Working Report 2004-27 DigitaiBorehole lmaging of the Boreholes KR6, KR8 Continuation, KR19, KR19b, KR20, KR20b, KR21, KR22, KR22b, KR23, KR23b and KR24 at Olkiluoto During Autumn 2003 Mari Lahti July 2004 POSIVA OY FIN-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3709
TEKIJA ORGANISAATIO SUOMEN MALMI OY PL10 J uvan teollisuuskatu 16-18 02921 ESPOO TILAAJA POSIVAOY 27160 OLKILUOTO TILAAJAN YHDYSHENKILO DI Turo Ahokas Posiva Oy URAKOITSIJAN YHDYSHENKILO D I Mari Lahti Smoy RAPORTTI WORKING REPORT 2004-27 DIGITAL BOREHOLE IMAGING OF THE BOREHOLES KR6, KR8 CONTINUATION, KR19, KR19B, KR20, KR20B, KR21, KR22 KR22B, KR23, KR23B AND KR24 AT OLKILUOTO DURING AUTUMN 2003 TEKIJA TARKASTAJA P~Ad~ Pekka Mikkola Toimitusjohtaja
Working Report 2004-27 Digital Borehole lmaging of the Boreholes KRB, KRB Continuation, KR19, KR19b, KR20, KR20b, KR21, KR22, KR22b, KR23, KR23b and KR24 at Olkiluoto During Autumn 2003 Mari Lahti Suomen Malmi Oy July 2004 Working Reports contain information on work in progress or pending completion. The conclusions and viewpoints presented in the report are those of author(s) and do not necessarily coincide with those of Posiva.
ABSTRACT Digital bore hole imaging of the boreholes KR6, KR8 continuation, KR19, KR19b, KR20, KR20b, KR21, KR22, KR22b, KR23, KR23b and KR24 at Olkiluoto during autumn 2003 24.6. 2004 Mari Lahti, Suomen Malmi Oy Suomen Malmi Oy conducted digital borehole imaging surveys in altogether 12 boreholes at the Olkiluoto site in autumn 2003. The survey is a part of Posiva Oy' s detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and preliminary processing of the images. The report describes the field operation, equipment, image processing procedures and shows the obtained results by example images. The raw images as well as the processed images are delivered digitally in WellCAD format and Adobe Acrobat pdf-files that are saved into a set of CD/DVD discs. Key words Borehole logging, optical imaging, optical televiewer, structural geology, nuclear waste disposal
TIIVISTELMA Kairanreikien KR6, KR8jatko-osa, KR19, KR19b, KR20, KR20b, KR21, KR22, KR22b, KR23, KR23b ja KR24 digitaaliset kuvantamistutkimukset Olkiluodossa syksyllii 2003 24.6. 2004 Mari Lahti, Suomen Malmi Oy Suomen Malmi Oy teki digitaalisia kuvantamistutkimuksia yhteensa 12 kairanreiassa Olkiluodon tutkimusalueella syksylla 2003. Tyo tehtiin Posiva Oy:n tilauksesta osana yksityiskohtaisia kallioperatutkimuksia kaytetyn polttoaineen loppusijoitusta varten. Tyo sisalsi kuvausten kenttatyon seka kuvien alustavan prosessoinnin. Raportissa on kuvattu kenttatoiden kulku, kaytetty kalusto, kuville tehdyt korjaukset seka tulosten laatu esimerkkikuvien avulla. Raakakuvat seka korjatut kuvat on toimitettu tilaajalle digitaalisena CD/DVD -sarjana WellCAD -muotoisina tiedostoina seka Adobe Acrobat pdf -tulosteina. A vainsanat: Reikamittaus, optinen kuvantaminen, optinen televiewer, rakennegeologia, ydinjatteen loppusijoitus
CONTENTS Abstract Tiivistelma Contents...! 1 Introduction... 2 2 Equipment... 3 3 Field work... 6 3.1 Test surveys...... 6 3.2 Time schedule... 9 3.3 Survey parameters... 10 3.4 Quality control during survey... 11 4 Results... 12 4.1 Data processing... 12 4.2 Data quality... 13 4.2.1 Borehole conditions... 14 4.2.2 Resolution... 15 4.2.3 Image colour... 18 5 Conclusions... 19 6 Appendices... 20 Appendix 1. Original log-files Appendix 1.1 KR6... 20 Appendix 1.2 KR6 rerun... 21 Appendix 1.3 KR8... 22 Appendix 1.4 KR19... 23 Appendix 1.5 KR19b... 24 Appendix 1.6 KR20 and KR20b... 25 Appendix 1. 7 KR21... 26 Appendix 1.8 KR22...... 27 Appendix 1.9 KR22b... 28 Appendix 1.10 KR23 and KR23 rerun... 29 Appendix 1.11 KR23b... 30 Appendix 1.12 KR24... 31 Appendix 2. List of the data files.......32 Appendix 3. Example of an orientation log, KR20 depth interval300-350m 34 Appendix 4. Tool technical information... 35 Appendix 5. An example of Image Log header and PDF file... 39 Appendix on CD, PDF images
2 1 INTRODUCTION In 1999, Posiva Oy filed an application for a policy decision from the council of state for a construction permit to built a final disposal facility for spent fuel at the Olkiluoto are in the Eurajoki municipality. In December 2000, the Council of State made a positive policy decision and in May 2001, the Parliament ratified the decision. The policy makes it possible to concentrate the research activities at Olkiluoto. Suomen Malmi Oy (Smoy) carried out borehole imaging surveys for Posiva Oy in September-November 2003. The assignment included imaging of the boreholes KR6, KR8 continuation, KR19, KR19b, KR20, KR20b, KR21, KR22, KR22b, KR23, KR23b and KR24 according to the purchase order 9692/03/TUAH. The high precision borehole imaging contributes to fracture detection and orientation as well as further description of the crystalline bedrock at the Olkiluoto site. The field surveys were coordinated by survey engineer Johan Majapuro and the project management, image processing and reporting were conducted by geophysicist Mari Lahti. Smoy's geologist Risto Niinimaki reviewed the images at critical points, for geological correspondence. The field operation and quality control were supervised by client's representative project manager Eero Heikkinen from JP Fintact Ltd. This report describes the field operation of the borehole surveys and the preliminary image processing conducted by Suomen Malmi Oy. The quality of the results is shortly analysed and the data presented through example images.
3 2 EQUIPMENT The borehole imaging was carried out using Advanced Logic Technology's (ALT) OBI40 optical televiewer. Smoy rented the probe and the control unit with ALTLogger software from ALT. The rental included also WellCAD software for the quality control and processing of the data. The 1000 m long 3/16" steel armoured 4 conductor cable was purchased from Mount Sopris Ltd and mounted on Smoy' s motorized winch. The cable was marked with 10 m intervals for controlling the depth measurement. AL T provided bow centralizers for 3" and 4" diameter boreholes. The 3" bow centralizers were used for the survey of borehole KR6. The bow springs generated some twitching of the probe and use of fixed centralizers became necessary for achieving the required accuracy. Smoy prepared fixed nylon centralizers for 56 and 76 mm boreholes. Tool configuration and optical assembly is presented in Figures 1 and 2 below. The probe, cable and logging control unit are shown in Figure 3, and the control software interface at field base in Figure 4.
