Working Report 2005-62 Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005 Risto Niinimaki November 2005 POSVA OY Fl-27160 OLKLUOTO, FNLAND Tel. +358-2-8372 31 Fax +358-2-8372 3709
TEKJA ORGANSAATO SUOMEN MALM OY PL 10 Juvan teollisuuskatu 16-18 02921 ESPOO TLAAJA POSVAOY 27160 OLKLUOTO TLAAJAN YHDYSHENKLO FM Jus si Mattila Posiva Oy URAKOTSJAN YHDYSHENKLO FM Tauno Rautio Smoy RAPORTT WORKNG REPORT 2005-62 CORE DRLLNG OF DEEP BOREHOLE OL-KR37 AT OLKLUOTO N EURAJOK 2005 TEKJA n t' Risto Niinimaki Geologi _c) ---..._- TARKASTAJA Pekka Mikkola Toimitusjohtaja
Working Report 2005-62 Core Drilling of Deep Borehole Ol-KR37 at Olkiluoto in furajoki 2005 Risto Niinimaki Suomen Malmi Oy November 2005 Base maps: National Land Survey, permission 41 /MYY/05 Working Reports contain information on work in progress or pending completion. The conclusions and viewp_oints presented in the report are those of author(s) and do not necessarily coincide with those of Posiva.
CORE DRLLNG OF DEEP BOREHOLE OL-KR37 AT OLKLUOTO N EURAJOK 2005 ABSTRACT Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 350.00 m and 45.10 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in June- August 2005. The identification numbers of the boreholes are OL KR37 and OL-KR37B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 273 m 3 and 21m 3 and the measured volumes of the returning water were 221m 3 and 16m 3 in boreholes OL-KR37 and OL-KR37B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 106 MPa, the average Young's modulus is 40 GPa and the average Poisson's ratio is 0.20. The main rock types are migmatitic mica gneiss, granite and tonalite. Filled fracture is the most common fracture type. The average fracture frequency is 1.8 pes/m in borehole OL KR37 and 5.0 pes/m in borehole OL-KR37B. The average RQD values were 96.0% and 88.7 %. n both boreholes four fractured zones were penetrated during this drilling work Keywords: core drilling, borehole, mica gneiss, fracture, monitoring measurements, elastic parameters, deviation measurements, wedging
REAN OL-KR37 SYVAKARAUS EURAJOEN OLKLUODOSSA VUONNA 2005 TVSTELMA Posiva Oy jatti valtioneuvostolle vuonna 1999 periaatepaatoshakemuksen, jolla se haki lupaa valita Eurajoen Olkiluoto kaytetyn ydinpolttoaineen loppusijoituslaitoksen rakennuspaikaksi. J oulukuussa 2000 valtioneuvosto teki asiasta myonteisen paatoksen. Toukokuussa 2001 eduskunta vahvisti valtioneuvoston paatoksen. Periaatepaatoshakemuksen mukaisesti paikkatutkimukset keskitetaan Olkiluotoon. Paikkatutkimuksiin liittyen Suomen Malmi Oy kairasi kesa-elokuun 2005 aikana 350,00 mja 45,10 m syvyiset reiat OL-KR37 ja OL-KR37B Eurajoen Olkiluodossa. Reian OL KR3 7 tutkimuksilla varmistettiin mm. maanalaisen tutkimustilan, ONKALOn Uiheisyydessa sijaitsevien rikkonaisuusrakenteiden sijaintia seka tutkittiin geofysiikan mittauksissa havaittua anomaalista kohtaa. Reikien halkaisija on 75,7 mm. Kairauksien aikana suoritettiin tarkkailumittauksia lisainformaation saamiseksi kallio-olosuhteista. Mittauksia olivat veden sahkonjohtokyvyn mittaus ja huuhteluveden/palautuvan veden maaran mittaus. Tyossa kaytettiin automatisoitua mikroprosessoriohj attua kairauskonetta, josta saatu tieto tallennettiin. Kairauksiin kaytettiin kokonaisuudessaan natriumfluoresiinilla merkittya huuhteluvetta reialla OL-KR37 noin 273m 3 ja reialla OL KR37B noin 21m 3 Tyon aikana vetta palautui rei'ista maaramittarin kautta noin 221m 3 ja 16 m 3 Reikien sivupoikkeamat ja taipumat mitattiin EMS ja Maxibor -mittareilla. Kallionaytteista maaritettiin yksiaksiaalinen puristusmurtolujuus, kimmomoduli ja Poissonin luku. Yksiaksiaalinen puristusmurtolujuus oli keskimaarin noin 106 MP a, kimmomoduli oli keskimaarin noin 40 GP a ja Poissonin luku 0,20. Paakivilajeina esiintyvat migmatiittinen kiillegneissi ja graniitti. Rakoilusta taytteiset raot ovat yleisimpia. Kallion rakoluku on reiassa OL-KR37 keskimaarin 1,8 kpllm ja reiassa OL-KR37B 5,0 kpl/m. Vastaavasti RQD-luku on reiassa OL-KR37 keskimaarin 96,0 %ja reiassa OL-KR37B 88,7 %. Rikkonaisia tihearakoisia osuuksia lavistettiin nelja kappaletta reiassa OL-KR37 seka reiassa OL-KR3 7B. A vainsanat: kairaus, kairanreika, migmatiittinen kiillegneissi, rako, tarkkailumittaukset, muodonmuutosominaisuudet, sivusuuntamittaus, kiilaus
1 CORE DRLLNG OF DEEP BOREHOLE OL-KR37 AT OLKLUOTO N EURAJOK 2005 ABSTRACT TVSTELMA CONTENTS 1 1. NTRODUCTON 1.1 Background 1.2 Scope of the work 3 3 3 2. DRLLNG WORK AND TECHNCAL DETALS OF THE BOREHOLE 2.1 Diamond core drilling 2.2 Deviation surveys 2.3 Location and deviation measurements 2.4 Construction of the upper part of the borehole 2.5 Wedging of the borehole 5 5 7 8 8 9 3. MONTORNG MEASUREMENTS 3.1 Monitoring measurements during drilling work 3.2 Drilling water and the use of label agent 3.3 Quantities and label agent concentration of drilling and returning water 3.4 Groundwater level in the borehole 3.5 Electric conductivity of drilling and returning water 3.6 Drill cuttings yield 3.7 The result of MWD -measurements 3.8 Flushing of the bore hole 11 11 12 13 14 14 15 16 18 4. ENGNEERNG GEOLOGY 4.1 Engineering geological logging 4.2 The effects of drilling to the sample quality 4.3 Rock quality 4.4 Fracturing 4.5 Core orientation 4.6 Core discing 21 21 26 27 28 30 30 5. ROCK MECHANCS 5.1 Rock mechanical field tests on core samples 5.2 Strength and elastic properties 33 33 35 6. SUMMARY 37 7. REFERENCES 39
2 8. APPENDCES 8.1 List of core boxes 8.2 Lifts 8.3 Deviation surveys, list, Maxibor 8.4 Deviation surveys, graphic, Maxibor 8.5 Deviation surveys, list, EMS 8.6 Deviation surveys, graphic, EMS 8. 7 Construction of upper part of bore hole 8.8 Construction of wedge 8.9 Drilling water samples 8.1 0 Returning water samples 8.11 Ground water level during flush pumping 8.12 Petrographical description 8.13 Degree of weathering 8.14 Foliation 8.15 List of fractures 8.16 Fracture frequency and RQD 8.17 Fractured zones, core loss 8.18 Core orientation 8.19 Rock mechanical tests and foliation description of samples PHOTOS 41 43 45 49 51 55 59 61 63 67 69 71 75 77 79 103 111 113 117 119
3 1. NTRODUCTON 1.1 Background Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The policy decision makes it possible to concentrate the research activities at Olkiluoto Eurajoki. One part of the research is to build an underground rock characterisation facility (called "ONKALO"). Construction of the access tunnel was started in autumn 2004. Posiva Oy contracted (order number 9623/05/JATM) Suomen Malmi Oy (Smoy) to drill new investigation boreholes in the area. n June-August 2005 boreholes OL-KR37 (350.00 m) and OL-KR37B (45.10 m) were core drilled. The new boreholes were aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock. The borehole OL-KR37 is wedged twice to keep the borehole straight enough to reach the geophysical anomaly. Because of wedging the total length of core sample in borehole OL-KR37 is 322.28 m. Borehole OL-KR37 is located about 700 m south of the Korvensuo reservoir and borehole OL-KR37B is located about 3.9 meters NW ofborehole OL-KR37. The azimuths of the boreholes are 18.3 and 17.7 and initial dips of the boreholes are 47.9 and 47.1 from the horizontal, respectively. The location of the borehole is shown in Figure 1. The diameter of the boreholes is 75.7 mm. 1.2 Scope of the work The aim of the work was to drill an about 350 m long borehole to document the geology and the ground conditions (continuity of the rock units, fractured zones and rock quality) in the area. The 40 m precollar for borehole OL-KR37 was drilled with a down-the-hole percussion drill. n order to get a core sample also from the upper part of the bedrock an 45 m deep borehole OL-KR37B was core drilled next to the main borehole. To maximise the recovery yield of an undisturbed and continuous core, triple tube coring technique was used. n addition to the drilling, work included core logging, rock mechanical field testing
4 of the core, in-hole technical measurements, drilling fluid monitoring, flushing of the borehole, borehole deviation surveys and reporting. This report documents the work and sampling done during the drilling of the borehole. Depth measurements are from the ground surface unless otherwise stated. Distances along the casing between the tops of casings and the ground level are 0.41 m and 0.55 m for boreholes OL-KR37 and OL-KR37B, respectively. At the end of the drilling, drill rods were lowered to the bottom of the borehole to check that the borehole is completely open.......... 6791500 OLKLUOTO Location of the boreholes KR1-KR37, KR378 Coordinate System: Finnish Coordinate System, zone 1 26.10.2005 Saanlo & Rlekkola Oy/KF LEGEND: KR1 Core drilled borehole Figure 1. Location of deep boreholes OL-KRJ - OL-KR3 7 in the 01/dluoto area.
5 2. DRLLNG WORK AND TECHNCAL DETALS OF THE BOREHOLE 2.1 Diamond core drilling Thiclrness of the overburden at the location ofborehole OL-KR37 is estimated to be about 2.5 m. The borehole is cased thh the overburden with a 194/184 mm diameter tube, which is drilled into the bedrock to the depth of 6.0 m. The borehole section from 6.0 m to 39.96 m was drilled with a 165 mm diameter DTH-hammer on the 1st of June 2005. This percussion drilled section of the borehole is cased with a stainless steel 140/134 mm diameter tube which was grouted into the bedrock the same day. The diamond drill rig, additional casings and air -lift pumping pipes were set up at the drilling site the gth and 9th of June 2005. Drilling commenced on the 9th of June. On the 6th of July 2005, drilling depth of350.00 m was reached. The borehole OL-KR37 was wedged twice to keep the borehole straight enough to reach the geophysical anomaly. First wedging was done 15th of June at borehole depth of 103.97 m and the top of wedge was at the depth of 94.56 m. Second wedging was done 28th of June at borehole depth of 232.96 m and top of wedge was at the depth of 228.22m. The diamond drill rig was set up at the drilling site OL-KR37B on the loth of August 2005. Drilling thh the overburden, the thiclrness of which was 2.17 m, was done on the 11th of August 2005. Casing was drilled to the depth of 2.82 m. After the casing was placed, diamond core drilling continued normally. The final depth of 45.10 m was reached on the 16th of August 2005. The realized time schedule of the work is shown in Table 1. Borehole OL-KR37 was core drilled with a computer controlled hydraulic U6 drill rig. NQ3 -triple tube core barrel and NQ-drill rods were used in drilling. Borehole diameter with NQ3 -triple tube core barrel is 75.7 mm and drill core diameter is 50.2 mm. The cutting area of the diamond bit of the triple tube core barrel is larger than that of the double tube core barrel. n the triple tube core barrel the third, innermost, tube is of split type. The innermost split tube containing the sample is removed from the core barrel with the aid of a piston working on water pressure. n this way the sample may be removed from the core barrel as undisturbed as possible.
6 Table 1. Time schedule ofborehole OL-KR37. tem Dates Borehole OL-KR37 Percussion drilling 0-40 m 1.6.2005 Mobilization, move to the hole 8.-9.6.2005 Drilling 40-350 m 9.- 6.7.2005 Wedging 15.6. and 28.6.2005 Direction/dip measurements 13.6., 14.6., 15.6., 16.6., 22.6., 27.6., 29.6., 4.7. and 6.7.2005 Borehole cleaning and flush pumping 6.7., 28.7.- 1.8.2005 Borehole OL-KR37B Mobilization, move to the hole 10.8.2005 Drilling 0-45 m 11. - 16.8.2005 Direction/dip measurements 28.9.2005 Borehole cleaning and flush pumping 16.8., 19.8.-22.8.2005 Drilling was continuous shift work (three shifts per day) and the drilling team in a shift consisted of a driller and an assistant. Geologist Tauno Rautio was the project manager, and Teppo Uusi-Uola was the drilling supervisor. Geological logging was done and the final report was compiled by geologist Risto Niinimaki. Drilling time (which does not include set up and dismantling works) on borehole OL-KR37 was 208 h, which gives the mean drilling efficiency of 1.49 m per rig hour. The drilling time for borehole OL-KR37B was34h. Wear and tear of the drilling equipment was the same as in average in the Olkiluoto area with this type ofborehole equipment, but much less than in average compared to the other borehole equipment used in Olkiluoto area. The wear of the drill bit correlates e.g. with the mineral composition of the bedrock. n this work, about 121 m was drilled per one NQ3 bit compared to a long-term average of about 88 m per NQ3, about 28 m per WL- 76, about 29 m per T -76 and about 35 m pert -56 bits in Olkiluoto. Drill core samples were placed in wooden core boxes immediately after emptying the core barrel. n all 79 (OL-KR37) and 11 (OL-KR37B) wooden core boxes were used during this drilling work. Start and end depths of the core in each core box are presented in Appendix 8.1. Wooden blocks separating the different sample runs were placed to core boxes to show the depth of each lift. The core drilling included 123 (OL-KR37) and 19 (OL-KR37B) sample runs. Depths of lifts are presented in Appendix 8.2.
