832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa binäärisen etsintäpuun kaikki avainkentät vähenevässä järjestyksessä. Algoritmi saa parametrinaan osoittimen puun juureen. Algoritmin pitäisi olla kompleksisuudeltaan lineaarinen puun solmujen lukumäärän n suhteen ( ( n) ). Osoita myös, että näin on! Ratkaisu. Olkoon puun juuren osoitin T. Määritellään algoritmi seuraavasti TULOSTA_PUU_LASKEVA(T). if T!=NIL 2. TULOSTA_PUU_LASKEVA(T.right) 3. tulosta (T.key) 4. TULOSTA_LASKEVA(T.left) 5. return Tässä siis hajotetaan puu vasempaan ja oikeaan alipuuhun, jotka käsitellään samalla algoritmilla erikseen. Jos puussa ei ole solmuja, tehdään vain yksi vertailu. Jos puussa on yksi solmu, on selvää että algoritmi vie vakioajan, jota merkitään kirjaimella a. Olkoon T(n) aika, jonka algoritmi vie, kun puussa on n solmua. Oletetaan, että puussa on N solmua (N >) ja että on olemassa sellainen vakio c, että T( n) c n aina, kun 0 < n < N. Lisäksi voidaan luonnollisesti olettaa, että c a. Jos puun vasemmassa alipuussa on k solmua, niin oikeassa alipuussa on N--k solmua. Siten Jos Jos k 0, T( N) a T( N ) a c ( N ) ( a c) c N c N k, T( N) a T( k) T( N k ) a c k c ( N k ) ( a c) c N c N Siis T( n) c n kaikilla luvun n arvoilla. Tietenkin jokainen solmu käsitellään, minkä vuoksi T n) n T( n) ( n. joten ) Tehtävä 7.2. Hae lukujoukon {7,2,3,8,,9,5,23,8,33,6,35,9,2,42} mediaani luennoissa esitetyllä hajota ja hallitse-tyyppisellä algoritmilla. Voit olettaa yksinkertaisuuden vuoksi, että ositusalgoritmi valitsee satunnaisesti sarana-alkioksi aina käsiteltävän välin ensimmäisen alkion. (, Ratkaisu. Luennoissa esitetty algoritmi ETSI hakee taulukon järjestyksessä k:nnen luvun ja se on seuraava: ETSI(A,p,q,k). x = OSITA(A,p,q) 2. if x == k 3. return A[x] 4. else if x > k 5. return ETSI(A,p,x-,k) 6. else 7. return ETSI(A,x+,q,k) OSITA(A,p,r). valitse x = A[m] satunnaisesti osasta A[p,..,r] 2. vaihda A[m] ja A[r] 3. i = p- 4. for j = p to r- 5. if A[j] == x 6. vaihda A[j] ja A[r] 7. if A[j] <= x 8. i = i+ 9. vaihda A[i] ja A[j] 0. vaihda A[i+] ja A[r]. return i+
Alla on esimerkkiajo algoritmista annetulle taulukolle. Lukuja on 5, joten etsitään järjestyksessä kahdeksatta. Taulukon indeksit alkavat nollasta, joten haetaan alkiota, joka tulee paikalle 7. Aluksi ositetaan koko taulukko satunnaisesti valitun alkion suhteen. Tämän oikea paikka taulukossa on 5, joten haetaan oikealta puolelta. Sitten sarana-alkioksi sattuu 8, joka puolestaan tulee paikalle 9. Näin ollen haetaan indeksien 6 ja 8 