4!Tool Cablehead Adapter 55 cm De~' at on sersor APS544 lower centraliserhmrt Centrahser -- jmain Pressure Housing [-!Accelerometers!optical Head Ophca head -- CCO digital camera!optical Window Oplic&l Window (mirror section) Figure 1. The configuration of OB/40. On the left the rented version OB/40-2 and on the right the new OB140-mk3 (length 1. 7 m) that was used for the survey of KR21 and that Smoy currently owns (ALT, Optical Borehole Televiewer Operator Manual). cco digital camera 08140 image Light bulbs Conical mirror :_...! I I I ' Borehole wall Figure 2. Optical assembly of the OB/40. The high sensitivity CCD digital camera with Pentax optics is located above a conical mirror. The light source is a ring of light bulbs located in the optical head (ALT, Optical Borehole Televiewer Operator Manual).
5 Figure 3. OBI40 probe with nylon centralizers mounted. The extra weights are attached to the cable. In front the winch is the four-spring bow centralizer. Figure 4. The raw image was observed and analysed in real time during the survey.
6 3 FIELD WORK The assignment consisted ofborehole imaging of totally 3399 m in 12 boreholes. The boreholes and their specifications are listed in Table 1. The original survey program was later accomplished with the survey of KR24. Table 1. Specifications of the boreholes surveyed. BOREHOLE DIAMETER DIP PLANNED SURVEY CONCLUDED SURVEY LENGTH (mm) INTERVAL (m) INTERVAL (m) SURVEYED (m) KR6 76 50 5.25-601 15-600 585 KR8 56 64.4 280-601 288-599 311 KR19 76 75 40-544 40-537 497 KR19b 76 75 6-45 6-43 37 KR20 76 50 40-495 42-489 447 KR20b 76 50 8-45 8-43 35 KR21 76 30 4-301 4-285 281 KR22 76 59.1 40-500 40-494 454 KR22b 76 60 20-45 21-45 24 KR23 76 59.5 40-302 40-300 260 KR23b 76 59.6 6-45 5-45 40 KR24 76 90 120-548 428 TOTAL 3399 3.1 Test surveys The field work started with test surveys in the 76 mm diameter borehole KR16. Different parameters were tested to find out the best configuration for the imaging work. The parameters tested were shutter time, colour saturation (chroma, 0...255 or 0-100%) and light source intensity (lightness, 0... 255 or 0-100%). Required light intensity will depend on the borehole diameter, and the colour and luminosity of the bedrock material. The shutter times tested were 1/120 and 1/50 seconds. The lightness from 60 to 100% and chroma from 40 to 60 % were varied for both shutter times. According to the tests the best configuration was shutter time 1/50 s, lightness 70 % and chroma 50 %. The tested configurations are presented in Table 2 and some of the test images in Figures 5, 6 and 7. The selected setting will allow optimal range of lightness and colour saturation, to avoid underexposure (and bring in good resolution on grey scale in dark minerals) and overexposure (to distinguish mineralogy variation in granitic material). It was agreed that the selected parameters would probably have to be adjusted to each borehole depending on the borehole conditions, e.g. amount of impurity in the borehole water or dirtiness of the walls. Also the white balance seemed to change during the surveys, which affected the colours.
7 Table 2. Tested parameter configurations. SHUTTER 1/s LIGHTNESS% CHROMA% COMMENTS 1 120 70 50 dark image 2 120 80 50 a bit dark 3 120 90 50 pink 4 120 100 50 5 50 60 50 6 50 70 50 good, natural colours 7 50 80 50 pink 8 50 70 30 9 50 70 40 10 50 70 60 a bit yellow Figure 5. Comparison of shutter times 1/120 sand 1/50 s. For shutter time 1/120 sand lightness 70 or 80% (on the left) the image remained too dark. When increasing the lightness the image became pinkish (on the middle). For shutter time 1/50 s the use of lightness 70% was already sufficient for obtaining good image (on the right). See also Figure 6.
8 Figure 6. The effect of adjusting the lightness for shutter time 1/50 s. For shutter time 1/50 s the lightness 60 % is too weak (on the left) but lightness 80% results to pink image (on the middle). The image on the right is the selected configuration with lightness 70 %. Figure 7. The effect of adjusting chromafor shutter time 1/50 sand lightness 70 %. The image on the right is the selected configuration with chroma 50 %.
9 3.2 Time schedule The duration of the field work was 32 working days between 17.9. - 12.11. 2003. Equipment malfunction during logging of borehole KR22 at the end of October caused a break of one week. The logging was run 24 h continuously on weekdays and a break was held over each weekend. Table 3 describes the progress of the field operation and some comments from the field notes. Table 3. Time schedule of the field work. DATE ACTIVITY COMMENTS/NOTES 17.9. Mobilisation, kick-off meeting 18.9. Tests in KR16 22.9. KR6, interval14-100 m Image enhancer off, seems to increase amount of error pixels Gamma correction on 23.9. KR6, interval 100-350 m 24.9. KR6, interval 350-605 m The vertical resolution is not adequate. 25.9. KR6, rerun of interval 5-150 m KR23b, interval 5-45 m KR23b: Image is reddish. 26.9. Tests for the rerun of KR6 29.9. KR6, rerun of interval 550-600 m Rerun using extra weight (5 kg), upwards imaging gave better data, the rerun started from the bottom 30.9. KR6, rerun of interval 200-310 m Weakened colour resolution 1.10. KR6, rerun of interval 310-400 m Twitching of the probe in KR23, the survey speed had to be slowed KR23, interval40-150 m down to 10-15 cm/min, the bow centralisers were changed into nylon centralisers 2.10. KR23, interval150-180 m 6.10. KR 23, rerun of interval120-190 m The centralisers were changed into nylon centralisers and the extra weights were distributed more evenly on the cable. The effect of survey speed was demonstrated. The speed was kept as down as 10-12 cm/min for achieving good data. 7.10. KR23, interval 190-302 m KR24: The bow centralisers caused too much twitching and cable KR24, interval120-150 m resonance. When probe was taken up for changing the centralisers, the lens was already dirty. The hole conditions poor. Nylon centralisers used. 8.10. KR24, interval 150-370 m Borehole conditions get weaker below 300 m, lot of error pixels 9.10. KR24, interval 370-550 m KR24: Dark image KR22b, interval 20-30 m KR22b: Below casing image is dark, but improves 10.10. KR22b, interval 30-45 m Near bottom (below 40 m) half of the image is dark 13.10 KR8, interval 290-380 m At some parts a bit dark image, resolution ok 14.10. KR8, interval 380-600 m Few occasional single stick-slips, at very white parts the image is bluish 15.10. KR19, interval40-210 m Reddish image, oxidation 16.10. KR19, interval210-410 m 17.10. KR19, interval41 0-542 m 20.10. KR19b, interval 5-45 m KR19b: Image is reddish, partly due to rock type, partly oxidation, KR20, interval40-75 m lightness was adjusted during surveying 21.10. KR20, interval 75-320 m Resolution ok, good colour resolution but red parts partly burn 22.10. KR20, interval 320-492 m 2-3 mm vertical resolution in the tonalities, occasional stick-slips 27.10. KR20b, interval 8-43 m KR20b: Dark image in the beginning, quite wide black stripe, open KR22, interval40-150 m fractures below 40 m, gets muddy after that 28.10. KR22, interval 150-300 m Resolution and colour ok, occasional stick-slips 29.10. KR22, interval 300-496 m Resolution gets weaker towards bottom. Water got inside the probe. 10.11. KR21 The probe was lowered using fibre glass rods, tests were run during the lowering, but data quality was poor (uneven movements). The image was recorded time-based downwards. Pushing the probe down caused muddy hole conditions. Waiting over the night. 11.11. KR21, interval 280-65 m The imaging started from the bottom of the borehole. 12.11. KR21, interval 65-4 m
10 3.3 Survey parameters The applied survey parameters were recorded in the log files of each borehole. The recorded parameters are: -azimuthal resolution (720 pixels) -shutter time (1/50 s) -lightness (70, 80, 90 or 100 %) -chroma ( 40, 50 or 60 %) -gamma correction (on or off) -image enhancer (on or off) -sampling rate (0.0005 m) Image enhancer affects the camera focus. Due to severe electronic disturbance on OBI40-2 (blue, red and green error pixels), which was spread to adjacent pixels by image enhancement, the tool was first focused to borehole diameter, then enhancement was set off. The log files include also the depth check marks of the cable and corresponding readings of the depth encoder. With each raw data file the corresponding starting and ending time and depth were collected as well as total amount of rows recorded and errors occurred. The estimated survey speed was 0.2 m/min. In practise for obtaining required data quality the speed had to be slowed down to 0.15-0.18 m/min and in the most difficult conditions down to 0.10-0.12 m/min. The data was collected principally in 50 m pieces which yielded approximately a 150 Mb file size. The raw data files were named after borehole number, starting depth and initial a or y indicating imaging direction (kr20_ 100a.rd, kr21_280y.rd, a=downwards, y=upwards ). Logging sections, file names and performed processing are displayed in Appendix 2. the data files and log files are delivered to the Client in electronic format.