7 2.2 Deviation surveys To trace the borehole accurately the dip and the azimuth of borehole OL-KR37 was measured with Maxibor- and EMS downhole deviation survey tools. Maxibor was lowered into the borehole with rods and EMS with wireline cable. Borehole OL-KR37B was measured with EMS downhole deviation survey tool with wireline cable. Measuring interval was 3 metres. n addition, the dip of the borehole was measured separately with a SLO-H90-downhole dip meter. EMS device measures the borehole dip with an electronic accelerometer and the azimuth relative to the magnetic north with a three component fluxgate magnetometer. According to the manufacturer, provided there are no magnetic anomalies, the accuracy of the azimuth is ± 0.5 degrees and the accuracy of the dip is ± 0.2 degrees. One local magnetic anomaly was detected in the borehole OL-KR37 between the depths about 80 and 85 metres. n the borehole OL-KR37 two steel made wedges were also placed. The azimuth is given to the magnetic north and the declination, which is about five degrees in the area, has been added to the results. There may be some local variations in the declination. n borehole OL-KR37 the initial azimuth is 105.5 degrees and the corresponding declination in EMS calculations is 4.5 degrees. n basic setup Maxibor device has two reflector rings at three metre intervals in a six metres long tube. n a straight hole the rings are concentric. When the tool is bent following the ed borehole, the rings are shifted correspondingly. By quantifying this shift, a measure of the bend can be calculated. A circular bubble gives the reference direction. The position of the rings and the bubble is recorded at each location by a video camera. The diameter of the tube is adjusted for 46 mm size. When measuring larger boreholes (diam. about 76 mm) four centralizing rings of suitable size are installed directly around the reflector rings, camera and top coupling. Based on the initial coordinates and azimuth of the hole and deviation readings of the reflector rings a computer program calculates the coordinates and direction of the hole at each survey point. The results are presented as a table and in graphic form. According to the manufacturer typical accuracy in a 800 metres deep borehole with a diameter of 46 mm is ± 1 m. The Maxibor survey was carried out at three metres intervals. The surveys of the borehole were tied to geodetic fix points provided by the client.
8 2.3 Location and deviation measurements The initial dips of boreholes OL-KR37 and OL-KR37B are 47.9 and 47.1 degrees, respectively. The initial azimuths of boreholes OL-KR37 and OL-KR37B are 18.3 and 17.7 degrees, respectively. The ground surface was used as the reference level of the borehole and depth measurements. The coordinates of the boreholes are shown in Table 2. n borehole OL-KR37 the Maxibor and EMS deviation surveys were both carried out to the depth of 348 metres. n borehole OL-KR37B EMS survey was carried out to the depth of 45 metres. The coordinates ofborehole OL-KR37B at the depth of 42 metres based on the EMS data are shown in Table 2. The results of the Maxibor survey are listed as a table in Appendix 8.3 and shown in graphic form as various projections in Appendix 8.4. The results of the EMS survey are listed as a table in Appendix 8.5 and shown in graphic form as various projections in Appendix 8.6. 2.4 Construction of the upper part of the borehole Down-the-hole percussion drilling was used to drill the precollar for borehole OL-KR37. Drilling a 0 194/184 mm casing thh the overburden into the bedrock started this borehole. The casing was drilled to the depth of 6.0 m from the surface. The thickness of the soil was estimated to be 2.5 m. The borehole was continued with a 165 mm hammer to the depth of 39.96 m and a 0 140/134 mm stainless steel casing was placed into the borehole and cemented into the bedrock. At the bottom of the casing there is a cone, Table 2. Coordinates of boreholes OL-KR3 7 and OL-KR3 7B. Point location X y z Ground surface, OL-KR37 6 791 780.21 1 525 923.52 5.13 Top of the casing, OL-KR37 6 791 779.95 1 525 923.43 5.44 End ofborehole, OL-KR37 (348 m) 6 792 014.67 1 525 993.56-242.26 Ground surface, OL-KR37B 6 791 781.13 1 525 919.71 5.04 Top of the casing, OL-KR37B 6 791 780.78 1 525 919.59 5.44 End ofborehole, OL-KR37B (45 m) 6 791 810.50 1 525 928.27-27.96
9 which helps to insert instruments into the borehole. Finally the 0 194/184 mm casing was cut to the ground level. The length of the cone at the bottom of the 0 140/134 mm casing is 110 mm. The conic part is 53 mm long. The bottom of the cone is made of a 0 84/77 mm tube which is 57 mm long. The tube has right hand thread, which was used to attach the 84/77 additional casing during the drilling. The cone is inside the 0 140/134 mm casing and the end of the tube in the lower part of the cone is at the depth of 39.91 m. Between the tube and the bedrock there is about 5 cm of cement which was drilled at the beginning of diamond drilling. The cone and the attached tube are made of stainless steel. The construction of the upper part ofthe hole is shown in Appendix 8.7. The top of the casing was with a cap equipped with a lock. The precollar for borehole OL-KR37B was done by drilling a 0 90/77 mm casing thh the overburden into the bedrock. The casing was drilled to the depth of 2.82 m from the surface due to fractured rock. The thickness of the soil was estimated to be 2.17 m. The casing with a casing shoe, was cemented into the bedrock. The top of the casing was with a cap equipped with a lock. 2.5 Wedging of the borehole n the borehole OL-KR37 two wedging operations were performed. First wedging operation was done at the borehole depth of 103.97 m. The top of wedge was placed at the depth of 94.56 m. Second wedging operation was done at the borehole depth of 232.96 m. The top of wedge was placed at the depth of 228.22 m. Total length of the wedge is 4339 mm. Construction of the wedge and its anchor is shown in Appendix 8.8.
10
11 3. MONTORNG MEASUREMENTS 3.1 Monitoring measurements during drilling work Several drilling water parameters were monitored and water samples were taken during the drilling. The aim was to get additional information on rock quality and to predict possible drilling problems. To find out how much drilling water was leaking into the bedrock, the volumes of ingoing and returning water were monitored. The flowmeter for ingoing drilling water was connected to the waterline coming from the water pump and the volume of returning water was measured from the overflow of the sedimentation tank. Water level in the borehole was measured in the beginning of every morning shift and whenever there was more than two hours' break in the drilling. All drilling water batches made in the mixing tanks were sampled. The returning water was sampled once a day provided water was flowing out of the borehole. Due to the sensitivity of sodium fluorescein label agent to the UV -light, the sample bottles were wrapped in aluminium foil immediately after the sampling. Water samples were stored in a refrigerator until they were sent for analysis to the laboratory of Teollisuuden Voima Oy (TVO) at Olkiluoto. Electric conductivity of the drilling water was measured after the label agent was mixed. The returning water samples were collected for the electric conductivity measurements, when water was flowing from the borehole. The returning water contains drill cuttings, the composition of which depends on the drilled rock type. f the drill cuttings were affecting the conductivity, the water samples (2-3 dl) were let to settle and, if needed, filtered thh a 45 J.Lm filter to remove the remaining drill cuttings. The electric conductivity measurements were done with a WTW conductivity meter Cond 315i with TetraCon 325 conductivity cell. Conductivity meter gives the results as ms/m at +25 C. Before the work started the conductivity meter was calibrated at the laboratory of the TVO. The drill rig utilized was Atlas Copco Diamec U6 APC. The rig is a fully hydraulic microprocessor controlled unit with an automated process control. The manual interface
12 to the control system is a touch screen panel. The control unit of the rig optimizes the drilling process according to drilling conditions in real time. The driller sets the upper and the lower values for the volume of the flushing water, feeding force and rotation torque. The driller sets also values for the penetration speed and rotation speed. Once these values have been set the rig will carry out the drilling within the set values by measuring the value of the parameters several times in a second. f the rig fails to keep up the chosen penetration speed within the set parameter values, drilling will be stopped automatically. Feeding force is the force working on the bit and generated by the rig feed and the weight of the drill string and which is needed for the optimal penetration speed. The feeding force is adjusted by the system pressure and bit force. Drilling parameters are recorded to the rig computer. The recorded parameters are pressure and volume of the flushing water, rotation speed of rods, penetration speed, hydraulic system pressure and weight on the bit. 3.2 Drilling water and the use of label agent Drilling water for borehole OL-KR37 was pumped from the water line ofolkiluoto. The length of waterpipe line was about 100 m. Before water was pumped into the mixing tanks (two 3m 3 fibreglass tanks) it was filtered thh a 500 Jlm filter. All drilling water was marked with the label agent sodium fluorescein. Sodium fluorescein is an organic powdery pigment, which is broken down by UV radiation. Therefore the label agent mixing tanks were covered. Sodium fluorescein was delivered byposiva. At the TVO Olkiluoto laboratory, sodium fluorescein was packed into glass vials in 0.750 g ready to use doses. At the drilling site, the content of a vial was dissolved in one litre of water, which was slowly added into the mixing tank at the beginning of pumping. Turbulence caused by pumping water into the tank ensured mixing ofthe label agent.
13 3.3 Quantities and label agent concentration of drilling and returning water During the drilling ofborehole OL-KR37, 270.1 m 3 of water was used. After the drilling was finished, the borehole was flushed with 3.3 m 3 of water. During the drilling and flushing, 221.1 m 3 of returning water was measured. This is about 81% of the drilling and flushing water. Some water passed the flowmeter during the air-lift pumping and lifting of drill rods. The cumulative consumption of drilling water and the amount of measured returning water are shown in Figure 2. During the drilling ofborehole OL-KR37B, 18.2 m 3 of water was used. After the drilling was finished, the borehole was flushed with 3.2 m 3 of water. During the drilling and flushing, 15.9 m 3 of returning water was measured. This is about 70% of the total drilling and flushing water used. Some water passed the flowmeter while lifting of drill rods. The cumulative consumption of drilling water and the amount of measured returning water are shown in Figure 2. The concentration of the label agent is used to estimate the representativeness of the groundwater samples taken from the borehole. The planned label agent concentration of the drilling water was 250 Jlg/1. The achieved concentrations varied between 200 and 460 Jlg/1 and the average was 291 Jlg/l during the drilling ofborehole OL-KR37. There was great dispersion of values because of previously packed sodium fluorescein vials. During drilling ofborehole OL-KR37B the achieved consentrations varied between 210 and 250 Jlg/l and the average was 238 Jlg/1. The label agent batches, drilling water samples, electric conductivity and sodium fluorescein concentrations are listed in Appendix 8.9. Returning water samples were collected once a day when drilling work was continuous. n total, 19 samples were taken during the drilling ofborehole OL-KR37. High sodium fluorescein concentrations in the returning water indicate that the water is mainly drilling water. Values over 125 Jlg/l means that returning water contains in principle more drilling water than groundwater. Concentration values of the label agent in the returning water of borehole OL-KR37 varied from 140 to 360 Jlg/1. The analysis of sodium fluorescein concentrations are presented in Appendix 8.1 0.
14 Drilling and returning water j- Xilling water -Returning water j 300------------------------------------------------- w 200+--------------------------------------------------... s 200+---------------------------------------=---- u 150+------------------------------------------ o 100+------------------------------------------ ::;, 00+-------------------------------------------- 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 Depth, m Figure 2. Cumulative consumption of drilling water and amount of returning water during the drilling of boreholes OL-KR3 7 and OL-KR37B. 3.4 Groundwater level in the borehole Groundwater level in the borehole varied between 0.20 and 13.20 m. The result depends on the stabilising time before measurements. The growidwater level is measured from the growid surface. 3.5 Electric conductivity of drilling and returning water During the drilling, the electric conductivity of drilling water and returning water was monitored. Electric conductivity of each drilling water batch was measured after mixing the label agent. Electric conductivity varied between 20.7 and 25.7 ms/m during the drilling of boreholes OL-KR37 and OL-KR37B. The results are presented in Appendix 8.9. The variation range of the electric conductivity of returning water was larger and it varied from 22.7 to 53.5 ms/m during the drilling of borehole OL-KR37. Mainly the values were between 23 and 35 ms/m. The conductivity of the returning water is affected by the content of groundwater and by groundwater' s conductivity. The values measured were between 23.1 and 27.7 ms/m during the drilling ofborehole OL-KR37. The results are presented graphically in Figure 3.
15 Electric conductivity 60.0...-------------------------- 50.0 +-------------+--------------- E c;; 4o.o ---------------1-t--------lll--------- e s: 30.0 -!-----'l.-----.d--+------t -f-l' -\-+-.---,r+-'+--1+------ s 20.0 +-------------------------- 0 10.0 +-------------------------- 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 Depth, m Figure 3. Electric conductivity of returning water from boreholes OL-KR37 and OL KR37B. 3.6 Drill cuttings yield Drill cuttings were collected in a sedimentation tank and the volume of drill cuttings was measured. From borehole OL-KR37, about 1530 litres of drill cuttings was collected. With the used bit size 75.5/50.2 mm, 2.52 litres of rock per metre was ground to drill cuttings. Consequently, the total volume of drill cuttings generated was about 780 litres. f the expansion factor 1.7 of wet cuttings is assumed, the yield would be about 1330 litres. This means that about all of drill cuttings were recovered to sedimentation tank. The result indicates that there is no significant amount of drill cuttings residue left in the borehole and in fractures. From borehole OL-KR37B, about 180 litres of drill cuttings was collected.. Consequently, the total volume of drill cuttings generated was about 105 litres. f the expansion factor 1. 7 of wet cuttings is assumed, the yield would be about 180 litres. This means that about all of drill cuttings were recovered to sedimentation tank.