väliltä. Tältä väliltä sattuu vielä saranaksi alkio 2, minkä jälkeen löydetään kahdeksas alkio, joka on 5. Tulostuksesta nähdään käsiteltävä taulukon osa, sarana-alkio ja taulukon osa osituksen jälkeen. CALLING PARTITION(0,4) ARRAY BEFORE: 7 2 3 8 9 5 23 8 33 6 35 9 2 42 PIVOT: ARRAY AFTER: 7 2 3 8 9 5 23 8 33 6 35 9 2 42 RETURNING 5 CALLING PARTITION(6,4) ARRAY BEFORE: 5 23 8 33 6 35 9 2 42 PIVOT: 8 ARRAY AFTER: 5 6 2 8 23 35 9 42 33 RETURNING 9 CALLING PARTITION(6,8) ARRAY BEFORE: 5 6 2 PIVOT: 2 ARRAY AFTER: 2 6 5 RETURNING 6 CALLING PARTITION(7,8) ARRAY BEFORE: 6 5 PIVOT: 5 ARRAY AFTER: 5 6 RETURNING 7 THE 8. ELEMENT IS 5 Dynaaminen taulukointi: Tehtävä 7.3. Shakkilaudan vasemmassa yläkulmassa on nappula, joka voi siirtyä sijaintiruudustaan ainoastaan oikealle tai alas seuraavaan ruutuun. Kuinka monella tavalla nappula voi siirtyä 4*4-laudalla oikeaan alakulmaan? Ratkaise ongelma käyttämällä dynaamista taulukointia. Esimerkki: 2*2-laudalla on kaksi erilaista reittiä: ja 3*3-laudalla reittejä on 6 erilaista (kokeile!). Huomaa, että tiettyyn ruutuun johtavien reittien lukumäärä riippuu sen naapuriruutuihin johtavien reittien lukumäärästä. Osaatko yleistää ratkaisuasi n*n-laudalle? Ratkaisu. Merkitään laudan ruutuja koordinaattipareilla (i,j), missä i on sarakenumero ja j vaakarivin numero. Molemmat luvut voivat saada arvoja..4. Ongelmamme osaongelmiksi tulevat luonnollisesti reittien määrän laskemiset laudan eri ruutuihin. Merkitään reittien lukumäärää ruutuun (i,j) luvulla A(i,j). Huomataan, että nämä arvot voidaan tallettaa kaksiulotteiseen taulukkoon A[..4,..4]. Tutkitaan seuraavaksi, miten reittien lukumäärä voidaan laskea. Laudan yläreunan ja vasemman reunan ruutuihin voi päästä ainoastaan yhdellä tavalla, koska nappula liikkuu ainoastaan alas ja oikealle. Näin ollen A(i,) = A(,j) = kaikilla arvoilla i ja j.
Laudan ruutuun (i,j) voi päästä vain ruuduista (i-,j) ja (i,j-). Jos reittejä ruutuun (i-,j) on A(i-,j) kappaletta ja ruutuun (i,j-) niitä on A(i,j-) kappaletta, reittejä ruutuun (i,j) on A(i-,j)+ A(i,j-) kappaletta. Siis A(i,j) = A(i-,j)+ A(i,j-). Koska A(i,) = A(,j) =, niin kaikki arvot voidaan laskea ja täyttää taulukkoon. Näin löydettiin sopiva rekursio ratkaisulle. Ratkaisussa kannattaa käyttää dynaamista taulukointia eli varata taulukko ja laskea arvot siihen alhaalta lähtien: Alkutilanne: Lasketaan taulukoimalla A(2,2) = A(,2)+A(2,) = + = 2 A(3,2) = A(2,2)+A(3,) =2+=3 jne, jolloin lopulta saadaan taulukko 2 3 4 3 6 0 4 0 20 Siis reittejä on 20 erilaista.