11 3.4 Quality control during survey The quality of the image was controlled during survey by taking samples of the image and applying histogram analysis. Also the vertical resolution was checked using captured images. The survey was never left unsupervised. Each borehole was surveyed without breaks for avoiding weakening of the in-hole imaging conditions. The overlapping of data between recorded intervals was ensured by rerunning of the last 0.5 m of each recording. The raw data files (*.rd files produced by AL TLogger) were imported to Well CAD after the saving and the quality of the image and achieved resolution was checked. The raw data was evaluated by JP Fintact Ltd. At some cases bitmap-files from selected depth intervals were exported and sent for evaluation via email to JP Fintact Ltd. Each image section was reviewed and accepted, or rerun decided before moving to next borehole.
12 4 RESULTS 4. 1 Data processing The data processing carried out after the field work consists of depth adjustment and image orientation for 70 raw data files. The instructions and procedures for the processing are provided by JP Fintact Ltd. The images were produced to depth matched and oriented to North presentations including a 3-D image. Images can be reviewed with WellCAD Reader, and WellCAD software. For the report, the images were also printed on PDF documents, in scale 1 :2 (Appendix on CD). The depth adjustments are based on distinctive geological features that can be identified from the core sample and the image. The applied depth adjustments were for example for KR6 0.06-5.22 m (Figure 8). The depth encoder readings collected from the cable marks every 10 m show similar trend than the geological depth adjustments and they can be used for estimation of the depth correction's extent and direction. The image was shifted and stretched along the depth axis using WellCAD depth matching tool. Depth accuracy to the reported core sample is usually 1-2 cm, and always better than 6 cm. Image has a good reproduction of depth scale also at core loss sections. KR6 1.00-r----------------------------... I 0.00 IT~../! X fl ~~ 1: -1.00. ~. ~ :g... ~ -""" : -:...~ -2.00 +---------------=-... -- -------------1 ~... "'-- GI ~ -3.00 +---------------------- ~~~-------!. --... _. X~ :2 ~ a -4.00 +---------------------~-! - - 8.' -, -5.00 +--------------------------.-;-:-- -6.00 +-------..,.-----,--- ---.-----,--------r-----,..-j 0 100 200 300 400 500 600. cable mar1<slencoder 15-20 + 200-249 - 300-350 X 250-299 X 450-495 ---ditf_150-200 """*-ditf_200-250 -ditf 550-600 - Polyn. (19-39) 19-39 35~00 - ditf_450-500 ----ditf_250-300 -Polyn. (450-495) Depth (m) 39-100 X 100-150 e 150-199 40~50 500-550 550-600 - diff_40~50 -+-ditf_39_100 ditf_100-150.. --diff_300-350 -+-ditf_350-350 - ditf_500-550 -Polyn. (400-450) - Polyn. (39-100) - Polyn. (100-150) Figure 8. The depth adjustment for KR6 (prepared by JP Fintact Ltd).
13 The image orientation of the dipping boreholes is based on existing maxibor and EMS data from the boreholes. The image of the vertical borehole KR24 was oriented with recalibrated OBI40-2 probe inclination, relative bearing and azimuth recording. A site magnetic declination, +4.5 degrees, was added to the orientation data before rotating. The orientation of the images required slight removal of the magnetic anomalies, which are narrow and can be distinguished as sudden symmetrical spin of the image. Accuracy of the Tilt is 0.2 degrees, and RBR 1 degrees, which can also be considered the accuracy of the image. The orientation of the images required slight removal of the magnetic anomalies. The corrected images are saved into Wellcad Reader enabled files named after borehole number and corrected tmage depth interval (kr6_15_ 20 _final. wcl). The files are also printed into corresponding pdf-files that are attached onto CD in Appendix of this report. The images were oriented to Site North (left edge to North, each image row rotating from left to right clockwise N-E-S-W-N, respectively). Orientation rotates the image to remove tool spinning about its axis. The image orientation in boreholes inclined from vertical (all other than KR24) is based on recalibrated inclination data (tilt from vertical) and the relative bearing (RBR, defined about borehole axis from High Side to clockwise) recording by OBI40-2 probe, and existing external Maxibor and EMS azimuth data from the boreholes which were computed together to orient the images to North. An example of an orientation log for KR20 depth interval 300-350 m is presented in Appendix 3. 4.2 Data quality In a high precision imaging survey the quality of the image is controlled by the borehole conditions (colour of the water, dirtiness of the borehole walls). As important factor is how smoothly the imaging tool can be moved in the borehole. All the necessary steps to ensure good image quality were taken during the field survey. These were supervised logging procedure throughout the work; optimised imaging settings, immediate reaction in parameters to any indications of weaker quality and necessary adjustments, correct logging direction in a specific circumstance (usually downwards) and adequately slow logging operation. Due to murky water after logging run, usually an immediate re-run is impossible, but it would be required to let the borehole water clear several weeks before a new trial.
14 4.2.1 Borehole conditions The surveyed boreholes were mainly in good condition for high resolution imaging. However, the conditions were severely weakened once the situation had been disturbed. For example repetition right after the survey is not usually possible. In some of the surveyed boreholes the in-hole conditions for the imaging were poor due to dirty borehole walls and muddiness of the water. For example borehole KR24 was very dirty below the casing at 120 m. Figure 9 shows two images from KR24 at depth of 120 m. The image from the survey in October 2003 shows dark dirty borehole walls below the casing installed in the borehole. The image surveyed after removing the casing is from another assignment carried out in March 2004. The borehole has been cleaned and the image quality is much improved. Weakened borehole conditions in KR24 were met also depths below 300 m where the image gets darker. The imaging of borehole KR21 was carried out with help of fibre glass rods for lowering the probe to the bottom. Pushing the rods and the probe caused muddy conditions. For getting better image, the probe was left into the borehole bottom for eight hours. However the water was still very muddy when the survey was started next morning. The set of images in Figure 10 shows the gradual image quality improvement towards the upper part ofkr21. Figure 9. Images (appr. 0.35 m depth interval) from borehole KR24 from depth 120 m before and after removing the casing showing the image quality improvement after cleaning the borehole. The images are not oriented.