16 3.7 The result of MWD -measurements Drilling parameters were saved on the memory card of the rig computer. When the hole was completed, the recorded data was transferred to a separate computer. The rig records pressure and volume of the flushing water, rotation speed, penetration speed, hydraulic system pressure and weight on the bit. The drilling parameters are presented in Figure 4. The driller sets in the rig computer the previously chosen limits for feed pressure and bit force, which are followed by the rig during the drilling. Feeding force is the force working on the bit and generated by the rig feed and the weight of the drill string and which is needed for the optimal penetration speed. The feed force is adjusted by the system pressure and bit force. At the depth interval from about 230 m to 240 m all recorded values have large variations probably because of wedging of the borehole. Most of the other peak values are narrow and can probably be caused by technical matters or fractures. The system pressure varied mostly from 130 to 300 bars. After the beginning of the borehole the system pressure had small increasing tendency towards the end of the borehole. The variation of bit force is clearly larger than variation of system pressure partly due to the variation of hardness in the Olkiluoto bedrock. However, the pattern of the variation of bit force is quite similar to that of system pressure. At the beginning of the hole the bit force is mainly between 10 and 30 kn. At the end of the borehole the bit force increases clearly. Penetration speed was kept as constant as possible by the automatic process control. Generally the penetration speed was from about 15 to 20 cm in a minute but in some short intervals it varied slightly. During the bedrock drilling the rotation speed of rods varied generally between 1,000 and 1,400 rpm.
17 Depth Penetr Bitf Sys pre H20 pre H20 flow RPM 1 :1500 0 an.111 11 80 0 km 60 0 bar 320 0 tar 30 0 60 0 lpn 1500 50.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 Figure 4. Drilling parameters ofboreholes OL-KR78 and OL-KR37B.
18 The rig records also the behaviour of flushing water. The driller sets the upper and the lower limits for the water flow, which will not be exceeded or fallen below. Water flow was quite constant except for some zones, where probably the fractures in bedrock caused significant variations in the flow values. During the bedrock drilling of borehole OL-KR37 the water pressure varied normally between 0.5 and 1.5 MPa. Most of the other peak values are narrow and can probably be caused by technical matters or fractures. One technical factor causing the variations could be bit wear. After the beginning of the borehole the water pressure had increasing tendency towards the end of the borehole. 3.8 Flushing of the bore hole Before the final flushing of the borehole, the walls of the borehole were washed with the label agent water to drop all loose material from the walls to the bottom of the borehole. A steel brush was utilized in washing the hole (Figure 5). n addition water jets thh inclined holes at the root of the brush were directed against the wall of the hole. The water was pumped thh the drill rods. After the walls of the borehole OL-KR37 were cleaned with the brush and watetjets, the borehole was cleaned by pumping water thh alu-53 drill rods with a submersible pump. An adapter with rubber sealing was lowered on the cone installed at the bottom of the casing (0 140/134). The adapter was lowered and lifted by a drill string, which was screwed to the top of the cone. Another drill string of alu-53 rods, which nearly reached the bottom of the hole, was attached to the lower side of the adapter. The weight of the drill strings pressed. the adapter and the cone tightly together and there was no water leakage between them. n this method, the lowermost 9 m of the drill rods are perforated. A submersible pump was lowered to the depth of about 25 m inside the 0 140/134 mm casing. Consequently, the flushing water circulates via the bottom of the borehole. Pumping was interrupted four times and drill rods were moved up and down in the borehole to remove any residual drill cuttings from the walls of the borehole. The pump was taken out of the casing before moving the drill rods, and lowered back after the procedure and the pumping continued.
19 The pumping was carried out between 04:10pm on the 28th of July and 02:30pm on the 1st of August 2005. During the flush pumping 154.9 m 3 of water was pumped with an average rate of 16481/h from borehole OL-KR37. After the walls of the borehole OL-KR37B were cleaned with the brush and 4.0 m 3 water the borehole was cleaned by pumping water from hole with a submersible pump. A submersible pump was lowered to the depth of about 25 m. The pumping was carried out between 03:15 pm on the 19th of August and 06:15 am on the 22nd of August 2005. During the flush pumping 11.8 m 3 of water was pumped with an average rate of 302 1/h from borehole OL-KR37B. During the pumping of borehole OL-KR37 the descending of the water level and the time-rate of recovery of the water level after pumping were observed. Measured groundwater levels are presented in Appendix 8.11. Figure 5. Steel brush used for washing boreholes (in picture a brush for rjj 76 mm holes).
21 4. ENGNEERNG GEOLOGY 4.1 Engineering geological logging Handling of the core was based on the POSV A work instructions TY0-0-03/0 1 "Core handling procedure with triple tube coring (in Finnish)". Drill core samples were placed in about one metre long wooden core boxes immediately after emptying the core barrel. Core boxes were covered with damp proofing quality aluminium paper so that the aluminium surface was against the core. Also the wooden blocks separating the different sample runs were covered by aluminium paper. Drill core was handled especially carefully during and after the drilling. Core was placed on the boxes avoiding any unnecessary breakage. Broken and clay rich core was wrapped in aluminium foil to avoid breaking it during storage and logging. f loose rock fragments from the borehole walls were encountered during logging, they were placed after the block marking the end of the previous sample run. Therefore, at the beginning of a sample run there might be rock fragments that do not belong to the sample run itsel Geologist logged the core in a transportable office at the drilling site. Logging was designed for engineering geological purposes (Gardemeister et al. 1976, Korhonen et al. 1974). Following parameters were logged: fracture classification, fractured zones and core loss, artificial break and fracture frequency and RQD, petrography, foliation degree, degree of weathering and core discing. n addition, the lift and the core box number were documented. List of lift lists depths as they has been marked on the spacing wooden blocks separating different sample runs in the core boxes. f the length of the core in the sample run indicated that sampling depth was different from the depth marked during drilling, the true sample depth has been corrected on the spacing block. Therefore, the sample run depth means the sample depth. The drilling depth might be deeper than the sampling depth if the core li:fter slips and part of the core is left in the borehole and is not retrieved until with the next lift. List of core boxes lists the start and end depths of the core in each core box. n the list of fractures the fractures were numbered sequentially from the top to the bottom of the borehole. Fracture depths were measured to the centre line of the core and were
22 given with one centimetre accuracy. f the middle line of an gular fracture did not coincide with the centre line of the core, an appropriate depth was given. f observations were given for a depth interval, the depth was given to the end of the last fracture, for example in the case of crushed zone. Logged depths were corrected to the true core depth, i.e. if there were depth inaccuracies due to the core loss or the core lifter had slipped, the depth written on the wooden block marking at the end of a lift was corrected. naccuracies due to core loss were also logged separately. The nature of a fracture was described with abbreviations: op = open, rusty/limonite covering ti = tight, no filling material fi =filled fisl = filled slickenside grfi = grain filled clfi = clay filled. The term "open" was used in core logging if fracture had rustyllimonite covering. Angle of a fracture was given relative to the core axis. f a fracture was parallel to the axis its core angle was 0 and correspondingly if a fracture was perpendicular to the core axis its angle was 90. Thickness of the fracture filling was given in millimetres. The colour of the fracture surfaces was logged if it differed from the host rock colour significantly. Most usually the colour of filled and open fractures differed from the host rock colour. Tight fractures had typically only a slightly different shade from the host rock colour. Fractures, which had a clear colour but the core was intact across the fractures were classified as filled fractures. n these cases in the remarks column has been written "" or "partly ", which indicates that the fracture is healed or partly healed and its permeability is poor in its natural state. Fractures, which had euhedral or subhedral mineral growth, have "crystals" written in the log. n addition, if any smell (ammonia, hydrogen sulphide) was detected, it was recorded to the remarks column. Minerals have been logged only if their recognition was absolutely sure. Mineral names used have been listed in the petrography section of the report.
23 Fracture surface colour (minerals) has been described with three to four letter abbreviations: brow, lbro, dbro (brown, light brown, dark brown) gray, lgra, dgra (gray, light gray, dark gray) gree, lgre, dgre (green, light green, dark green) red, lred,dred (red, light red, dark red) The colour shades of the fracture surface colours were described by adding one letter to the front of the three letter colour abbreviation. For example: rbro (reddish brown) Recognition of the mineral composition of the rock is qualitative and the mode has been estimated by eye. Mineral names have been abbreviated using the system used in Saltikoff's (1972) Finnish mineral name catalogue. Same abbreviations have also been used in the fracture descriptions. The most common abbreviations used are: quar = quartz feld = feldspars (Kfeldspar or plagioclase) biot = biotite carb = carbonate (unspecified) talc= talc chlo = chlorite clay = clay minerals (unspecified) = sulphide minerals (unspecified) fehy = Fe-hydrates, (limonite) epid = epidote grap = graphite Fracture surface morphology is described with following abbreviations: plan (planar) (gular) (ed) Fracture surface quality was described with a four letter abbreviation. The three step classification used corresponds with the JRC-numbers (Barton & Choubey 1977). (h; JRC 15-20)
24 (semih; JRC 7-14) smoo (smooth; JRC 0-6) Core loss is the result of geological factors, which may include strong weathering or fracturing of rock, or technical factors during the drilling. The depth of core loss, lengt and cause was logged. f the location was not known exactly, the depth interval where the core loss occurred has been logged. Consequently, the depth measurements following the core loss are marked with notation. Fractured zones were described in the list of the fractured zones and core loss using the following abbreviations: Rim = fracture-structured, densely fractured, more than 10 fractures per metre RiiV = crush-structured RiV = clay-structured Break and natural fracture frequency and ROD were logged on full metre depth intervals. Break frequency is the number of core breaks within one metre interval. Drilling, core handling, core discing and natural fractures cause breaks. Fracture frequency is the number of natural fractures within one metre interval. f the break frequency is higher than the natural fracture frequency the core must have been broken during the drilling or core handling accidentally or by purpose. f the natural fracture frequency is higher than the break frequency the fractures must be tight and cohesive enough to keep the core together. RQD gives the percentage of over 10 cm long core segments, which are separated by natural fractures, within one metre interval. Petrographical description is based on the Finnish engmeenng geological rock classification (Korhonen et al. 1974, Gardemeister et al. 1976). Each rock type has been described at the first occurrence and only the changes are added later if there has been significant differences in the deeper sections. Grain size has been classified as follows: Very fine grained, glassy, grain not visible to naked eyes Fine grained Medium grained Coarse grained Very coarse grained << 1 mm < 1 mm 1... 5 mm 5... 50mm >50 mm Texture has been described with following terms (Finnish abbreviations used): Massive M
25 Foliated L Mixed (migmatitic) s Foliation degree has been described using the Finnish engineering geological classification. Zones of relatively constant foliation intensity were delineated and the angle of foliation was measured with a point interval of about 10 m. n addition, the foliation degree was estimated using the above mentioned classification (Korhonen et al. 1974, Gardemeister et al. 1976). Foliation degree has been classified to four categories: unfoliated 0 weak 1 medium 2 strong 3 Texture and foliation intensity description can have following variations: MO, M1, L1, L2,L3,SO,S1,S2,S3. Degree of weathering was described with following abbreviations (Korhonen et al. 1974, Gardemeister et al. 1976): RpO = unweathered Rp 1 = slightly weathered Rp2 = strongly weathered Rp3 = completely weathered f there are small changes in the weathering degree within the logged depth interval, for example around fractures, the overall weathering degree is given first and the minor weathering changes in brackets. When the weathering within a certain zone varies between two weathering degrees, the degrees used for such a zone are separated with a dash, e.g. Rp0-1. Core discing has been logged separately. Depth intervals, within which core discing occurs, have been documented. The number of breaks and core discs, the minimum and maximum spacing between discs has been logged. n each break, the geometry of the disc surfaces have been described using the following classification (the core is running from left to right): ( ( = top surface concave, lower surface convex
26 ( = top surface concave, lower surface planar (= top surface planar, lower surface convex )) = top surface convex, lower surface concave ) = top surface convex, lower surface planar ) = top surface planar, lower surface concave 11 =top surface planar, lower surface planar )( = top surface convex and lower surface convex S =saddle A = incomplete discing All core boxes were photographed (colour) both dry and wet. Core photographs (wet) are presented at the end of the report. n addition, close up photographs were taken from well preserved fractured zones and individual clay filled fractures. These photographs (wet) are presented at the end of the report after the full core box photographs.. The depth of each run where the core has been orientated has been recorded. Also the start and end depths and the length of the orientated part of the sample have been marked. f the mark has been bad or it has not been found at the upper end of a lift marked with "SN' by the driller, there is a comment of this in the list. Core orientation was carried out by lowering a hinged marking spike in the hole with a wire. The spike lies against the bottom of the hole and makes a mark at the bottom of the hole. n the next run the mark will be at the upper end of the core sample and the sample may be orientated utilizing the directional information of the hole. Orientation of samples was utilized in determining the direction of fractures and other linear features in the core. 4.2 The effects of drilling to the sample quality Core loss due to rock breaking or grinding occurred in borehole OL-KR37 in two places and in borehole OL-KR37B in two places. Total length of core loss was 0.77 m in borehole OL-KR37 and 0.73 m in borehole OL-KR37B. n few places, the ends of core samples had signs of rotation but there was no significant core loss. Core loss is shown in Appendix 8.17. The sample quality is better while drilling with triple tube core barrel than drilling with conventional double tube core barrel. n addition the sample quality is better when using an automatic drill rig, because the drilling is controlled by the computer continuously by
27 taking several measurements per second. n a triple tube core barrel the inner tube is split and it is not necessary to shake the core out of the inner tube. Therefore, the core will stay more compact than in a normal double tube core barrel. This advantage is especially noticed when drilling fractured rocks; it is not necessary to fit the ends of the core pieces together. n addition, soft fracture fillings will be preserved much better. Furthermore, there is much less drill cuttings on the core surface, in the breaks and fractures. 4.3 Rock quality Drill core consisted mainly of rock types, mica gneiss (MGN) and granite (GRAN), which had been described earlier from the area. Mica gneiss is typically migmatitic and in many places granitic (pegmatitic) material is abundant. One section of tonalite (TON) is observed, too. Mica gneiss and granite are in many places intercalated and, consequently, in drill core, average intersections are only few metres thick. Therefore rock types have been classified by the major rock type and can have thin layers of minor rock type. Migmatic mica gneiss comprises mica rich bands and light medium to coarse grained granitic bands. t is typically weakly to moderately foliated, L1, L2. The grain size of mica gneiss varies from fine grained to medium grained. The main minerals are quartz, feldspars and biotite. Granite is equigranular. ts grain size varies from medium grained to coarse grained, in places it is pegmatitic. The texture is typically massive, MO, but there are some weakly foliated mica gneiss inclusions, M1. The main minerals are feldspars, quartz and biotite. Tonalite is equigranular and grain size is mainly medium grained. Tonalite is weakly foliated, L 1. The main minerals are feldspars, quarts and biotite. Petrographical description along the borehole is presented in Appendix 8.12. Graphic log showing the rock types and fracture frequency is presented in Figure 6. Drill core ofborehole OL-KR37 is mainly unweathered or from unweathered to slightly weathered (RpO, RpO(Rp 1 ), Rp0-1 ). Three sections of slightly weathered rock (Rp 1) were observed. Totalling 6.63 m slightly weathered rock was observed. Drill core ofborehole OL-KR37B is mainly unweathered or from unweathered to slightly weathered (RpO, RpO(Rp 1 ), Rp0-1 ). Two sections of slightly weathered rock (Rp 1 ), one
28 section of strongly weathered (Rp2) and one section of strongly with completely weathered (Rp2(Rp3)) rock were observed. Totally about 8.76 m slightly weathered, 1.82 m strongly weathered (Rp2) and 1.49 m strongly with completely weathered (Rp2(Rp3)) rock was observed. The weathering degree of rocks is shown in Appendix 8.13. Dip and dip direction of foliation and angle of foliation relative to the core axis were measured. The average values of measured dips and dip directions are 42 and 135 in boreholes OL-KR37 and OL-KR37B together. Dip and dip direction of foliation vary considerably. Foliation intensity and foliation angles have been presented in Appendix 8.14. 4.4 Fracturing Fractures in the drill core are mostly of filled type. Fracture fillings are most commonly sulphides (, magnetite), white kaolin or white or gray carbonate and black chlorite. Some clay was also observed as fracture filling. n most fractures, the fracture filling is a very thin layer on the fracture surfaces, and the opposite surfaces of the fracture match perfectly. Commonly the fracture filling is only a patchy coating on the fracture surfaces but these are still classified as filled fractures. Only a few fractures have a filling, which is thicker than one millimetre. The thickest fracture filling is about 10 millimetres. Most fractures, which have coloured surfaces, were classified as filled fractures. Tight fractures may also have a colour and, consequently, there is no clear distinction between tight and filled fracture. Some fractures, including filled fractures, are healed. n total, 153 healed fractures were intersected, which means about 26 % of all fractures in borehole OL-KR37. n total, 53 healed fractures were intersected, which means about 25% of all fractures in borehole OL-KR37B. n total, five clay filled, four grain filled and 25 slickensided fractures were observed in borehole OL-KR37 and four clay filled, four slickensided and three grain filled fractures in borehole OL-KR37B. n one place in borehole OL-KR37 and in two places in borehole OL-KR37B, to prevent the core to falling apart, the core was left in the box. Therefore, in these sections it was not possible to define the exact nature of the fractures. Some of the slickensided fractures have clay or grain filling and some clay filled fractures have slickensides under the fill. Slickensided fractures occur thh the core but most of them are in or near the zones of higher fracture density. Detailed list of the fractures are presented in Appendix 8.15.
