, nopeutta v, kiihtyvyyttä a ja kappaleeseen vaikuttavaa kokonaisvoimaa F ajan funktiona. Mikä on kappaleen liiketila eri tapauksissa? Perustele (YO K86) a) paikka sama kappale on levossa b) nopeus pienenee lineaarisesti kappale on tasaisessa hidastuvassa liikkeessä. c) kiihtyvyys muuttuu kiihtyvä liike (EI tasaisesti kiihtyvä liike) d) voima on vakio a=f/m on vakio kappale on tasaisesti kiihtyvässä liikkeessä e) kappale on kiihtyvässä liikkeessä (suoran kulmakerroin eli nopeus kasvaa). Jos käyrä on paraabeli niin kappale on tasaisessa kiihtyvässä liikkeessä. f) kokonaisvoima on nolla joten kiihtyvyys on nolla kappale on levossa tai tasaisessa liikkeessä (eli nopeus ei muutu) 9. Raitiovaunua, jonka massa on 36 10 3 kg, jarrutetaan vaihdetta lähestyttäessä siten, että vaunun nopeus pienenee arvosta 38 km/h arvoon 10 km/h. Tällöin jarruttava voima on 52 kn. Laske a) jarrutukseen kuluva aika ja b) vaunun tänä aikana kulkema matka. (YO K87) a) 5.4 s b) 36 m

10. Perusvuorovaikutukset (YO K87) Kaikki voimat ovat seurausta neljästä perusvuorovaikutuksesta. - vuorovaikutuslajit - kantama, suhteellinen voimakkuus - vuorovaikutuksen välittyminen (kenttä, kantajahiukkaset) - esimerkkejä 11. Oheisessa kuvassa on esitetty kiihdytyskilpailuissa käytettävän auton nopeuden riippuvuus ajasta. a) Missä ajassa auto saavuttaa nopeuden 100 km/h? b) Mikä on auton keskikiihtyvyys aikavälinä 0,4...1,6 s? c) Kuinka pitkän matkan auto on kulkenut aikavälinä 0...8,5 s? (YO K88) a) 1,6 s b) 21 m/s² c) 390 m

12. Oheiset kuvaajat esittävät kappaleen paikkaa, nopeutta ja kiihtyvyyttä ajan funktiona maan suhteen levossa olevassa koordinaatistossa. (YO K 89) Mitkä kuvaajista voivat liittyä alla mainittuihin tapauksiin: a) pysäköity auto b) liukuportailla seisova henkilö c) asemalle saapuva juna, joka jarruttaa tasaisesti ja pysähtyy d) pysäkiltä tasaisesti kiihdyttäen lähtevä raitiovaunu e) laskuvarjon varassa putoava henkilö f) vakioteholla kiihdyttävä auto? Kuhunkin kohtaan voi liittyä kaksi tai useampi kuvaaja. Vastaukseksi riittää kuvaajan numero. a-2, b-1 ja 5, c-4 ja 10, d- 3 (mikäli paraabeli) ja 6, e-8, f-7 13. Mies seisoo rotkon reunalla ja heittää kiven pystysuoraan ylöspäin alkunopeudella 18 m/s siten, että kivi putoaa rotkoon. Kuinka pitkän ajan kuluttua ja millä nopeudella kivi kohtaa 49 m lähtötasonsa alapuolella olevan rotkon pohjan? (YO s80) v= -36 m/s, t=5,5 s 14. Kappaleet A ja B lähtevät liikkeelle samasta pisteestä samaan suuntaan. Niiden nopeuden suunta pysyy samana ja suuruus riippuu ajasta oheisen kuvion mukaisesti. a) Kuinka kaukana lähtökohdastaan A on silloin kun kappaleiden nopeudet ovat yhtä suuret? b) Mikä on kappaleiden välimatka hetkellä 8,0 s? (YO s83) a) 9m b=4m

15. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. 16. Selosta lyhyesti käsitteet a) nukleoni, b) ytimen järjestysluku, c) isotooppi, d) ytimen sidosenergia, e) aktiivisuus ja f) puoliintumisaika. (YO S85) ks. teht. 1 17. Määrittele ja selitä sopivien kuvioiden avulla käsitteet a) voima ja vastavoima ja b) lepokitkavoima. (YO S87) a) Kappaleiden vuorovaikutus aiheuttaa voimaparin (voima ja vastavoima, Newton III). Esim. gravitaatiovuorovaikutus maan ja kuun välillä. b) Fkitka F G N Lepokitkavoima on vetoa(f) vastustava kosketusvoima joka on suuruudeltaan sama kuin vetävä voima F ja suunnaltaan vastakkainen. Lepokitkan suuruus riippuu voimasta F ja on sen kanssa saman suuruinen (suunta vastakkainen). Lepokitkan suurin arvo on lähtökitka ja sen arvo on F = myy * N (lepokitkakerroin * pinnan normaalivoima).

18. Oheinen kuvio esittää suoraviivaisesti liikkuvan kappaleen nopeuden kuvaajaa. a) Määritä ja piirrä kappaleen paikka ajan funktiona. b) Mihin tavalliseen liikkeeseen kuvaaja voi liittyä? (YO S89) a) v0 = alkunopeus = 7 m/s a = kiihtyvyys = -9.72 m/s² s= v0*t + 1/2*a*t² tästä tulee alaspäin aukeava paraabeli (piirrä kuvaaja) b) kuvaaja sopii esim. tilanteeseen jossa kappale heitetään ylöspäin nopeudella 7,0 m/s ja kappale saavuttaa lakipisteensä hetkellä 0.7s (g tässä mittaustarkkuuden rajoissa ok) 19. Auto vetää vaakasuoralla tiellä asuntovaunua. Eräällä hetkellä autoa kiihdyttävä kitkavoima on 3,8 kn ja autoon vaikuttava liikevastusvoima 0,3 kn, jolloin yhdistelmän kiihtyvyys on 1,1 m/s 2. Auton massa on 1120 kg ja asuntovaunun massa 860 kg. Laske asuntovaunuun vaikuttava liikevastusvoima ja auton vetokoukkuun kohdistuva voima. (YO S1990) liikevastusvoima = 1.3 kn auton liikesuuntaa vastaan, vetokoukkuun kohdistuva voima 2,3 kn auton liikesuuntaa vastaan. 20. Pyöräilykypärän kestävyyttä eri törmäysnopeuksilla on tarkoitus testata pudottamalla sopivasti täytetty kypärä eri korkeuksilta. a) Piirrä koetta varten kuvaaja, joka esittää levosta pudotetun kappaleen loppunopeutta pudotuskorkeuden funktiona. b) Määritä kuvaajasta pudotuskorkeudet, jotka vastaavat törmäysnopeuksia 15 km/h ja 25 km/h. (YO K2000) a) h=0,5m v=3,13 m/s, h=1,0m v=4,43 m/s, h=1,5m v=5,42 m/s, h=2,0m v=6,23 m/s, h=3,0m v=7,67 m/s b) 0,90m ja 2,5m