15 Figure 10. Images from various depths (each 0.5 m depth interval) from KR21 shows the poor imaging conditions near the borehole bottom due to muddy borehole water and the improvement towards the surface where the water becomes clearer. 4.2.2 Resolution The required vertical resolution of 0.5 mm was obtained widely in most of the boreholes. In many cases however the survey speed had to be significantly slower than 0.2 m/min. Problems to collect data with the required resolution were met in boreholes KR6 and KR23. Altogether 435 m of KR6 and 60 m of KR23 were re-surveyed due to the poor resolution. The problems were related to light weight of the probe, and occurred also at certain depths in other boreholes dipping gently or moderately from vertical. If the probe itself would be significantly heavier the moving of the probe would be smoother. The means for improving the resolution were adding extra weights to the cable, using nylon centralisers and reducing the survey speed. An example of different resolutions obtained is shown in Figure 11. Figure 11. Images from KR22 demonstrate good and weakened resolution. On the left is presented image from depth 106 m with 0. 5 mm vertical resolution. On the right is image from depth 367 m showing vertical resolution of 2-3 mm, the weakened resolution is particularly visible in the white areas. See also Figure 13.
16 Most severe influence of the stick-slip motion brought in sections, where the slipping is 3-5 mm continuously. The phenomenon can be caused by several reasons, like mechanical ringing in the cable, a rough borehole wall influencing into the probe motion, or hydraulic flow. These may be also enhanced by depth encoder triggering the image aqcuisition while tool is still at previous location (stopped or moving slower than nominal rate), and tool moving faster then, leading to lose few subsequent traces of image. An example of this phenomenon is presented below in Figure 13. The resolution requirement will depend on the scale of interest. When the images are viewed in 1:5 through 1:20 scales for litho logical match, the obtained images are adequate in all conditions. When very thin lamellae of foliation, and microfractures are viewed against the core sample in scale of 1: 1 through 1 :4, the highest 0.5-1 mm resolution is required. Figure 12. Images from borehole KR8. On the left image from depth 5 63 m showing the best resolution quality. On the right image from depth 494 m showing single local stickslip, where the slipped pixels can be up to 1-2 cm long.
17 Figure13. Images from KR22 from depths 458 m (on the top) and 106 m (below) demonstrate the difference between blocked and good resolution image. Blue, green and red error pixels can also be seen especially in the upper image.
18 4.2.3 Image colour The borehole conditions determined how natural looking image could be obtained. In cases where the borehole water was clear the area influenced by dirt in the borehole is very narrow. Commonly the bottom of the dipping boreholes can be seen in the images as a black or brownish stripe where the fine grained material is gathered and flowing down. The existing core sample photos were utilized during the survey for evaluating the image quality and the naturalness of the colours. In some cases the quite strong shades proved to be close to natural rock colours, like in KR23b where the granite sections in the migmatic mica gneiss are dark red (Figure 14). In borehole KR6 where the survey had to be repeated, the borehole became muddy and the colour resolution was much decreased. In Figure 14 the image of KR6 is actually partly black and white, as for example the red and white mineral grains cannot be properly distinguished from each other. Figure 14. The image from KR23b from depth 30 m shows strong red shades, which are however close to the natural colour of the granites in the core samples. In the middle image from KR19 at depth 260 m shows redness that is due to oxidation. The image from KR6 at depth 296 m demonstrates the decreased colour resolution.
19 5 CONCLUSIONS The task of imaging 12 boreholes at the Olkiluoto site, altogether 3399 metres, was concluded within 8 weeks. The field work started in September 2003 and was finished by November 2003. The preliminary data processing included in the assignment was carried out mainly in January-February 2004. The draft report was compiled by the end of March 2004. Data has been delivered to the Client in electronic format. The quality of the images (pixel and colour resolution, depth match and orientation) widely achieves the required level. The quality was observed and validated by the Client's representative JP Fintact Ltd. The quality checking after each borehole and permission to proceed was organized either directly at the site or during weekend breaks.