29 Morphology of the fractures varies a significantly. Most commonly surfaces are gular and semih (JRC-number 7-14). The second most common morphology is gular and h (JRC-number 15-20) or planar with a semih surface. However, different variations are common. The most typical fracture direction is in the direction of schistosity. The dip direction of fractures is towards SE-E and dip varies between gently dipping and about 60 degrees. Figure 5 shows the dip directions and the dips of the fractures on a lower hemisphere projection. The directions have been corrected using the directional survey data of Maxibor instrument. Average fracture frequency in borehole OL-KR37 is 1.8 fractures per metre and 5.0 fractures per metre in OL-KR37B. The mean RQD value for borehole OL-KR37 is 96.0% and 88.7% for borehole OL-KR37B. Fracture frequency is shown graphically in Figure 6. The full logs of the fracture frequency, artificial breaks and RQD are presented in Appendix 8.16. n borehole OL-KR37 four zones of strongly fractured rock were intersected. All zones are fracture-structured (Rill). Total length of these four sections is 4.51 m, which is about 2.9 % of the total core sample of this borehole. n borehole OL-KR37B two fracture- Figure 5. Dip directions/dips of fractures on a lower hemisphere projection. Contours presented are 2, 4, 6 and 8 %.
30 structured zones (Riiii) and two crush-structured zones (RiiV) were intersected. The total length of two sections is 4.03 m, which is about 9.4% of the core sample of this borehole. Fractured zones are presented in Appendix 8.17. 4.5 Core orientation The aim was to orientate samples as much as possible in order to measure geological features. n borehole OL-KR37 73 orientation operations were carried out. Seven orientation marks had to be rejected. n total, 303.64 metres (94.2 %) of core was orientated. The average length of orientated core per one successful marking operation was 4.64 metres. The length of consistent orientated sections varied between 3.40 to 56.55 metres. n borehole OL-KR37B seven orientation operations were carried out. One orientation mark had to be rejected. n total, 29.73 metres (69.3 %) of core was orientated. The results are shown in Appendix 8.18. The failures in the orientation operations were caused by various reasons. n most cases the reason was fractured or inclined bottom of the borehole. Due to these phenomena the mark was unclear, distorted or lacking completely. n addition in one case the bottom of the hole was already loose during the marking and the mark became unreliable. 4.6 Core discing The drill core showed no evidence of core discing.
31 Depth Rock types Natural fractures pc/m 1:1200 0 20 0.0 t---.. 20.0 P- 40.0 40.0 L> c 60.0 -----==-- """5t. =- 80.0 100.0 r k - 120.0 _;? :2.. v 140.0!'-> f> > D Granite 160.0 Mica gneiss p D 180.0 200.0 13=- 220.0 240.0 p p- p 260.0!-"'" 280.0 p 300.0 i?- 320.0 1--- Tonalite 340.0 f> Figure 6. Graphic log of the borehole showing rock types and fracture frequency (data from Appendices 8.12 and 8.16).
33 5. ROCK MECHANCS 5.1 Rock mechanical field tests on core samples Rock strength and deformation property tests were made with a Rock Tester-equipment. Samples for the testing were taken about every 30 m, or if the rock type changed. The device is meant for field testing of rock cores to evaluate rock strength and deformation parameters. The rock cores tested can be unprepared and the test itself is easy to perform hence being a lucrative testing method. Young's Modulus E, Poisson's ratio v and Modulus of Rupture Smax were measured with a Bend test in which the outer supports (L) were placed 190 mm apart and the inner supports (U) 58 mm apart. Diameter of the core (D) is 50.2 mm. The test arrangement is shown in Figure 7. Young's Modulus describes the stiffuess of rock in the condition of isotropic elasticity. This can be calculated based on Hooke's law (equation 5.1.1) [Pa] (5.1.1) cr = stress [Pa] Ea = axial strain Poisson's ratio is defined as the ratio of radial strain and axial strain (equation 5.1.2). Er = radial strain Ea = axial strain (5.1.2) Values ofmodulus of Rupture are read directly from the Bend test measurement. Uniaxial compressive strength crc was determined indirectly from the point load test results. The point load tests were made according the SRM instructions (SRM 1981 and SRM 1985). The point load index lsso, which is determined in the test, is multiplied by 20 and the resulting value corresponds with the uniaxial compressive strength (Pohjanpera et al, 2005).
34 u L>3,5D DUU3 L Figure 7. Bend test. Radial and axial strain gauges glued on the core sample. n the point load test the load is increased until the core sample breaks (Fig. 15). The point load index is calculated from the load required to break the sample. The test result is valid only if the break surface goes thh the load points. The point load number s is calculated from the equation 5.1.3. p ls=-2 D [Pa] (5.1.3) P = point load [N] D = diameter of the core sample [mm] Point load number is dependent on the diameter of the core sample and it is corrected to the point load index using the equations 5.1.4 and 5.1.5. The result is not dependent on the sample size. (») 0,45 F=- 50 (5.1.4) (5.1.5)
35 Figure 8. Point load test. 4 D ' 5.2 Strength and elastic properties Samples for testing the strength and elastic properties of the rock were taken every 30 m. Sample should be one piece at least 0.25 m long without any healed fractures or not remarkably micro fractured. n total, 11 samples of mica gneiss, two samples of tonalite and one sample of granite (pegmatite) were tested. One Bend test and two Point load tests were done from each sample. Differences in measurements are caused by the variability in the foliation intensity and grain size. Before these measurements geologist has marked in point-loaded sample the planned direction, and logged following parameters; angles of a foliation versus point load tests, rock type, foliation intensity and description of foliation. Point load was done so that the foliation was perpendicular to the core axis (its angle was 90 ). The description of foliation versus point-loaded samples is in Appendix 8.19. The mean uniaxial compressive strength of all samples is 106 MP a. The average elastic modulus of all samples is 40 GPa. The average Poisson's ratio of all samples is 0.20. The rock mechanical test results are presented in Appendix 8.19, in which the mean strength and elastic properties are presented. Uniaxial compressive strength, Young's Modulus and Modulus of Rupture of all rock types versus depth are shown in Figure 9.
36 ----Young's Modulus [GPa] 40.00 ";' 200.00._ Uniaxial compressive strength [MP a] 35.00 ";' 175.00,._Modulus of Rupture [MPa] ";' -= 30.00 5:2. 150.00 -- tl.l = 25.00 tl.l -6 125.00 = 0 -c...i 100.00 20.00 = - tl.l c..t)jl - 0 15.00 8 3 75.00 "' tl.l 0 0 = (,j '3 50.00 10.00 "'0 ";"'0 0 - = = / a 25.00 5.00 0.00 0.00 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 Depth [m] Figure 9. Uniaxial compressive strength, elastic modulus, and Modulus of Rupture versus depth. Mica gneiss is shown as black, granite as red and tonalite as yellow symbols.
37 6. SUMMARY Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality ofeurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations, Suomen Malmi Oy core drilled a 350.00 m deep borehole in the area. The borehole identification number is OL KR37. Because the precollar for borehole OL-KR37 was done by down-the-hole percussion drilling, another diamond borehole OL-KR37B was core drilled next to it in order to attain full rock sample coverage also from the upper part of the bedrock. Length of the borehole is 45.10 m. The core was drilled using a triple tube core barrel which had a split inner sample tube. During the drilling, the electric conductivity of drilling and returning water and the volume of drilling and returning water were monitored. The monitoring was aimed to get additional information of the bedrock quality. n boreholes OL-KR37 and OL-KR37B the electric conductivity of the drilling water and returning water varied from 20.7 to 25.7 ms/m and from 22.7 to 53.5 ms/m, respectively. The drill rig was computer controlled and during drilling the drilling parameters were recorded. Drilling water was marked with sodium fluorescein as the label agent. During the drilling and flushing of borehole OL-KR37 about 273 m 3 of water was used. The amount of returning water in borehole OL-KR37 was about 221m 3 During the drilling and flushing ofborehole OL-KR37B about 21m 3 of water was used and about 16m 3 returning water was measured. After the drilling, the borehole was flushed by pumping about 155m 3 of water from the bottom of the borehole OL-KR37 and about 12 m 3 of water from the borehole OL-KR37B. The deviation of the borehole OL-KR37 was measured with EMS- and Maxibordeviation survey tools and OL-KR37B was measured with EMS- deviation survey tool. The borehole OL-KR37 was wedged in two depths.
38 Uniaxial compressive strength, Young's Modulus, and Poisson's ratio were determined from the core samples. The average uniaxial compressive strength is 106 MPa, Young's Modulus 40 GPa and Poisson's ratio 0.20. Rock types intersected by the borehole are migmatitic mica gneiss, granite and tonalite. Rock types are mostly unweathered or only slightly weathered. Filled fracture is the most common fracture type. The average fracture frequency in borehole OL-KR37 is 1.8 fractures per metre and in OL-KR37B 5.0 fractures per metre. Mean RQD values of boreholes OL-KR37 and OL-KR37B are 96.0 % and 88.7 %, respectively. n the boreholes 29 fractures with slickenside, nine clay filled and seven grain filled fractures were intersected. n borehole OL-KR37 four strongly fractured zones were intersected and in borehole OL-KR37B also four strongly fractured zones were intersected.
39 7. REFERENCES Barton, N. & Choubey, V., 1977. The shear strength of rock joints in theory and practice. Rock Mechanics 1, s. 1-54. Springer-Verlag. Gardemeister, R., Johansson, S., Korhonen, P., Patrikainen, P., Tuisku, T. & Vahasarja, P. 1976. Rakennusgeologisen kallioluokituksen soveltaminen. (The application of Finnish engineering geological bedrock classification, only in Finnish). Espoo: Technical Recearch Centre offinland, Geotecnicallaboratory. 38 p. Research note 25. SRM. 1981. Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. n Rock Characterization Testing & Monitoring. Oxford, Pergamon Press. s. 113-116. SRM. 1985. Suggested Method for Determining Point Load Strength. nternational Journal Rock Mech. Min. Sci. & Geomech. Vol. 22, no 2. S. 51-60. Korhonen, K-H., Gardemeister, R., JaaskeHlinen, H., Niini, H. & Vahasarja, P. 1974. Rakennusalan kallioluokitus. (Engineering geological bedrock classification, only in Finnish). Espoo: Technical Recearch Centre of Finland, Geotecnical laboratory. 78 p. Research note 12. Pohjanpera, P., Wanne, T. & Johansson, E. 2005. Point load test results from Olkiluoto area- Determination of strength of intact rock from boreholes KR1-KR28 and PH1. Working Report 2005 -. Posiva Oy, Olkiluoto. (under preparation). Saltikoff, B. 1972. Mineraalinimisanasto. Espoo, Geological Survey of Finland. Report of nvestigation N:o 11 (in Finnish). 82 pages. SBN 951-690-044-5.