Algoritmi yleistyy helposti n*n laudalle. Tässä tapauksessa täytetään vain n*n-taulukko. Algoritmi on seuraava: Syöte: Luku n>= Tulostus: Palauttaa tehtävässä kuvatun nappulan reittien lukumäärän n*nlaudalla vasemmasta yläkulmasta oikeaan alakulmaan. REITIT(n). varaa n*n-taulukko A[..n,..n] // Täytetään reunat ykkösillä 2. for i= to n do 3. A[i,] = 4. A[,i] = // Täytetään taulukko alhaalta ylös 5. for i= 2 to n do 6. for j=2 to n do 7. A[i,j] = A[i-,j]+A[i,j-] 8. return A[n,n] // Reittien lukumäärä taulukon viimeisessä paikassa Koska algoritmissa täytetään jokainen taulukon alkio täsmälleen kerran vakioaikaisella operaatiolla, 2 algoritmin kompleksisuusluokka on ( n ). Tehtävä 7.4. Olkoon A positiivisia kokonaislukuja sisältävä n*n-taulukko, jonka jokainen vaakarivi ja pystyrivi on kasvavassa järjestyksessä (ts. A, i A 2, i... A n, i ja A i, A i,2... A i, n i,..., n aina, kun ). Suunnittele algoritmi etsimään luku x taulukosta, kun syötteenä annetaan taulukko A ja etsittävä luku. Algoritmi palauttaa luvun esiintymispaikan taulukossa tai arvon NIL, ellei luku esiinny. Algoritmin tulee olla luvun n suhteen lineaariaikainen (luokkaa ( n) ). Ratkaisu. Yksi mahdollisuus olisi toteuttaa algoritmi käyttämällä hajota ja halllitse -tekniikkaa. Voitaisiin esimerkiksi valita taulukon keskimmäinen alkio (A[n/2,n/2]) ja päätellä sen ja luvun x suuruusjärjestyksestä, missä osassa taulukkoa x esiintyy. Sen jälkeen voitaisiin rekursiivisesti hakea lukua x taulukon osista. Näin ei saada kuitenkaan rajattua kerralla pois kuin neljäsosa taulukosta. Esimerkiksi, jos x < A[n/2,n/2], x ei voi esiintyä paikassa A[i,j], missä i>n/2 ja j>n/2. Rekursiivisesta algoritmista tulee melko tehoton. Kannattaakin lähteä liikkeelle taulukon vasemmasta alakulmasta (A[,n]) ja verrata lukuun x. Nyt saadaan, ellei x löydy tästä paikasta, suljettua pois joko ensimmäinen pystyrivi (jos x>a[,n]) tai alin vaakarivi (jos x<a[,n]). Ensimmäisessä tapauksessa voidaan siis seuraavaksi tutkia paikka A[2,n] ja toisessa tapauksessa A[,n-]. Näin etenemällä löydetään x tai viimeistään 2n askeleen kuluttua päädytään taulukon reunalle ja voidaan todeta, että x ei esiinny taulukossa. Siis algoritmi on lineaariaikainen luvun n suhteen. Alla on algoritmi tarkemmin:
Syöte: Kokonaislukutaulukko A[..n,..n], n>= ja haettava luku x. Taulukossa A on A[,i] <= A[2,i]... <= A[n,i] ja A[i,] <= A[i,2]... <= A[i,n] aina, kun i=,...,n Tulostus: Palauttaa luvun x paikan taulukossa A tai arvon NIL, ellei x esiinny siinä. ETSI_LUKU(A,x). cur_x = 2. cur_y = n 3. while cur_x <= n && cur_y >= 4. if x == A[cur_x,cur_y] 5. return [cur_x,cur_y] // Luku löytyi 6. else if x > A[cur_x,cur_y] 7. cur_x = cur_x+ 8. else 9. cur_y = cur_y- 0. return NIL // Luku ei ollut taulukossa Ahneet algoritmit: Tehtävä 7.5 Tietokoneen kovalevyn tallennuskapasiteetti on D megatavua ja sille halutaan tallentaa tiedostot P, P 2,, P n. Tiedoston P i koko on s i megatavua. Huomataan, että kaikki tiedostot eivät mahdu