r110t A'' SUOMEN MALMI OY 20 Appendix 1.1 KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLK/LUODOSSA 2003 Lokitiedosto kr6_1aki.xls, kr6_1aki_3.xls Tyonumero: 2331 Reika Nro: Tiedosto: Paivamaara: Mittaajat: KR6 kr6_xxy 22.9.2003 JM,JK,LJ KR6 kr6_xxy 29.9.2003 JM,ML,MM Uusinta ylospain ASETUKSET Pikseleita kehalla Suljinaika 1/s l Chroma% Valoteho% I I 22.syys 14 40 720 50 50 80 22.syys 15 48 720 50 50 70 29.syys 12 17 720 50 50 70 AGC GAMMA IMAGEENCH. Sampling Rgain Bgain WCR I pais lpaalla I pais 0.0005 I pais lpaalla I pais 0.0005 pais paalla pais 0.0005 98 145 Kaapelimerkki 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 Matkapyoran /ukema 21.12 31.11 41.08 51.08 61.08 71.07 81.08 91.09 101.13 111.20 121.22 131.23 141.25 151.27 161.31 171.35 181.39 191.43 201.56 211.66 221.69 231.73 241.78 251.83 261.89 271.94 282.03 292.17 302.30 312.35 322.40 332.48 342.56 352.65 362.70 372.82 382.99 393.15 403.22 413.29 423.37 433.48 443.61 453.69 463.75 473.82 483.93 tiedostonimi kr6 15a kr6 19a kr6 39a kr6 100a kr6 150a kr6 200a kr6 250a kr6 300a kr6 350a kr6 400a kr6 450a kr6 500a kr6 550a kr6 443y kr6 151y kr6 101y kr6 21y aloitus, m 14.501 18.5 39.001 100.5 150.5 200 249.999 300 350 400 450 500 550 443.61 151 101 21 /opetus, m 19 39.5 100.5 150.5 200.549 250.5 300.506 350.499 400.502 450.501 500.501 553.502 604.926 439.988 149.93 100 5 Kaapeli- Matkapyoran merkki /ukema 490 494.01 500 504.14 510 514.25 520 524.39 530 534.48 540 544.59 Uusinta ylos pain: 550 554.82 553.76 560 565.02 563.81 570 575.19 573.89 580 585.34 583.96 590 595.48 599.34 604.90 /uetut rivit virheet 40010 3139 123040 1667 100014 386 100101 282 101007 486 101025 165 100775 550 101080 412 100603 847 101060 1230 106006 2140 109122 1413 7 274 152 2706 4 2279 40 32391 30 aloitusaika 15:48 17:59 1:21 6:10 11:20 16:05 21 :25 2:22 7:10 12:00 17:07 22:20 5:15 6:50 7:22 8:15
21 Appendix 1.2 Ul.'~t ~'l SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr6_1oki_ 4.xls Tyonumero: 2331 Reika Nro: KR6 Uusinta Tiedosto: kr6_xxy Paivamaara: 29.9.2003 Mittaajat: JM,ML,MM 29.syys 30.syys 30.syys ASETUKSET 12:17 14:49 17:47 Pikseleita kehalla 720 720 720 Suljinaika 1/s 50 50 50 Chroma% 50 40 40 Valoteho% 70 80 70 AGC lpois pois pois GAMMA lpaalla paalla paalla IMAGEENCH. lpois pois pois Sampling 0.0005 0.0005 0.0005 Rgain 98 98 79 Bgain 145 145 161 WCR Kaapeli- Matkapyoran merkki lukema tiedostonimi aloitus, m lopetus, m /uetut rivit virheet a/oitusaika /opetus 200 202.42 kr6 202a 202.424 1:56 210 212.47 kr6 215a 214.998 228.868 27601 25 3:55 220 222.57 kr6 228a 228.003 291.444 127216 389 5:50 230 232.65 kr6 290testi 289.991 292.298 14:25 240 242.78 kr6 290a 290.003 296.784 13606 17 14:48 250 252.91 kr6 295a 295.001 404.37 219259 293 17:48 8:13 260 263.01 270 273.14 280 283.21 290 300 303.37 310 313.48 320 323.56 330 333.67 340 343.74 350 353.86 360 370 374.00 380 384.08 390 394.16 400 404.25
22 Appendix 1.3 ~3~t l'l SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLK/LUODOSSA 2003 Lokitiedosto kr8 _laki.xis Tyonumero: 2331 Reika Nro: KRS Tiedosto: kr8_xxy Paivamaara: 13.10.2003 Mittaajat: JM,ML 13.1aka 14.1aka ASETUKSET 14:01 18:27 Pikseleita kehalla 720 720 Suljinaika 1/s 50 50 Chroma% 30 30 Valoteho% 80 70 AGC pais pais Anturi 1.92 GAMMA paalla paalla Kaapeli 1 IMAGEENCH. pais pais Putki 0.36 Sampling 0.0005 0.0005 Alkusyv. 2.56 Rgain 44 44 B_gain 176 176 WCR 0.2695 0.2695 Kaapeli- Matkapyoran merkki /ukema tiedostonimi a/oitus, m lopetus, m /uetut rivit virheet aloitusaika lopetus 300 kr8 290a 290 352.603 125729 57 14:02 310 311.56 kr8 352a 352.05 403.211 102740 162 20:43 320 321.66 kr8 402a 402.709 453.941 102887 147 1:49 330 a hi kr8 453a 453.439 504.635 102818 154 6:53 340 341.90 kr8 504a 504.12 555.401 102979 194 12:10 350 352.04 kr8 554a 554.826 605.147 101058 64 18:27 23:50 360 362.18 370 372.32 380 a hi 390 392.57 400 402.71 410 412.84 420 422.98 430 ei merkkia 440 443.29 450 453.44 460 463.58 470 473.71 480 483.85 490 493.99 500 504.12 510 514.26 520 ei merkkia 530 534.55 540 541.16 merkki liikkunut??? 550 554.82 560 570 575.12 580 590 595.42 600
23 Appendix 1.4 ~~..t ~'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr19 _loki.xis Tyonumero: 2331 Reika Nro: KR19 Tiedosto: kr19_xxy Paivamaara: 13.10.2003 Mittaajat: JM,ML 14.1oka ASETUKSET 5:25 5:50 12:20 Pikseleita kehalla 720 Suljinaika 1/s 50 Chroma% 30 20 lennosta 30 Valoteho% 70 AGC pois GAMMA paalla IMAGEENCH. pois Sampling 0.0005 Rgain 44 Bgain 176 WCR 0.2695 Kaapeli- Matkapyoran merkki lukema tiedostonimi aloitus, m lo_petus, m luetut rivit virheet aloitusaika lopetus 50 49.53 kr19 40a 40.001 101.501 123506 350 5:25 60 59.56 kr19 101a 100.968 150.5 99470 264 12:21 70 69.58 kr19 150a 150.003 200.5 101413 210 17:21 80 79.62 kr19 200a 200.009 250.5 101389 245 22:40 90 ei merkkia kr19 250a 250.008 301.7 103812 270 4:09 100 99.67 kr19 301a 301.201 352.3 102622 256 9:29 110 109.72 kr19 302y 352.3 345.002 14656 15 15:55 120 119.76 kr19 351a 351.824 403 102770 173 17:14 130 129.68 kr19 402a 402 450.5 96684 41 22:22 140 139.90 kr19 450a 450.006 504.226 108873 848 3:41 150 150.00 kr19 503a 503.724 542.085 77041 478 9:24 160 160.09 170 170.17 180 ei merkkia 190 190.30 200 ei merkkia 210 ei merkkia 220 ei merkkia 230 230.57 240 ei merkkia 250 250.75 260 ei merkkia 270 ei merkkia 280 281.00 290 291.09 300 301.20 310 311.32 320 321.44 330 340 341.66 350 351.80 360 370 380 390 400 402.36 410 420 422.55 430 440 450 452.92 460 463.05 470 473.29 480 483.44 490 493.59 500 503.71 510 513.85 520 523.96
24 Appendix 1.5 ~ ~.t-~'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLK/LUODOSSA 2003 Lokitiedosto kr19b _laki.xis Tyonumero: 2331 Reika Nro: KR19b_xxy Tiedosto: kr19b_xxy Paivamaara: 20.10.2003 Mittaajat: JM,ML 20.1aka ASETUKSET 11 :50 13:45 Pikseleita kehalla 720 Su/jinaika 1/s 50 Chroma% 30 Valoteho% 70 65 75 70 AGC pais GAMMA paalla IMAGEENCH. pais Sampling 0.0005 Rgain 44 Bgain 176 WCR 0.2695 Kaapeli- Matkapyoran merkki lukema tiedostonimi aloitus, m /opetus, m luetut rivit virheet aloitusaika lopetus 10 11.61 kr19b 6a 6.199 43.917 75784 1344 11 :52 20 21.57 20.3 kr19b 28y 28.495 6.369 44438 1383 15:28 30 31.58 40 putken suu ahjain