40
List of core boxes, OL-KR3 7 Appendix 8.1 41 Number Section, m - m Number Section, m - m 1 39.96-44.02 41 195.30-199.48 2 44.02-47.91 42 199.48-203.00 3 47.91-52.42 43 203.00-207.42 4 52.42-56.43 44 207.42-211.57 5 56.43-61.32 45 211.57-215.57 6 61.32-65.04 46 215.57-219.55 7 65.04-68.65 47 219.55-223.56 8 68.65-73.14 48 223.56-227.00 9 73.14-76.96 49 227.00-231.03 10 76.96-80.86 50 231.03-231.52 11 80.86-84.72 51 231.52-235.27 12 84.72-88.11 52 235.27-239.00 13 88.11-92.46 53 239.00-242.97 14 92.46-96.57 54 242.97-247.24 15 96.57-100.99 55 247.24-251.31 16 100.99-96.81 56 251.31-255.70 17 96.81-101.02 57 255.70-259.95 18 101.02-105.15 58 259.95-263.83 19 105.15-108.73 59 263.83-267.69 20 108.73-112.64 60 267.69-272.01 21 112.64-116.62 61 272.01-276.11 22 116.62-120.48 62 276.11-280.36 23 120.48-124.31 63 280.36-284.56 24 124.31-127.99 64 284.56-288.59 25 127.99-131.98 65 288.59-292.98 26 131.98-136.34 66 292.98-296.95 27 136.34-140.56 67 296.95-300.80 28 140.56-145.14 68 300.80-304.81 29 145.14-149.66 69 304.81-308.74 30 149.66-153.82 70 308.74-313.13 31 153.82-158.00 71 313.13-317.67 32 158.00-162.66 72 317.67-321.71 33 162.66-167.00 73 321.71-326.03 34 167.00-171.42 74 326.03-330.64 35 171.42-174.72 75 330.64-334.82 36 174.72-178.72 76 334.82-338.96 37 178.72-182.38 77 338.96-343.35 38 182.38-186.82 78 343.35-347.55 39 186.82-190.97 79 347.55-350.00 40 190.97-195.30
List of core boxes, OL-KR37B Appendix 8.1 42 Number Section, m - m 1 2.17-6.38 2 6.38-9.69 3 9.69-13.29 4 13.29-17.65 5 17.65-21.71 6 21.71-26.12 7 26.12-30.12 8 30.12-34.05 9 34.05-38.04 10 38.04-41.99 11 41.99-45.10
43 Lifts, OL-KR3 7 Appendix 8.2 Lifts, m Lifts, m Lifts, m Lifts, m Lifts, m 40.82 97.96 149.01 221.00 284.03 42.37 100.97 152.00 224.01 287.04 44.02 103.97 155.00 227.00 290.02 45.34 wedging 158.00 229.96 292.98 45.95 core 95.36 161.00 232.90 296.04 46.93 96.16 163.97 wedging 299.01 49.90 96.45 167.00 core 229.27 302.01 52.92 99.36 170.01 231.52 305.02 55.98 101.02 173.00 232.89 307.98 58.44 104.05 175.46 235.99 310.97 60.00 106.96 178.52 239.00 313.97 61.74 110.04 181.56 242.03 317.03 64.86 113.01 181.98 245.02 320.07 67.90 116.01 185.01 247.99 323.03 70.95 119.02 187.97 250.98 326.03 74.00 122.00 190.97 253.98 329.02 76.96 124.98 194.00 257.00 332.06 79.11 126.17 197.01 260.02 335.06 82.15 127.99 200.01 262.99 338.04 82.98 131.00 203.00 266.00 341.00 86.00 133.99 206.00 269.00 343.99 88.99 137.00 208.96 272.01 346.99 89.78 140.00 212.01 275.00 350.00 91.97 142.95 215.00 278.00 95.02 146.00 218.00 280.99
44 Lifts, OL-KR37B Appendix 8.2 Lifts, m 4.27 5.15 7.88 10.92 13.98 17.05 20.05 21.04 22.39 22.91 24.33 25.77 28.90 31.90 34.90 38.04 41.09 44.07 45.10
45 Appendix 8.3 lr.t l'i SUOMEN MALM OY Suomen Malmi Oy Maxibor-survey P.O.Box 10 Fl-00210 ESPOO Client: Posiva Hole No: OLKR37 Diameter: NQ3 Surveyed by: EKEL Site: Olkiluoto X: 1780.21 Lenght: 348 Survey date: 6. 7.2005 Project No: Y: 5923.52 Azimuth: 18.33 Reported by: JM Z: 5.13 Dip: 47.90 Report date: 28.8.2005 Station.Northing Easting :: Qepth Dip Azimuth 0 6 791 780.21 1 525 923.52 5.13 47.90 18.33 3 6 791 782.12 1 525 924.15 2.90 47.75 18.06 6 6 791 784.04 1 525 924.78 0.68 47.48 17.86 9 6 791 785.97 1 525 925.40-1.53 47.21 17.64 12 6 791 787.91 1 525 926.02-3.73 47.01 17.36 15 6 791 789.86 1 525 926.63-5.92 46.85 17.06 18 6 791 791.82 1 525 927.23-8.11 46.72 16.81 21 6 791 793.79 1 525 927.82-10.30 46.52 16.68 24 6 791 795.77 1 525 928.42-12.47 46.27 16.59 27 6 791 797.76 1 525 929.01-14.64 45.99 16.42 30 6 791 799.76 1 525 929.60-16.80 45.80 16.12 33 6 791 801.77 1 525 930.18-18.95 45.46 15.74 36 6 791 803.79 1 525 930.75-21.09 45.24 15.44 39 6 791 805.83 1 525 931.31-23.22 45.19 15.55 42 6 791 807.86 1 525 931.88-25.35 45.20 15.54 45 6 791 809.90 1 525 932.45-27.47 45.23 15.45 48 6791811.94 1 525 933.01-29.60 45.26 15.36 51 6 791 813.97 1 525 933.57-31.74 45.23 15.36 54 6 791 816.01 1 525 934.13-33.87 45.20 15.35 57 6 791 818.05 1 525 934.69-35.99 45.22 15.30 60 6 791 820.09 1 525 935.24-38.12 45.25 15.26 63 6 791 822.12 1 525 935.80-40.25 45.24 15.23 66 6 791 824.16 1 525 936.36-42.38 45.22 15.23 69 6 791 826.20 1 525 936.91-44.51 45.18 15.29 72 6 791 828.24 1 525 937.47-46.64 45.15 15.30 75 6 791 830.28 1 525 938.03-48.77 45.12 15.32 78 6 791 832.32 1 525 938.59-50.89 45.05 15.37 81 6 791 834.37 1 525 939.15-53.02 44.98 15.39 84 6 791 836.41 1 525 939.71-55.14 44.94 15.36 87 6 791 838.46 1 525 940.27-57.26 44.94 15.32 90 6 791 840.51 1 525 940.83-59.38 45.06 15.50 93 6 791 842.55 1 525 941.40-61.50 45.49 16.40 96 6 791 844.57 1 525 941.99-63.64 45.80 17.15 99 6 791 846.57 1 525 942.61-65.79 45.86 17.26 102 6 791 848.56 1 525 943.23-67.94 45.85 17.30 105 6 791 850.56 1 525 943.85-70.10 45.84 17.34 108 6 791 852.55 1 525 944.47-72.25 45.82 17.32 111 6 791 854.55 1 525 945.10-74.40 45.84 17.24 114 6 791 856.54 1 525 945.72-76.55 45.87 17.19 117 6 791 858.54 1 525 946.33-78.70 45.87 17.21 120 6 791 860.54 1 525 946.95-80.86 45.83 17.27 123 6 791 862.53 1 525 947.57-83.01 45.80 17.33 126 6 791 864.53 1 525 948.20-85.16 45.76 17.39
46 Appendix 8.3 Ult l'i SUOMEN MALM OY Suomen Malmi Oy Maxibor-survey P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR37 Diameter: NQ3 Surveyed by: EKEL Site: Olkiluoto X: 1780.21 Lenght: 348 Survey date: 6. 7.2005 Project No: Y: 5923.52 Azimuth: 18.33 Reported by: JM Z: 5.13 Dip: 47.90 Report date: 28.8.2005 Station Northing Easting Depth Dip Azimuth 129 6 791 866.53 1 525 948.82-87.31 45.70 17.45 132 6 791 868.52 1 525 949.45-89.46 45.65 17.46 135 6 791 870.52 1 525 950.08-91.60 45.63 17.42 138 6 791 872.53 1 525 950.71-93.75 45.59 17.39 141 6 791 874.53 1 525 951.33-95.89 45.56 17.37 144 6 791 876.53 1 525 951.96-98.03 45.55 17.36 147 6 791 878.54 1 525 952.59-100.17 45.53 17.39 150 6 791 880.55 1 525 953.22-102.31 45.52 17.43 153 6 791 882.55 1 525 953.85-104.45 45.50 17.48 156 6 791 884.56 1 525 954.48-106.59 45.49 17.48 159 6 791 886.56 1 525 955.11-108.73 45.46 17.45 162 6 791 888.57 1 525 955.74-110.87 45.43 17.43 165 6 791 890.58 1 525 956.37-113.01 45.41 17.39 168 6 791 892.59 1 525 957.00-115.15 45.40 17.35 171 6 791 894.60 1 525 957.63-117.28 45.39 17.30 174 6 791 896.61 1 525 958.26-119.42 45.37 17.28 177 6 791 898.62 1 525 958.88-121.55 45.33 17.30 180 6 791 900.64 1 525 959.51-123.69 45.30 17.35 183 6 791 902.65 1 525 960.14-125.82 45.28 17.38 186 6 791 904.67 1 525 960.77-127.95 45.25 17.39 189 6 791 906.68 1 525 961.40-130.08 45.20 17.42 192 6 791 908.70 1 525 962.03-132.21 45.14 17.46 195 6 791 910.72 1 525 962.67-134.34 45.07 17.48 198 6 791 912.74 1 525 963.30-136.46 45.00 17.44 201 6 791 914.76 1 525 963.94-138.58 44.95 17.38 204 6 791 916.79 1 525 964.57-140.70 44.90 17.32 207 6 791 918.82 1 525 965.21-142.82 44.84 17.29 210 6 791 920.85 1 525 965.84-144.93 44.79 17.27 213 6 791 922.88 1 525 966.47-147.05 44.73 17.29 216 6 791 924.92 1 525 967.10-149.16 44.73 17.27 219 6 791 926.95 1 525 967.74-151.27 44.69 17.31 222 6 791 928.99 1 525 968.37-153.38 44.59 17.37 225 6 791 931.03 1 525 969.01-155.49 44.73 17.24 228 6 791 933.06 1 525 969.64-157.60 45.30 16.87 231 6 791 935.08 1 525 970.25-159.73 45.46 16.74 234 6 791 937.10 1 525 970.86-161.87 45.45 16.70 237 6 791 939.11 1 525 971.46-164.01 45.43 16.65 240 6 791 941.13 1 525 972.07-166.14 45.37 16.61 243 6 791 943.15 1 525 972.67-168.28 45.32 16.57 246 6 791 945.17 1 525 973.27-170.41 45.28 16.57 249 6 791 947.19 1 525 973.87-172.54 45.16 16.60 252 6 791 949.22 1 525 974.48-174.67 45.04 16.62 255 6 791 951.25 1 525 975.08-176.79 44.96 16.59
47 Appendix 8.3 lt l'i SUOMEN MALM OY Suomen Malmi Oy Maxibor-survey P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR37 Diameter: NQ3 Surveyed by: EKEL Site: Olkiluoto X: 1780.21 Lenght: 348 Survey date: 6.7.2005 Project No: Y: 5923.52 Azimuth: 18.33 Reported by: JM Z: 5.13 Dip: 47.90 Report date: 28.8.2005 Station Northing Easting Depth Dip Azimuth 258 6 791 953.29 1 525 975.69-178.91 44.91 16.52 261 6 791 955.32 1 525 976.29-181.03 44.89 16.47 264 6 791 957.36 1 525 976.90-183.15 44.87 16.44 267 6 791 959.40 1 525 977.50-185.26 44.85 16.40 270 6 791 961.44 1 525 978.10-187.38 44.83 16.37 273 6 791 963.48 1 525 978.70-189.49 44.82 16.34 276 6 791 965.52 1 525 979.30-191.61 44.82 16.30 279 6 791 967.57 1 525 979.89-193.72 44.80 16.26 282 6 791 969.61 1 525 980.49-195.84 44.80 16.25 285 6 791 971.65 1 525 981.09-197.95 44.81 16.24 288 6 791 973.70 1 525 981.68-200.07 44.83 16.21 291 6 791 975.74 1 525 982.28-202.18 44.82 16.21 294 6 791 977.78 1 525 982.87-204.30 44.79 16.21 297 6 791 979.83 1 525 983.46-206.41 44.73 16.19 300 6 791 981.87 1 525 984.06-208.52 44.70 16.15 303 6 791 983.92 1 525 984.65-210.63 44.70 16.09 306 6 791 985.97 1 525 985.24-212.74 44.69 16.03 309 6 791 988.02 1 525 985.83-214.85 44.65 16.01 312 6 791 990.07 1 525 986.42-216.96 44.64 16.03 315 6791992.12 1 525 987.01-219.07 44.65 16.09 318 6 791 994.18 1 525 987.60-221.18 44.64 16.15 321 6 791 996.23 1 525 988.19-223.28 44.65 16.18 324 6 791 998.28 1 525 988.79-225.39 44.64 16.22 327 6 792 000.33 1 525 989.39-227.50 44.63 16.24 330 6 792 002.37 1 525 989.98-229.61 44.66 16.25 333 6 792 004.42 1 525 990.58-231.72 44.67 16.22 336 6 792 006.47 1 525 991.18-233.82 44.67 16.20 339 6 792 008.52 1 525 991.77-235.93 44.67 16.18 342 6 792 010.57 1 525 992.37-238.04 44.67 16.21 348 6 792 014.67 1 525 993.56-242.26 44.64 16.26