levylle, koska s + s 2 + + s n > D. Tarkastele seuraavien ahneiden algoritmien oikeellisuutta: a) Halutaan tallentaa mahdollisimman monta tiedostoa. Valitaan strategiaksi tallentaa tiedostoja pienimmästä suurimpaan kokojärjestyksessä, kunnes levylle ei mahdu enää tiedostoja. b) Halutaan käyttää mahdollisimman suuri osa levyn tallennustilasta. Tällä kerralla tallennetaan tiedostoja suurimmasta pienimpään, kunnes mikään tiedosto ei enää mahdu levylle. Jos algoritmi on mielestäsi oikea, osoita se. Jos algoritmi ei ole oikea, keksi vastaesimerkki. Ratkaisu. a) Oletetaan, että tiedostot ovat kokojärjestyksessä s s 2 s n Tällöin on etsittävä mahdollisimman monen luvun joukko niin, että lukujen summa on korkeintaan D. Ahneella menetelmällä saatu ratkaisu on täten (s, s 2,, s k) jollakin arvolla k ja s + s 2 + + s k+ > D. Olkoon nyt (s i, s i2,, s im) ratkaisu, jossa luvut ovat kokojärjestyksessä ja jossa on enemmän lukuja kuin ahneella menetelmällä saadussa ratkaisussa. Tällöin s im on kooltaan vähintään yhtä suuri kuin s k. Lisäksi jokin ahneen menetelmän luvuista s j puuttuu uudesta ratkaisusta, muutenhan ahne menetelmä voisi laajentaa ratkaisua. Uudessa ratkaisussa voidaan siten korvata s im luvulla s j. Etenemällä näin huomataan, että uuden ratkaisun lukuja voidaan korvata ahneen menetelmän luvuilla kunnes kaikki luvut (s, s 2,, s k) esiintyvät siinä. Mutta näiden lisäksi ei muita lukuja voi esiintyä. Siten kohdan a algoritmi on korrekti. b) Tällä kertaa annettu ahne ratkaisu on virheellinen. Olkoot tiedostojen koot megatavuissa 2,D-2 ja D-. Annetulla algoritmilla valittaisiin ensin suurin tiedosto, minkä jälkeen muita tiedostoja ei enää mahdu. Tallennustilaa jää megatavu käyttämättä. Sen sijaan valitsemalla kaksi pienempää tiedostoa saadaan levytila täyteen. Tehtävä 7.6 Määritä optimaalinen Huffmanin koodi seuraavalle aakkosten a, b, c, d, e, f frekvenssijonolle: a:34, b:2, c:22, d:8, e:9, f:5 (yhteensä 34+2+22+8+9+5 = 00 merkkiä). Kuinka monta bittiä säästyy verrattuna siihen, että jokainen aakkonen esitetään kolmella bitillä? Ratkaisu. Muodostetaan ensin juuresta koostuvat puut ja lajitellaan ne. Tämän jälkeen yhdistetään aina kaksi juuriarvoltaan pienintä puuta uudeksi puuksi, jonka juuriarvo on yhdistettyjen puiden juuriarvojen summa. Lopulta päädytään yhteen puuhun, joka esittää valmista koodia:
VAIHE I VAIHE II VAIHE III b:2 d:8 c:22 a:34 b:2 4 d:8 c:22 a:34 d:8 c:22 26 a:34 b:2 4 VAIHE IV 26 a:34 40 b:2 4 d:8 c:22 VAIHE V 40 d:8 c:22 60 26 a:34 b:2 4 VAIHE VI: Valmis koodi 00 40 d:8 c:22 60 26 a:34 b:2 4 Siis saatiin koodi: Merkki a b c d e f Koodi 00 0 00 00 Lasketaan, paljonko tilaa säästyy verrattuna kolmen bitin pakkaukseen: Merkki a b c d e f Prosenttiosuus 34 2 22 8 9 5 Jos tiedostossa olisi 00 merkkiä, kuluisi 34*2+2*3+2*22+2*8+4*9+4*5 = 68+36+44+36+36+20 = 240 bittiä. Kolmella bitillä koodaaminen veisi 300 bittiä. Näin ollen Huffmanin koodi vie tilaa 80% kolmen bitin koodauksen tallennustilasta. Säästö on 20%.