25 Appendix 1.6 Ul~t l'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr20 _loki.xls, kr20b _loki.xls Tyonumero: 2331 Reika Nro: KR20 KR20b Tiedosto: kr20_xxy kr20b_xxy Paivamaara: 20.10.2003 27.10. Mittaajat: JM,ML HT,JK,JM 20.1oka 27.10. ASETUKSET 18:46 19:00 7:20 2:24 Pikseleita kehalla 720 720 Su/jinaika 1/s 50 50 Chroma% 30 30 Valoteho% 70 80 75 70 80 AGC pois pois GAMMA paalla paalla IMAGEENCH. pois pois Sampling 0.0005 0.0005 Rgain 44 44 Bgain 176 176 WCR 0.2695 0.2695 Kaapeli- Matkapyoran merkki /ukema tiedostonimi aloitus, m lopetus, m luetut rivit virheet a/oitusaika /opetus 40 kr20 39a 39.798 18:47 50 kr20 41a 41.475 100.5 118545 1351 19:57 60 kr20 99a 99.999 150.518 101459 45 1:50 70 kr20 150a 150 200.613 101648 121 7:21 80 kr20 200a 200 250.602 101624 106 12:12 90 kr20 250a 249.908 300.999 102607 83 17:02 100 kr20 300a 300.329 350.502 100762 82 22:15 110 kr20 350a 350.001 400.501 101422 48 4:32 120 kr20 400a 400 452.512 105465 44 10:02 130 kr20 452a 452.015 492.181 80667 80 15:58 21 :25 140 kr20 290y 290.24 289.24 2008 8 22:02 22:09 150 kr20 289y 289.24 288.238 2484 49 22 :10 22:16 160 noin 159,33 kr20 45y 45.008 40.349 9 356 134 22:58 23:32 170 169.40 180 179.46 lkr20b 8a I 8.15 I 43.041 I 70073 I 477 I 2:25 I 7:021 190 189.51 200 199.58 210 209.63 220 219.69 230 229.75 240 239.83 250 249.91 260 270 280 290 290.24 300 300.33 310 310.43 320 320.53 330 330.64 340 340.74 350 350.85 360 360.96 370 371.08 380 381.18 390 391.28 400 401.4 410 411.52 420 430 440 441.88 450 452.01 460 462.13 470 472.25 sininen merkki 469,74 480 482.39 490
26 Appendix 1.7 ~l~t l'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr21 _1oki.xls Tyonumero: 2331 Reika Nro: KR21 Tiedosto: KR21_x.xy Paivamaara: 11.11.2003 Mittaajat: JM,ML 11.11. ASETUKSET 2:24 13:40 21 :06 Pikseleita kehalla 720 720 720 Suljinaika 1/s 50 50 50 Chroma% 50 40 50 Valoteho% 85 80 85 AGC pais GAMMA paalla IMAGEENCH. paalla Sampling 0.0005 Rgain 44 22 Bgain 176 214 WCR 0.2695 Kaapeli- Matkapyoran merkki lukema tiedostonimi aloitus, m /opetus, m luetut rivit virheet a/oitusaika /opetus 10 9.53 kr21 286y 20 eim kr21 280y 280.158 199.223 162546 52 6:07 30 29.50 kr21 200y 199.93 196.181 12:49 kaatui 40 39.25 kr21 196y 196.503 194 saatelya 50 49.51 kr21 197y 197.002 13:40 kaatui 60 59.53 kr21 101y 101.51 4.696 194436 6164 21 :06 4:49 70 69.54 80 90 89.60 100 99.61 110 109.63 120 119.65 130 eim 140 139.70 150 160 159.78 170 180 179.85 190 200 199.93 210 209.97 220 230 eim 240 240.02 250 250.07 260 eim 270 270.14 280 280.16 290 300
27 Appendix 1.8 ~l~,t l'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLK/LUODOSSA 2003 Lokitiedosto kr22 _laki.xis Tyonumero: 2331 Reika Nro: KR22 Tiedosto: KR22_xxy Paivamaara: 27.10.2003 Mittaajat: HT,JK,JM 27.10. ASETUKSET 2:24 Pikseleita kehalla 720 Suljinaika 1/s 50 Chroma% 30 Valoteho% 80 AGC pais GAMMA paalla IMAGEENCH. pais Sampling 0.0005 R_g_ain 44 Bgain 176 WCR 0.2695 Kaapeli- Matkapyoran merkki /ukema tiedostonimi aloitus, m lopetus, m luetut rivit virheet aloitusaika lopetus 50 49.18 kr22 39a 39.901 100.18 121060 172 10:15 60 kr22 99a 99.18 149.763 101586 109 18:37 70 kr22 149a 149.264 199.977 101580 450 1:04 80 79.18 kr22 199a 199.476 210 21125 20 7:40 90 kr22 210y 210 208.999 2010 7 9:20 100 99.18 kr22 208yt 208.999 208 testi 110 109.19 kr22 207at 207.995 testi 120 119.19 kr22 209a 209.525 250.17 81629 164 15:26 130 kr22 249a 249.671 300.353 101746 81 15:29 140 139.22 kr22 299a 299.853 349.667 23:10 150 149.26 kr22 348a 348.629 401 105178 191 9:10 160 159.31 kr22 400a 400.501 451.487 102387 50 16:34 170 169.37 kr22 450a 450.987 496.433 91 177 110 23:50 180 179.43 6:26 190 189.46 200 199.48 210 209.50 220 219.54 230 229.58 240 239.63 250 249.67 260 259.70 270 269.73 280 279.77 290 300 299.85 310 309.77 320 320.01 330 330.08 340 340.17 350 350.14 360 360.33 370 370.373 380 390 400 410 420 420.75 430 440 440.91 450 450.987 460 461.06 470 471.126 480 490 491.388 500
,,., l'l ( l'i SUOMEN MALMI OY 28 Appendix 1.9 KAIRANREIKIEN DIG/TAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr22b _laki.xis Tyonumero: 2331 Reika Nro: Tiedosto: Paivamaara: Mittaajat: ASETUKSET Pikseleita kehalla Suljinaika 1/s Chroma% Valoteho% AGC GAMMA IMAGEENCH. Sampling Rgain Bgain WCR KR22B kr22b_xxy 9-10.10.2003 JK,JM,ML 9.1aka 21 :14 720 50 30 80 pais paalla pais 0.0005 44 176 0.2695 Kaapelimerkki Matkapyoran /ukema 10 11.50 20 21.49 30 31.56 40 41.63 tiedostonimi a/oitus, m lopetus, m luetut rivit virheet a/oitusaika lopetus kr22b 20a 20.91 45.6461 496981 211 21 :491 0:241
29 Appendix 1.10 ~ ~t l'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr23 _laki.xis, kr23 _laki_ 2.xis Tyonumero: 2331 Reika Nro: KR23 KR23 Uusinta Tiedosto: kr23_xxy kr23_xxy Paivamaara: 1.10.2003 6.10.2003 Mittaajat: JM,ML,MM JK,JM,ML 1.1aka 1.1aka 1.1aka 6.10. ASETUKSET 14:00 17:04 22:27 22:27 10:15 Pikseleita kehalla 720 720 720 720 Su/jinaika 1/s 50 50 50 50 Chroma% 30 30 30 30 Valoteho% 80 75 75 75 80 AGC pais pais pais pais GAMMA paalla paalla paalla paalla IMAGEENCH. pais pais pais pais Sampling 0.0005 0.0005 0.0005 0.0005 Rgain 44 44 44 44 Bgain 176 176 176 176 WCR 0.2695 0.2695 0.2695 0.2695 Kaapeli- Matkapyoran merkki /ukema tiedostonimi aloitus, m lopetus, m luetut rivit virheet a/oitusaika lopetus 50 51.16 kr23 40a 40.007 45.907 11848 121 16:15 60 61.19 kr23 45a 45 90.591 91563 332 17:08 70 71.22 kr23 90a 89.99 151.996 124530 124 22:27 80 81.26 kr23 151a 151.405 181.794 61030 67 5:36 90 91.30 kr23 181y 181.794 10:49 100 101.34 110 111.38 Uusinta: 120 121.41 kr23 125a 152.145 54171 793 13:50 130 131.44 kr23 151a 151.66 202.59 102246 94 18:25 140 141.49 kr23 202a 202.09 253 102249 84 2:10 150 151.56 kr23 252a 252.51 302.521 100440 108 10:14 160 170 171.71 180 181.79 Uusinta: 50 51.16 60 61.19 70 71.22 80 81.26 90 91.30 100 101.33 110 111.36 120 111.39 130 131.48 140 141.57 150 151.65 160 170 171.84 180 181.92 190 192.00 200 202.09 210 212.16 220 222.24 230 232.31 240 242.40 250 252.51 260 262.60 270 272.71 280 282.82 290 292.95 300