49 rtjt l'i SUOMEN MALM OY Maxibor-survey Suomen Malmi Oy P.O.Box 10 Fl-0021 0 ESPOO Appendix 8.4 Client: Posiva Hole No: OLKR38 Diameter: NQ3 Site: Olkiluoto X: 1780.21 Lenght: 348 Project No: Y: 5923.52 Azimuth: 18.33 Z: 5.13 Dip: 47.90 Surveyed by: EKEL Survey date: 6.7.2005 Reported by: JM Report date: 28.8.2005 Horizontal projection Easting (m) 1 929.95 -f---,*f-+-:-.:-:-+:r--:--+:++::t-_;_,...:..;r---:---f. g 1 779.95...t...-., --'---""----'---.L.----'---""----'---"-----'-----' 5 773.43 5 823.43 5 873.43 5 923.43 5 973.43 6 023.43 6 073.43
50 re::qt l'i SUOMEN MALM OY Maxibor-survey Suomen Malmi Oy P.O.Box 10 Fl-0021 0 ESPOO Appendix 8. 4 Client: Posiva Hole No: OLKR37 Diameter: NQ3 Site: Olkiluoto X: 1780.21 Lenght: 348 Project No: Y: 5923.52 Azimuth: 18.33 Z: 5.13 Dip: 47.90 Surveyed by: EKEL Survey date: 6.7.2005 Reported by: JM Report date: 28.8.2005 Vertical projection
51 Appendix 8.5 lt l'i SUOMEN MALM OY Suomen Malmi Oy EMS-survey P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR37 Diameter: NQ3 Surveyed by: EK Site: Olkiluoto X: 1780.21 Lenght: 348 Survey date: 6.7.2005 Project No: Y: 5923.52 Azimuth: 18.33 Reported by: JM Z: 5.13 Dip: 47.90 Report date: 28.8.2005 Station,.. 1-,.- "':; l -:;. ; t : tu:>,..,,.: : -: ;,:_: '!'Y,l( <l '.. ':; '"- [)lp - '/Azlmu1h 0 6 791 780.21 1 525 923.52 5.13 47.9 18.33 3 6791782.12 1 525 924.15 2.90 47.63 17.73 6 6 791 784.04 1 525 924.77 0.69 47.43 17.53 9 6 791 785.98 1 525 925.38-1.52 47.09 17.31 12 6 791 787.93 1 525 925.99-3.72 46.88 17.03 15 6 791 789.89 1 525 926.59-5.91 46.6 16.73 18 6 791 791.86 1 525 927.18-8.09 46.48 16.48 21 6 791 793.85 1 525 927.77-10.26 46.23 16.35 24 6 791 795.84 1 525 928.35-12.43 46.04 16.26 27 6 791 797.84 1 525 928.93-14.59 45.74 16.09 30 6 791 799.85 1 525 929.51-16.74 45.6 15.79 33 6 791 801.87 1 525 930.09-18.88 45.31 15.41 36 6 791 803.90 1 525 930.65-21.01 44.84 15.11 39 6 791 805.96 1 525 931.20-23.13 44.73 15.22 42 6 791 808.01 1 525 931.76-25.24 44.73 15.22 45 6 791 810.07 1 525 932.32-27.35 44.76 15.12 48 6 791 812.13 1 525 932.88-29.46 44.76 14.73 51 6 791 814.19 1 525 933.42-31.58 44.8 14.37 54 6 791 816.25 1 525 933.95-33.69 44.81 14.72 57 6 791 818.31 1 525 934.49-35.81 44.83 15.01 60 6 791 820.36 1 525 935.04-37.92 44.86 15.15 63 6 791 822.41 1 525 935.59-40.04 44.85 14.95 66 6 791 824.47 1 525 936.14-42.15 44.81 14.89 69 6 791 826.53 1 525 936.69-44.27 44.77 15.16 72 6 791 828.58 1 525 937.25-46.38 44.78 15.03 75 6 791 830.64 1 525 937.80-48.49 44.76 14.82 78 6 791 832.70 1 525 938.34-50.60 44.73 13.3 81 6 791 834.77 1 525 938.83-52.72 44.68 14 84 6 791 836.84 1 525 939.35-54.83 44.63 14.83 87 6 791 838.90 1 525 939.90-56.93 44.64 14.78 90 6 791 840.97 1 525 940.44-59.04 44.59 15.09 93 6 791 843.03 1 525 941.00-61.15 44.87 14.32 96 6 791 845.09 1 525 941.52-63.26 45.5 14.1 99 6 791 847.13 1 525 942.03-65.40 45.7 14.01 102 6 791 849.16 1 525 942.54-67.55 45.72 17.71 105 6 791 851.16 1 525 943.18-69.70 45.71 15.5 108 6 791 853.18 1 525 943.74-71.85 45.71 16.42 111 6 791 855.19 1 525 944.33-73.99 45.71 17.52 114 6 791 857.18 1 525 944.96-76.14 45.74 16.77 117 6 791 859.19 1 525 945.57-78.29 45.73 16.18 120 6 791 861.20 1 525 946.15-80.44 45.69 17.85 123 6 791 863.20 1 525 946.79-82.58 45.68 17.45 126 6 791 865.19 1 525 947.42-84.73 45.65 17.14
52 Appendix 8.5 3t l'i SUOMEN MALM OY Suomen Malmi Oy EMS-survey P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR3 7 Diameter: NQ3 Surveyed by: EK Site: Olkiluoto X: 1780.21 Lenght: 348 Survey date: 6.7.2005 Project No: Y: 5923.52 Azimuth: 18.33 Reported by: JM Z: 5.13 Dip: 47.90 Report date: 28.8.2005 Station Northing Eastlng Depth " Dip Azimuth 129 6 791 867.20 1 525 948.04-86.88 45.62 17.2 132 6 791 869.20 1 525 948.66-89.02 45.58 17.18 135 6 791 871.21 1 525 949.28-91.16 45.56 17.31 138 6 791 873.21 1 525 949.90-93.30 45.51 17.34 141 6 791 875.22 1 525 950.53-95.44 45.46 17.41 144 6 791 877.23 1 525 951.16-97.58 45.43 17.45 147 6 791 879.24 1 525 951.79-99.72 45.41 17.44 150 6 791 881.25 1 525 952.42-101.86 45.4 17.46 153 6 791 883.26 1 525 953.05-103.99 45.39 17.49 156 6 791 885.27 1 525 953.69-106.13 45.41 17.47 159 6 791 887.27 1 525 954.32-108.26 45.39 17.48 162 6 791 889.28 1 525 954.95-110.40 45.35 17.46 165 6 791 891.30 1 525 955.59-112.53 45.32 17.48 168 6 791 893.31 1 525 956.22-114.67 45.31 17.48 171 6 791 895.32 1 525 956.85-116.80 45.29 17.55 174 6 791 897.33 1 525 957.49-118.93 45.27 17.55 177 6 791 899.35 1 525 958.13-121.06 45.23 17.5 180 6 791 901.36 1 525 958.76-123.19 45.2 17.49 183 6 791 903.38 1 525 959.40-125.32 45.19 17.48 186 6 791 905.39 1 525 960.03-127.45 45.19 17.44 189 6 791 907.41 1 525 960.67-129.58 45.15 17.49 192 6 791 909.43 1 525 961.30-131.71 45.1 17.55 195 6 791 911.45 1 525 961.94-133.83 45.06 17.58 198 6 791 913.47 1 525 962.58-135.95 44.99 17.5 201 6 791 915.49 1 525 963.22-138.08 44.96 17.5 204 6 791 917.52 1 525 963.86-140.20 44.91 17.4 207 6 791 919.54 1 525 964.49-142.31 44.83 17.38 210 6 791 921.57 1525965.13-144.43 44.76 17.42 213 6 791 923.61 1 525 965.76-146.54 44.73 17.38 216 6 791 925.64 1 525 966.40-148.65 44.73 17.53 219 6 791 927.67 1 525 967.04-150.76 44.75 17.35 222 6 791 929.71 1 525 967.68-152.88 44.61 17.46 225 6 791 931.74 1 525 968.32-154.98 44.56 16.99 228 6 791 933.79 1 525 968.94-157.09 45.49 16.5 231 6 791 935.80 1 525 969.54-159.23 45.83 16.1 234 6 791 937.81 1 525 970.12-161.38 45.85 15.87 237 6 791 939.82 1 525 970.69-163.53 45.83 16.1 240 6 791 941.83 1 525 971.27-165.68 45.79 16.01 243 6 791 943.84 1 525 971.85-167.83 45.73 15.96 246 6 791 945.85 1 525 972.42-169.98 45.73 15.88 249 6 791 947.87 1 525 973.00-172.13 45.61 15.85 252 6 791 949.89 1 525 973.57-174.27 45.52 15.93 255 6 791 951.91 1525974.15-176.41 45.41 15.97
53 Appendix 8.5 l.',[ l'i SUOMEN MALM OY Suomen Malmi Oy EMS-survey P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR37 Diameter: NQ3 Surveyed by: EK Site: Olkiluoto X: 1780.21 Lenght: 348 Survey date: 6.7.2005 Project No: Y: 5923.52 Azimuth: 18.33 Reported by: JM Z: 5.13 Dip: 47.90 Report date: 28.8.2005 ''::. '""""'.;:;;.t.-;,,. f ',""' f.:.---.'-:...:.>.. '..:;_: ;>, JP :-;,:..:Azimuth ::......:.. """" ':: :-'......_.._._.a.,.... 258 6 791 953.93 1 525 974.73-178.55 45.35 15.93 261 6 791 955.96 1 525 975.31-180.68 45.35 15.89 264 6 791 957.99 1 525 975.88-182.82 45.32 15.83 267 6 791 960.02 1 525 976.46-184.95 45.31 15.79 270 6 791 962.05 1 525 977.03-187.08 45.28 16.21 273 6 791 964.08 1 525 977.62-189.22 45.27 15.74 276 6 791 966.11 1 525 978.19-191.35 45.25 15.75 279 6 791 968.14 1 525 978.77-193.48 45.23 17.59 282 6 791 970.15 1 525 979.41-195.61 45.2 16.64 285 6 791 972.18 1 525 980.01-197.74 45.2 15.28 288 6 791 974.22 1 525 980.57-199.87 45.24 16.15 291 6 791 976.25 1 525 981.16-202.00 45.25 15.75 294 6 791 978.28 1 525 981.73-204.13 45.24 15.85 297 6 791 980.31 1 525 982.31-206.26 45.2 15.83 300 6 791 982.35 1 525 982.88-208.39 45.17 15.79 303 6 791 984.38 1 525 983.46-210.51 45.16 15.7 306 6 791 986.42 1 525 984.03-212.64 45.17 15.57 309 6 791 988.46 1 525 984.60-214.77 45.1 15.52 312 6 791 990.50 1 525 985.17-216.89 45.08 15.47 315 6 791 992.54 1 525 985.73-219.02 45.11 15.47 318 6 791 994.58 1 525 986.30-221.14 45.07 15.55 321 6 791 996.62 1 525 986.86-223.27 45.07 15.55 324 6 791 998.66 1 525 987.43-225.39 45.06 15.54 327 6 792 000.70 1 525 988.00-227.51 45.08 15.58 330 6 792 002.74 1 525 988.57-229.64 45.12 15.65 333 6 792 004.78 1 525 989.14-231.76 45.15 15.57 336 6 792 006.82 1 525 989.71-233.89 45.18 15.6 339 6 792 008.86 1 525 990.28-236.02 45.17 15.59 342 6 792 010.89 1 525 990.84-238.15 45.15 15.62 345 6 792 012.93 1 525 991.41-240.27 45.12 15.64 348 6 792 014.97 1 525 991.98-242.40 45.21 15.62
54 Appendix 8.5 Ult l'i SUOMEN MALM OY Suomen Malmi Oy EMS-survey P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR378 Diameter: NQ3 Surveyed by: AS,LMJ Site: Olkiluoto X: 1781.13 Lenght: Survey date: 28.9.2005 Project No: Y: 5919.71 Azimuth: 17.66 Reported by: JM Z: 5.04 Dip: 47.13 Report date: 28.9.2005 Station.Northing.... Easting Depth Dip Azimuth 0 6 791 781.13 1 525 919.71 5.04 47.13 17.66 3 6 791 783.07 1 525 920.33 2.84 47.28 17.66 6 6 791 785.01 1 525 920.95 0.64 47.32 17.66 9 6 791 786.95 1 525 921.56-1.57 47.29 16.59 12 6 791 788.90 1 525 922.14-3.77 47.21 16.11 15 6 791 790.86 1 525 922.71-5.97 47.29 16.09 18 6 791 792.82 1 525 923.27-8.18 47.22 16.00 21 6 791 794.77 1 525 923.84-10.38 47.21 15.91 24 6 791 796.73 1 525 924.39-12.58 47.17 15.77 27 6 791 798.70 1 525 924.95-14.78 47.14 15.86 30 6 791 800.66 1 525 925.51-16.98 47.11 15.51 33 6 791 802.63 1 525 926.05-19.18 47.07 15.72 36 6 791 804.59 1 525 926.61-21.38 47.04 15.81 39 6 791 806.56 1 525 927.16-23.57 46.98 15.90 42 6 791 808.53 1 525 927.72-25.76 46.94 15.42 45 6 791 810.50 1 525 928.27-27.96 46.89 16.05
55 rl?j,' [ l'i SUOMEN MALM OY EMS-survey Suomen Malmi Oy P.O.Box 10 Fl-0021 0 ESPOO Appendix 8. 6 Client: Posiva Hole No: OLKR37 Diameter: NQ3 Site: Olkiluoto X: 1780.21 Lenght: 348 Project No: Y: 5923.52 Azimuth: 18.33 Z: 5.13 Dip: 47.90 Surveyed by: EK Survey date: 6.7.2005 Reported by: JM Report date: 28.8.2005 Horizontal projection Easting (m) 1 779.95..J..-----'---..L-----'---..._---'---.&.-.---'---...,.&...-_--L-_ 5 773.43 5 823.43 5 873.43 5 923.43 5 973.43 6 023.43 6 073.43.
56 rtif.t l'l SUOMEN MALM OY EMS-survey Appendix 8.6 Suomen Malmi Oy P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR37 Diameter: NQ3 Site: Olkiluoto X: 1780.21 Lenght: 348 Project No: Y: 5923.52 Azimuth: 18.33 Z: 5.13 Dip: 47.90 Surveyed by: EK Survey date: 6.7.2005 Reported by: JM Report date: 28.8.2005 Vertical projection 0.00 " 0 1t 1 0 2 0 20 3 0-50.00-100.00 g.c C:.150.00 Cl,) c -200.00 ' -250.00-300.00 -L-----.1...-----------E:itt:!tri.-:H- nre :ttort-f;n.."tt--., ---L-------------'
57 rl::,t A'' SUOMEN MALM OY EMS-survey Suomen Malmi Oy P.O.Box 10 Fl-0021 0 ESPOO Appendix 8.6 Client: Posiva Hole No: OLKR378 Diameter: NQ3 Site: Olkiluoto X: 1781.13 Lenght: Project No: Y: 5919.71 Azimuth: 17.66 Z: 5.04 Dip: 47.13 Surveyed by: AS,LMJ Survey date: 28.9.2005 Reported by: JM Report date: 28.9.2005 Horizontal projection Easting (m) 1 781.13 -'------"'"-----"'------... L-- ---L...------' 5 904.71 5 914.71 5 924.71 5 934.71
58 Appendix 8.6 r11.t l'l SUOMEN MALM OY EMS-survey Suomen Malmi Oy P.O.Box 10 Fl-0021 0 ESPOO Client: Posiva Hole No: OLKR378 Diameter: NQ3 Site: Olkiluoto X: 1781.13 Lenght: Project No: Y: 5919.71 Azimuth: 17.66 Z: 5.04 Dip: 47.13 Surveyed by: AS,LMJ Survey date: 28.9.2005 Reported by: JM Report date: 28.9.2005 Vertical projection Start direction (m) -10.00 +-----+------1--- ::otl------+------f------t------i g.t::. a Q) c -15.00 +-----+-----+--------l,-----31r--+-----+-----+-----l
59 Appendbl S.7 constructon OF THE UPPER PART OF sore-ole OL-KR37 Z- top of the casing::: +5.44 m Z- ground level::: +5."13 m a:: 2.50 m b == 39.91 m c:: 0.41 m d:: 350.00 m
60 Appendix s.7 consiruciion OF ii-\e UPPER PARi OF aorehole OL-KR37B Z - top of the casing "' +5.45 m Z- ground level"' +5.041ll a::: 2.17 m b::: 2.82 m c::: 0.55 m d::: 45.10 m
61 - Appendix 8.8 (..,_ -- - +-: T 1--------------------- ------- ----------J (0...- (0 N S).:::rm N / V.:::r LD m () ELr/J () r S) LD m EL i! 0(/J i.:::r- (.Q N \ ld S) N
r: ;t 2 ["-... 62 0 0 <.0 c: Cl) "'-... Appendix 8.8 t a. f- ' J >- 0 11 11..., X <0 tl) c "' "f..., 0 X \ lu/1 i : T ---- r t ---- - - : ---, --'-;.:: ::_:::;,-_. \ LL
63 Drilling water samples Appendix 8.9 Borehole OL-KR37 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m ug 1 8.6. 20:00 39.91 114 000 117 000 3000 1 240 9.6. 6:00 45.33 117 000 120 000 3000 2 21.7 230 9.6. 21:00 48.70 120 000 123 000 3000 3 21.6 250 10.6. 12:00 56.00 123 000 126 000 3000 4 21.6 230 13.6. 8:00 58.53 126 000 129 931 5 21.6 250 13.6. 11:40 63.90 130 000 133 000 3000 6 21.1 230 13.6. 19:10 71.90 133 000 136 000 3000 7 21.6 250 14.6. 22:55 75.51 136 000 139 000 3000 8 21.4 250 14.6. 1:30 79.50 139 000 142 000 3000 9 21.5 240 14.6. 2:54 85.00 142 000 145 000 3000 10 22.1 240 14.6. 7:35 89.00 145 000 148 000 3000 11 22.0 240 14.6. 12:40 93.77 148 000 151 000 3000 12 22.4 240 14.6. 22:51 98.00 151 000 154 000 3000 13 21.2 230 15.6. 0:30 104.00 154 000 157 000 3000 14 21.0 240 15.6. 3:51 94.40 157 000 160 000 3000 15 21.2 240 15.6. 21:20 95.93 160 000 163 000 3000 16 20.9 250 15.6. 7:12 96.45 163 000 166 000 3000 17 21.0 240 16.6. 2:20 100.84 166 000 169 000 3000 18 21.2 230 16.6. 7:35 106.50 169 000 172 000 3000 19 20.8 240 16.6. 12:30 110.00 172 000 175 000 3000 20 20.8 250 16.6. 23:07 116.00 175 000 178 000 3000 21 20.7 250 17.6. 2:35 122.00 178 000 181 000 3000 22 20.8 250 17.1. 7:30 125.00 181 000 184 000 3000 23 20.8 250 17.6. 11:00 128.04 184 000 187 000 3000 24 21.1 220 17.1. 14:55 128.04 187 000 190 000 3000 25 20.8 240 20.6. 9:10 134.00 190 000 193 000 3000 26 21.2 240 20.6. 139.28 193 000 196 000 3000 27 21.1 220 20.6. 15:35 144.18 196 000 199 000 3000 28 21.1 220 20.6. 18:50 149.00 199 000 202 000 3000 29 21.2 210 20.6. 21:20 155.00 202 000 205 000 3000 30 20.9 230 21.6. 5:05 158.00 205 000 208 000 3000 31 21.1 240 21.6. 11:50 164.00 208 000 211 000 3000 32 21.0 220 21.6. 16:00 168.48 211 000 214 000 3000 33 21.3 230 21.6. 20:30 173.00 214 000 217 000 3000 34 20.9 240 21.6. 22:30 178.53 217 000 220 000 3000 35 20.8 250 22.6. 3:40 181.56 220 000 223 000 3000 36 20.8 240 22.6. 7:20 185.00 223 000 226 000 3000 37 21.2 240 22.6. 9:35 191.00 226 000 229 000 3000 38 21.0 250 22.6. 12:15 194.00 229 000 232 000 3000 39 21.1 250 22.6. 19:10 199.30 232 000 235 000 3000 40 20.9 230 22.6. 21:00 203.00 235 000 238 000 3000 41 21.1 240 22.6. 23:20 207.41 238 000 241 000 3000 42 20.8 240 23.6. 2:35 211.53 241 000 244 000 3000 43 20.9 240 23.6. 4:35 215.00 244 000 247 000 3000 44 20.9 240 27.6. 7:50 218.00 247 000 250 000 3000 45 20.7 240 27.6. 9:30 221.00 250 000 253 000 3000 46 20.8 400 27.6. 12:35 227.00 253 000 256 000 3000 47 21.1 460 27.6. 15:05 230.00 256 000 259 000 3000 48 21.0 460
64 Drilling water samples Appendix 8.9 Borehole OL-KR37 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity 27.6. 17:15 232.96 259 000 262 000 3000 49 21.0 450 28.6. 1:15 232.96 262 000 265 000 3000 50 21.2 460 28.6. 9:10 wedging 265 000 268 000 3000 51 21.1 420 28.6. 20:24 230.40 268 000 271 000 3000 52 21.0 420 29.6. 1:03 232.00 271 000 274 000 3000 53 20.9 450 29.6. 3:47 232.92 274 000 277 000 3000 54 21.3 440 29.6. 10:50 237.65 277 000 280 000 3000 55 21.0 400 29.6. 12:55 242.00 280 000 283 000 3000 56 21.1 430 30.6. 0:05 245.00 283 000 286 000 3000 57 21.3 450 30.6. 2:40 249.00 286 000 289 000 3000 58 21.2 260 30.6. 6:35 252.00 289 000 292 000 3000 59 410 30.6. 8:10 255.00 292 000 295 000 3000 60 20.8 440 30.6. 10:45 258.44 295 000 298 000 3000 61 20.8 340 30.6. 16:50 263.00 299 000 302 000 3000 62 20.8 420 30.6. 19:58 266.00 302 000 305 000 3000 63 20.7 420 30.6. 22:40 269.00 305 000 308 000 3000 64 21.0 430 1.7. 0:35 275.00 308 000 311 000 3000 65 21.0 430 1.7. 3:10 278.00 311 000 314 000 3000 66 21.2 460 1.7. 7:00 281.00 314 000 317 000 3000 67 21.2 460 1.7. 10:30 284.00 317 000 320 000 3000 68 20.9 430 1.7. 12:30 287.00 320 000 323 000 3000 69 21.1 430 1.7. 14:23 290.00 323 000 326 000 3000 70 21.0 240 1.7. 16:00 293.00 326 000 329 000 3000 71 21.0 250 4.7. 7:30 296.00 329 000 332 000 3000 72 21.2 200 4.7. 299.01 332 000 335 000 3000 73 21.4 240 4.7. 16:42 302.00 335 000 338 000 3000 74 20.8 260 4.7. 19:00 305.00 338 000 341 000 3000 75 21.2 250 4.7. 23:28 309.95 341 000 344 000 3000 76 21.2 250 5.7. 1:07 314.00 344 000 347 000 3000 77 21.1 250 5.7. 3:43 317.00 347 000 350 000 3000 78 21.3 240 5.7. 5:20 320.00 350 000 353 000 3000 79 21.1 260 5.7. 7:35 323.00 353 000 356 000 3000 80 21.2 240 5.7. 11:05 326.00 356 000 359 000 3000 81 21.3 260 5.7. 13:30 329.00 359 000 362 000 3000 82 21.1 270 5.7. 14:30 333.04 362 000 365 000 3000 83 21.1 250 5.7. 16:00 338.00 365 000 368 000 3000 84 21.1 270 5.7. 17:53 341.00 368 000 371 000 3000 85 21.0 270 5.7. 20:30 344.00 371 000 374 000 3000 86 21.2 270 6.7. 0:05 347.00 374 000 377 000 3000 87 21.1 280 6.7. 3:10 377 000 380 000 3000 88 21.2 260 6.7. 350.00 380 000 383 000 3000 89 21.2 280 28.7. 350.00 90 220
65 Drilling water samples Appendix 8.9 Borehole OL-KR37B Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m JJ.g 1 10.8. 10:10 0.00 875 000 878 000 3000 1 24.0 240 11.8. 11:20 2.52 878 000 881 000 3000 2 25.7 240 11.8. 881 000 884 000 3000 3 23.0 210 15.8. 8:40 14.30 893 500 896 500 3000 4 25.1 240 15.8. 16:15 19.53 897 000 900 000 3000 5 22.9 240 15.8. 19:53 22.92 901 000 904 000 3000 6 22.3 250 15.8. 23:20 28.91 904 000 907 000 3000 7 22.3 230 16.8. 3:55 38.15 907 000 910 000 3000 8 21.9 230 16.8. 9:00 44.20 910 000 913 000 3000 9 22.0 250 16.8. 11:00 45.10 913 000 916 000 3000 10 22.1 250
66
67 Returning water samples Appendix 8.10 Borehole OL-KR3 7 Date Time Depth Sample Flushing water Label batch concentration m no no J.tg 1 10.6. 8:20 46.50 1 2 230 13.6. 8:00 55.98 2 210 14.6. 7:55 86.00 3 10 230 16.6. 12:30 104.04 4 18 140 17.6. 7:25 122.00 5 22 220 20.6. 9:30 131.00 6 25 170 21.6. 11:15 158.00 7 30 220 22.6. 9:20 185.00 8 36 210 27.6. 7:50 215.00 9 44 190 28.6. 232,90 10 49 190 29.6. 11:30 236.00 11 54 360 30.6. 7:00 251.00 12 58 360 1.7. 6:35 275.00 13 65 310 4.7. 7:30 293.00 14 71 340 5.7. 7:30 317.00 15 78 230 28.7. 350.00 16 90 250
68
69 Water level in borehole during flush pumping, OL-KR37 Appendix 8.11 Date Time Water flow meter Water level, m Remarks litres 28.7. 16:10 152 937 MP1 converter value 350Hz 28.7. 19:20 157 738 MP1 converter value 350 Hz 29.7. 4:45 173 456 MP1 converter value 350Hz 29.7. 11:30 185 427 MP1 converter value 350Hz 29.7. 16:25 193 000 MP1 converter value 350Hz 30.7. 4:45 213 623 MP1 converter value 350Hz 30.7. 9:20 221 155 3.70 MP1 converter value 350Hz 30.7. 12:15 225 900 MP1 converter value 350Hz 30.7. 14:55 230 385 MP1 converter value 350Hz 31.7. 4:40 253 082 MP1 converter value 350Hz 31.7. 8:45 259 400 5.10 MP1 converter value 350Hz 31.7. 14:15 268 556 MP1 converter value 350Hz 1.8. 4:50 292 455 MP1 converter value 350Hz 1.8. 14:30 307 874 end of pumping 1.8. 14:40 5.30 1.8. 14:50 3.00 1.8. 15:00 2.10 1.8. 15:10 1.70 1.8. 15:20 1.40 1.8. 15:30 1.30 1.8. 16:00 1.00 1.8. 16:30 0.80 1.8. 17:00 0.70 2.8. 9:00 0.70 3.8. 8:00 water flows over head of casing 5.8. 12:30 +0.3 6.8. 10:00 water flows over head of casing Water level is measured from ground surface
70 Water level in borehole during flush pumping, OL-KR37B Appendix 8.11 Date Time Water flow meter Water level, m Remarks litres 19.8. 15:15 568 121 5.20 MP 1 converter value 300 Hz 19.8. 17:30 568 262 22.10 MP 1 converter value 180 Hz 20.8. 6:30 568 881 21.00 MP1 converter value 130Hz 20.8. 8:30 569 106 MP 1 converter value 138 Hz 20.8. 14:30 569 448 MP 1 converter value 182 Hz 21.8. 7:00 571 664 8.30 MP 1 converter value 182 Hz 21.8. 10:25 572 175 MP 1 converter value 182 Hz 21.8. 15:45 573 703 MP 1 converter value 182 Hz 22.8. 5:00 573 803 MP 1 converter value 182 Hz 22.8. 6:15 573 882 21.15 end of pumping 22.8. 6:25 17.05 22.8. 6:35 13.50 22.8. 6:45 10.40 22.8. 6:55 7.85 end of pumping 22.8. 7:05 5.90 22.8. 7:15 4.50 22.8. 7:25 3.50 22.8. 7:35 2.90 22.8. 7:45 2.30 22.8. 7:55 2.00 22.8. 8:05 1.70 Water level is measured from ground surface
Main rock type Minor subdivisions Start End Start End m m m m 39.96 126.37 126.37 138.62 138.62 179.43 179.43 350.00 39.96 40.60 463.06 46.57 46.82 46.90 59.32 59.40 71.48 75.80 81.38 81.60 83.18 83.38 84.40 90.61 98.34 98.63 95.36 98.37 98.70 105.60 113.58 113.58 118.30 118.30 118.38 120.00 120.27 125.00 125.33 166.70 169.41 182.82 197.68 211.09 222.27 Rock type MGN GRAN GRAN GRAN GRAN GRAN TON MGN Description Migmatitic mica gneiss with some granite sections. Amount of granite varies and in many sections is quite high. The main minerals of the mica gneiss are biotite, feldspar group (potassium feldspar and plagioclase) and quartz. n some sections there is pinite. Migmatite contains about 30-50% of granite. Some longer granite sections detailed. Breccia structured section. Granite pegmatite with some mica rich sections. Flame texture in pegmatite. Quarz vein. Granite pegmatite, partly green coloured. Some Sulphides and few small caverns. Some Sulphides. Granite pegmatite with some mica rich sections. Graphite (quite a lot) and Sulphide. Wedging, core begins at the depth of 95.36 m. Sulphide and a few graphite. Granite about 60 %. Granite pegmatite with some mica gneiss sections. Sulphide stripes. Fine grained section, center part slightly green coloured. Sulphide stripes. Reddish brown and gray colourted granite pegmatite and granite with some sections of mica gneiss, restites of mica gneiss. Tonalite, medium grained, gray coloured. Tonalite contains mainly narrow granite/pegmatite sections. Tonalite contains hornblende. Granite pegmatite with mica rich bands and fme grained tonalite sections. Pegmatite contains green coloured mineral. Migmatitic mica gneiss with some granite sections. Amount of granite varies and in many sections is quite high. n some sections there is pinite. Migmatite contains about 30-50% of granite. Some longer granite sections detailed. Section contains several fme grained section. Soine sections have slightly green coloured center part. Some sections contains garnet. Section contains several fme grained section. Some sections have slightly green coloured center part. Some sections contains garnet. 1-C 0 g l... (') f:l) - Cll (').S. '-.).6> "d [?0 -N -...)