rn:.t l'' SUOMEN MALMI OY 30 Appendix 1.11 KAIRANREIKIEN DIGITAALINEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr23b _loki.xis Tyonumero: 2331 Reika Nro: Tiedosto: Paivamaara: Mittaajat: ASETUKSET Pikseleita kehalla Suljinaika 1/s Chroma% Valoteho% AGC GAMMA IMAGEENCH. Sampling Rgain Bgain WCR KR23B kr23b_xxy 25.9.2003 JM,JK,LJ 25.syys 12:18 720 50 40 70 pois paalla pois 0.0005 Kaapelimerkki Matkapyoran /ukema 10 11.58 20 21.57 30 31.55 tiedostonimi aloitus, m lopetus, m /uetut rivit virheet a/oitusaika /opetus kr23b Sa 5.1951 45.1091 799001 9621 12:571 I kr23b 45y 45.1091 41.151 81001 901 17:591 17:571
31 Appendix 1.12 r l.~t l'i SUOMEN MALMI OY KAIRANREIKIEN DIGITAAL/NEN KUVANTAMINEN OLKILUODOSSA 2003 Lokitiedosto kr24 _loki.xis Tyonumero: 2331 Reika Nro: KR24 Tiedosto: kr24_xxy Paivamaara: 7.10.2003 Mittaajat: JK,JM,ML 7.1oka ASETUKSET 22:27 Pikseleita kehalla 720 720 Suljinaika 1/s 50 50 Chroma% 30 30 Valoteho% 70 80 AGC pois pois GAMMA paalla paalla IMAGEENCH. pois pois Sampling 0.0005 0.0005 Rgain 44 44 Bgain 176 WCR 0.2695 0.2695 Kaape/1- Matkapyoran merkki lukema tiedostonimi a/oitus, m lopetus, m /uetut rivit virheet a/oitusaika lopetus 120 kr24 119a 119.797 151.95 64567 51 21 :18 130 131.48 kr24 151a 151.451 201.95 101333 171 0:30 140 141.47 kr24 201a 201.45 252 101517 153 5:27 150 151.45 kr24 251a 251.568 301.891 100964 1270 10:56 160 161.44 kr24 301a 301 352.476 102910 716 16:16 170 171.44 kr24 352a 352 403.49 103286 288 21:39 180 181.44 kr24 403a 403.004 454.151 102702 244 3:19 190 191.44 kr24 453a 453.65 505 103111 544 8:24 200 201.45 kr24 504a 504.429 552.182 95901 73 13:25 18:01 210 211.46 220 221.47 230 231.48 240 241.51 250 251.53 260 261.61 270 271.64 280 ei merkkia 290 ei merkkia 300 301.89 310 320 322.08 330 332.19 340 342.33 350 352.47 360 362.60 370 372.70 380 382.77 390 392.86 400 402.99 410 413.15 420 423.26 430 433.41 440 443.51 450 453.65 460 463.81 470 474 480 huti 490 huti 500 504.43 510 514.66 520 530 534.78 540 550
32 Appendix 2 Raw data Corrected data Original depth interval Adjusted depth interval start (m) end (m) start (m) end (m) kr6_15a.rd kr6_15_20_final.wcl 14.50 20.00 14.15 19.94 kr6_19a.rd kr6_19_39_final.wcl 18.50 39.50 19.26 39.42 kr6_39a.rd kr6_39_1 OO_final.wcl 39.00 100.50 38.97 100.21 kr6_1 OOa.rd kr6_1 00_150_final.wcl 100.50 150.50 100.23 149.99 kr6_150a.rd kr6_150_198_final.wcl 150.50 198.99 149.99 199.78 kr6_200a.rd kr6_199_249_final.wcl 200.00 250.50 199.19 249.42 kr6_250a.rd kr6_249_299_final.wcl 250.00 300.46 248.93 299.12 kr6_300a.rd kr6_298_348_final.wcl 298.60 349.09 297.07 347.15 kr6_350a.rd kr6_348_398_final.wcl 350.00 400.50 348.06 397.71 kr6_ 400a.rd kr6_397 _ 447 _final.wcl 400.00 450.48 397.25 447.31 kr6_ 450a.rd kr6_ 447 _ 497 _final.wcl 450.00 500.32 446.87 497.00 kr6_500a.rd kr6_ 496_549_final.wcl 500.00 553.47 496.34 549.16 kr6_550a.rd kr6_546_600_final.wcl 550.00 604.90 545.62 599.68 kr6_ 443y.rd not processed 443.61 439.99 kr6_151y.rd not processed 151.00 149.93 kr6_101y.rd not processed 101.00 100.00 kr6_21y.rd not processed 21.00 5.00 kr6_603y.rd not processed 603.85 595.00 kr6_596y.rd not processed 596.02 553.00 kr6_202a.rd not processed 202.42 file corrupted kr6_215a.rd not processed 215.00 228.87 kr6_228a.rd not processed 228.00 291.44 kr6_290testi.rd not processed 289.99 292.30 kr6_290a.rd not processed 290.00 296.78 kr6_295a.rd not processed 295.00 404.37 kr8_290a.rd kr8_288_ 350 _final. wcl 289.03 352.63 288.69 350.46 kr8_352a.rd kr8_350_ 400_final.wcl 352.05 402.21 349.89 400.33 kr8_ 402a.rd kr8_ 400_ 450_final.wcl 402.71 453.61 399.88 450.11 kr8_ 453a.rd kr8_ 450_500_final.wcl 453.44 504.63 449.92 500.29 kr8_504a.rd kr8_500_550_final.wcl 504.13 555.40 499.77 550.31 kr8_554a.rd kr8_550_599_final.wcl 554.83 605.15 549.78 599.24 kr19_ 40a.rd kr19_ 40_1 01_final.wcl 40.01 101.50 40.47 101.71 kr19_1 01 a.rd kr19_101-150_final.wcl 100.97 150.50 101.10 150.34 kr19_150a.rd kr19_150_200_final.wcl 150.00 200.50 149.77 199.90 kr19_200a.rd kr19_200_250_final.wcl 200.01 250.49 199.38 249.40 kr19_250a.rd kr19_249-300_final.wcl 250.01 301.70 248.95 300.12 kr19_301 a.rd kr19_300_350_final.wcl 301.20 352.30 299.62 350.14 kr19_302y.rd not processed 352.30 345.00 kr19_351 a.rd kr19_350_ 400_final.wcl 351.82 403.00 349.65 400.14 kr19_ 402a.rd kr19_ 400_ 447 _final.wcl 402.36 450.50 399.52 447.04 kr19_ 450a.rd kr19_ 447 _500_final.wcl 450.01 504.22 446.57 499.94 kr19_503a.rd kr19_ 449_537 _final.wcl 503.72 542.08 499.42 537.30 kr19b_6a.rd kr19b_6_ 43_final.wcl 6.26 43.93 5.94 43.53 kr19b_28y.rd not processed 28.50 6.37 kr20_39a.rd not processed 39.80 kr20_ 41 a.rd kr20_ 42_1 01_final.wcl 41.52 100.50 42.45 101.28 kr20 _ 99a. rd kr20_1 00_151_final.wcl 100.00 150.52 100.78 150.99 kr20_150a.rd kr20_150_200_final.wcl 150.00 200.61 150.41 200.74 kr20_200a.rd kr20_199_249_final.wcl 200.00 250.60 200.15 250.33 kr20_250a.rd kr20_250_300_final.wcl 249.91 301.00 249.65 300.22 kr20_300a.rd kr20_300_349_final.wcl 300.33 350.50 299.53 349.18 kr20 _ 350a. rd kr20 _ 349 _ 399 _final. wcl 350.00 400.50 348.69 398.59 kr20 _ 400a. rd kr20_398_ 450_final.wcl 400.00 452.51 398.10 449.84 kr20_ 452a.rd kr20_ 449_ 489_final.wcl 452.02 492.18 449.33 488.93 kr20_290y.rd not processed 290.24 289.24 kr20_289y.rd not processed 289.24 288.24 kr20_ 45y.rd not processed 45.01 40.35
33 Appendix 2 Raw data Corrected data Original depth interval Adjusted depth interval start (m) end (m) start (m) end (m) kr20b_8a.rd kr20b_8_ 43_final.wcl 8.15 43.00 8.10 43.00 kr21_101y.rd kr21_ 4_1 01_final.wcl 4.70 101.51 4.42 100.88 kr21_196y.rd not processed 196.50 194.00 kr21_197y.rd kr21_1 01_197 _final. we! 101.42 197.00 100.83 196.01 kr21_280y.rd kr21_198_279_final.wcl 199.22 280.16 198.16 278.73 kr21_286y.rd kr21_278_285_final.wcl 280.00 286.98 278.57 285.56 kr22_39a.rd kr22_ 40_1 OO_final.wcl 39.30 100.18 40.55 100.73 kr22_99a.rd kr22_1 00_150_final.wcl 99.18 149.76 99.71 150.10 kr22_149a.rd kr22_150_200_final.wcl 149.26 199.97 149.61 199.98 kr22_199a.rd kr22_199_21 O_final.wcl 199.47 210.03 199.49 210.00 kr22_210y.rd not processed 210.00 209.00 kr22_208yt.rd not processed 209.00 208.00 kr22_207at.rd not processed 208.00 209.53 kr22_209a.rd kr22_209_250_final.wcl 209.53 250.17 209.50 249.94 kr22_249a.rd kr22_249_300_final.wcl 249.67 300.35 249.46 299.88 kr22_299a.rd kr22_299_349_final.wcl 299.85 349.56 299.41 348.65 kr22_348a.rd kr22_348_ 400_final.wcl 348.63 401.00 347.74 399.74 kr22_ 400a.rd kr22_399_ 450_final.wcl 400.50 451.49 399.23 449.80 kr22_ 450a.rd kr22_ 449_ 494_final.wcl 450.99 496.42 449.31 494.24 kr22b_20a.rd kr22b_21_ 45_final.wcl 20.90 45.65 20.81 45.37 kr23_ 40a.rd kr23_ 40_ 46_final.wcl 40.01 45.91 40.01 45.91 kr23_ 45a.rd kr23_ 46_90_final.wcl 45.00 90.59 45.01 90.32 kr23_90a.rd kr23_89_151_final.wcl 89.69 151.70 89.72 151.37 kr23_151 a.rd kr23_151_181_final.wcl 151.41 181.79 150.79 180.89 kr23_181y.rd not processed 181.79 176.34 kr23_125a.rd not processed 125.00 152.15 kr23_151 a.rd kr23_151_201_final.wcl 151.66 202.59 150.88 201.41 kr23_202a.rd kr23_201_251_final.wcl 202.09 253.00 200.88 251.35 kr23_252a.rd kr23_251_300_final.wcl 252.51 301.82 250.84 300.18 kr23b_5a.rd kr23b_5_ 45_final.wcl 5.20 45.11 5.20 44.98 kr23b_ 45y.rd not processed 45.11 41.15 kr24_119a.rd kr24_120_152_final.wcl 119.80 151.95 119.72 151.79 kr24_151 a.rd kr24_151_202_final.wcl 151.45 201.95 151.29 201.75 kr24_201 a.rd kr24_201_252_final.wcl 201.45 252.00 201.30 251.65 kr24_251 a.rd kr24_251_301_final.wcl 251.57 301.84 251.17 301.19 kr24_301 a.rd kr24_300_350_final.wcl 300.30 350.30 300.39 349.54 kr24_352a.rd kr24_351_ 401_final.wcl 351.00 402.48 350.51 401.53 kr24_ 403a.rd kr24_ 401_ 451_final.wcl 403.01 454.14 401.02 451.51 kr24_ 453a.rd kr24_ 451_501_final.wcl 453.65 504.99 450.98 501.54 kr24_504a.rd kr24_501_548_final.wcl 504.43 552.18 500.91 548.06
34 Appendix 3 Depth 1m:250m KR20 Image 300.0 I 305.0 310.0 315.0 ~ :~ -=: ~ ~~~~ J ~~~-~~~~~~~~:;~--------r---~---+~----~~-+~ 320.0 325.0 330.0 335.0 340.0 I I 1 / I I 345.0 350.0 ~-----------4-----+----4-----~---4------------~------~----++------4-------~
35 Appendix 4 OBI 40 slimhole optical televiewer The tool generates a continuous oriented 360 image of the borehole wall using an optical imaging system. (downhole CCD camera which views a image of the borehole wall in a prism). The tool includes a orientation device consisting of a precision 3 axis magnetometer and 3 accelerometers thus allowing accurate borehole deviation data to be obtained during the same logging run (accurate and precise orientation of the image). Optical and acoustic televiewer data are complimentary tools especially when the purpose of the survey is structural analysis. A common data display option is the projection on a virtual core that can be rotated and viewed from any orientation. Actually, an optical televiewer image will complement and even replace coring survey and its associated problem of core recovery and orientation. The optical televiewer is fully downhole digital and can be run on any standard wireline (mono, four-conductor, sevenconductor). Resolution is user definable (up to O.Smm vertical resolution and 720 pixels azimuthal resolution) Ell!ii Advanced Logic Technology Batiment A, Route de Niederpallen, L-8506 Redange-sur-Attert. Grand-Duche de Luxembourg l i I T:(352) 23 649 289 F:(352) 23 649 364 e-mail: sales@alt.lu www.alt.lu
I OBI 40 slimhole opt ical televiewer 36 Applications: The purpo se of the optical imaging tool is to provide detailed, oriented, structural information. Possible applications are : fracture detection and evaluation detection of thin beds bedding dip lithological characterization casing inspection Technical specifications Diameter Length Weight Max temp Max pressure Borehole diameter Logging speed Cable: 40mm approx. 1.7m approx 7 kgs 5o c 200 bars 1 3/4" to 24" depending on borehole conditions variable function of resolution and wireline Cable type mono. four-conductor. seven-conductor Digital data transmi ssion up to 500 Kbps depending on wireline. realtime compressed Compatibility ALTiogger- ALT-Abox- Mount Sopris MgXI I (limited to 41 Kbps) sensor: Sensor type Optics Azimuthal resolution Vertical resolution Color resolution White balance: Aperture & Shutter Special functions Orientation Inclination accuracy Azimuth accuracy: downhole DSP based digital CCD camera plain polycarbonate con ic prism system user definable 90/180/360 or 720 pixels /360. user definable. depth or time sampling rate 24 bit RGB value automatic or user adjustable automatic or user adjustable User configurable real time digital edge enhancing User configurable ultra low light condition mode 3 axis magnetometer and 3 accelerometers. 0.5 degree 1.0 degree Logging parameters: 350 RGB orientated optical image Borehole azimuth and dip Tool internal Temperature The specifications are not contractual and are suqject to modification without notice. El l!ii Advanced Logic Technology ' i ~. ~ I J