212.43 213.02 231.00 234.09 GRAN 246.02 246.34 251.27 251.96 259.82 260.42 277.62 277.72 286.14 286.45 296.59 298.58 309.42 309.91 223.50 350.00 326.88 334.20 335.15 335.52 341.94 342.61 Section of quartz, contains felspar too. Pegmatite. Quartz and also feldspar, section partly green coloured. Fine grained section, center part slightly grayish green coloured. Section contains small garnets. Fine grained section, center part slightly grayish green coloured. Quartz vein. Fine grained section, center part light gray coloured. Seection contains small garnets. Granite and pegmatite with restites of mica gneiss. Fine grained section. Amount of granite is quite high. Sulphide occurs occasionally as sripes and grains. Fine grained section. Fine grained section, center part light gray coloured and contains small garnets. g ::r... (") Cll (") 0 -...,J -...) N i [ $<'?0... N
Main rock type Minor subdivisions Start End Start End m m m m 2.17 45.10 24.56 32.62 32.74 39.96 45.10 Rock type MGN Description Migmatitic mica gneiss with some granite sections. Amount of granite varies and in many sections is quite high. The main minerals of the mica gneiss are biotite, feldspar group (potassium feldspar and plagioclase) and quartz. n some sections there is pinite. n many sections there occurs sulphides as stripes and grains. Amount of granite varies about 30-50%. Some spharelite grains. Perthite. GRAN Granite pegmatit_with so1n- mic gneiss a!j.d mia rich sections. --- g ::r... (j e. ft Cl} (j ::t "0. 0 -...) to -...l VJ "0 [ 00 -N
74
75 Degree of weathering, OL-KR37 Appendix 8.13 Start End Weathering degree Remarks 39.96 41.68 Rp1 41.68 56.40 RpO 56.40 57.50 Rp1 57.50 59.70 Rp0-1 59.70 63.12 RpO 63.12 66.93 Rp1 66.93 71.34 RpO 71.34 78.15 Rp0-1 Pegmatite partly green coloured. 78.15 97.56 RpO 97.56 99.37 RpO(Rp1) 99.37 123.38 RpO 123.38 124.00 Rp0-1 124.00 276.22 RpO 276.22 278.21 Rp0-1 278.21 350.00 RpO
76 Degree of weathering, OL-KR37B Appendix 8.13 Start End Weathering degree Remarks 2.17 10.41 Rp1 10.41 14.66 RpO 14.66 15.56 Rp0-1 15.56 17.05 Rp2(Rp3) 17.05 17.30 Rp0-1 17.30 22.06 RpO 22.06 23.43 Rp0-1 23.43 25.25 Rp2 25.25 25.77 Rpl 25.77 27.52 RpO 27.52 45.10 Rp0-1
77 Foliation, OL-KR37 Appendix 8.14 Borehole section Rock Foliation Degree of Dip DiP Remarks Start (m) End(m). type angle ( 0 ) foliation direction ( 0 ) (0) 39.96 126.37 MGN Migmatitic mica gneiss with granite sections. Gneiss Ll-L2, granite MO-Ll. n several sections there is no clear direction of schistosity/foliation. 52.25 MGN 30 1 170 85 61.15 MGN 30 2 125 65 66.20 MGN 50 2 120 40 70.90 MGN 60 2 135 30 78.10 MGN 55 2 145 55 83.20 MGN 45 2 125 40 93.65 MGN 55 2 155 35 104.35 MGN 60 1 150 35 108.70 MGN 45 2 130 40 121.15 MGN 55 2 140 50 126.37 138.62 GRAN Granite pegmatite and granite with some restites of mica gneiss. MO (ML L1-2) 138.62 179.43 TON Tonalite with granite/pegmatite sections, L1, MO. 148.50 TON 70 1 185 60 160.60 TON 65 1 160 65 164.55 TON 80 1 185 50 173.05 TON 70 1 175 50 179.43 200.75 MGN Migmatitic mica gneiss with granite sections. Gneiss L 1-L2, granite MO-L 1. n several sections there is no clear direction of hitm:itvv/fn 11tinn 180.20 MGN 60 2 160 65 187.40 MGN 60 2 150 55 200.75 350.00 MGN Migmatitic mica gneiss. Mostly there is no clear direction of schistositv/foliation. 219.20 MGN 60 2 135 40 222.60 MGN 50 2 120 10 237.15 MGN 50 2 45 15 243.45 MGN 60 2 140 30 259.80 MGN 55 2 140 40 267.95 MGN 45 1 40 10 282.75 MGN 40 2 85 15 287.50 MGN 55 2 135 15 296.20 MGN 60 2 135 35 312.55 MGN 30 2 85 40 323.20 MGN 55 2 120 45 341.10 MGN 55 2 130 30
78 Foliation, OL-KR37B Appendix 8.14 Borehole section Rock Foliation Degree of Dip Dip Remarks Start (m) End(m) type angle ( 0 ) foliation direction ( 0 ) (0) 2.17 39.69 MGN Migmatitic mica gneiss with granite sections. Gneiss L 1-L2, granite MO-L 1. n several sections there is no clear direction of schistosity/foliation. 6.55 MGN 50 2 130 35 13.00 MGN 60 1 160 45 27.50 MGN 55 2 165 65 38.50 MGN 55 2 160 60 39.69 45.10 GRAN Granite pegmatite with some mica gneiss, MO (M1 L1-2)
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction e) dip dip m m (0) (0) dir.( 0 ' (0) 1 39.99 fisl 15 108 86 107 86 2 40.03 fi 35 3 40.28 fi 30 254 54 251 56 4 40.39 grfi 20 5 40.54 fi 25 104 69 104 69 6 40.60 fisl 30 7 40.69 fi 65 165 65 164 67 8 40.96 fi 30 9 41.07 fi 30 117 64 117 65 10 41.11 fi 55 225 63 223 65 11 41.16 fi 45 126 43 127 44 12 41.29 fi 60 188 68 187 71 13 41.42 fi 55 14 41.46 fi 30 127 66 127 67 15 41.52 fi 60 196 78 195 81 16 41.58 fi 60 147 29 149 31 17' 41.60 fi 55 240 62 238 64 18 42.03 fi 70 194 66 193 69 19 42.27 fi 65 198 68 196 71 20 42.66 fi 70 186 28 185 31 21 42.84 fi 50 120 24 124 25 22 43.16 ti 50 23 43.23 fi 55 24 43.42 fi 50 25 43.56 fi 60 168 66 167 68 26 43.70 fi 60 204 70 202 73 27 43.79 fi 25 90 43 91 42 28 43.94 fi 25 29 44.01 fi 55 158 56 158 58 30 44.07 fi 40 31 44.20 fi 50 32 44.23 fi 70 182 29 182 32 33 44.73 fi 50 34 44.85 ti 65 162 30 163 32 35 45.02 fi 70 192 67 190 70 36 45.27 fi 15 Colour of fracture surface blac dgra, gra blac, lgra blac, gray blac, dgra blac, dgra blac, dgra blac, gtay blac, gray gray gray gray gray blac dgra, gray, lgra gray, lgra whit, lgra blac, lgra blac, lgra lgra, gray, lbro lgra, gray, lbro blac, lbro lbro blac, gray blac, gray, lbro blac, lgra, lbro lbro, whit, gray blac, lbro lbro blac whit dgra, whit dgra,gray lgra, gray, lbro Fracture filling grap carb carb grap grap, carb carb carb carb carb carb carb carb carb, ea rh carb, carb, carb, carb,, grap carb carb mea Thickness Fracture Fracture of filled shape hness fracture, mm smoo smoo 1 0.5 smoo smoo 0.5 0.5 1 0.5 smoo 0.5 plan 0.5 0.5 1 Remarks also fisl, splitted dir. oflineation 125 degr. splitted, partly partly partly partly, splitted,, splitted -- c 0 '"1') Jll 0 t""'...:1 g 0. :;<?0... V...:1 \0
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction (0) dip dip m m (0) (0) dir.( 0 (0) 37 45.33 fi 70 144 37 145 39 38 45.49 ti 30 39 45.61 fi 70 191 65 189 68 40 45.61 fi 70 41 45.67 fi 70 192 67 190 70 42 45.77 fi 60 201 69 199 72 43 45.81 fi 40 262 38 257 39 44 45.84 fi 50 45 45.92 fi 45 46 46.21 fi 55 241 42 237 44 47 46.39 fi 60 192 16 191 19 48 46.46 fi 60 190 76 188 79 49 46.64 fi 60 134 19 139 20 50 46.97 fi 15 51 47.38 fi 65 171 22 172 24 52 47.56 fi 50 198 85 196 88 53' 47.71 fi 55 54 47.73 fi 65 55 47.94 fi 55 190 14 189 17 56 49.32 fi 60 157 62 156 64 57 49.53 fi 60 58 49.58 fi 60 59 49.88 fi 75 182 59 181 62 60 49.90 fi 75 172 44 171 47 61 50.30 ti 45 181 75 180 78 62 50.57 ti 60 63 50.95 fi 30 64 51.01 fi 75 178 32 178 35 65 51.83 fi 60 66 52.50 fi 40 67 52.64 fi 40 78 22 83 21 68 53.13 fi 40 265 50 261 51 69 53.82 fi 50 236 60 233 62 70 54.33 fi 50 262 38 257 39 71 54.38 fi 65 72 54.85 fi 35 72 --- 14 81 13 -- Colour of fracture surface ggre gray, whit gray, whit gray, whit blac, gray, whit gray, whit gray, whit gray, whit gray, lgra blac, gray blac, gray blac, gray blac blac, dgra, lbro blac, lbro blac, lbro blac, brow blac, gray gray gray, lbro gray, whit, lbro gray, lbro blac, gray, lbro black dgra, lbro gray gray, lbro gray, lbro gray blac, lbro blac, gray, lbro dgra, whit lgra, lbro, blac, Fracture filling carb carb carb carb mica carb carb, carb carb, carb, kaol Thickness Fracture of filled shape fracture, mm 0.5 plan plan 0.5 plan Fracture hness Remarks splitted c 0 1-+) J'l 0 -...1 [ >('?0... Vl 00 0
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction CO) dip dip m m CO) CO) dir.( 0 '1 (0) 73 55.01 ti 40 74 55.30 fi 55 248 24 242 26 75 55.31 fi 40 76 55.68 fi 70 206 59 204 62 77 55.75 fi 30 78 55.87 ti 70 79 56.23 fisl 30 274 68 271 69 80 56.27 fisl 65 242 49 239 51 81 56.28 fi 25 278 64 275 64 82 56.31 fi 70 83 56.33 fisl 30 268 60 265 61 84 56.39 fisl 65 232 52 229 54 85 56.43 fi 30 82 29 85 28 86 56.43 fisl 30 228 51 225 53 87 56.52 fi 60 183 72 181 75 88 56.54 fi 80 89' 56.62 fi 15 314 54 310 53 90 56.70 fisl 80 211 42 209 45 91 56.74 fisl 75 92 56.74 58.44 93 58.44 fi 20 94 58.61 ti 70 95 58.78 fisl 55 96 58.82 fi 50 110 13 120 13 97 58.89 fi 40 268 40 263 41 98 58.94 fi 40 100 27 104 27 99 58.97 fi 45 100 59.17 fi 35 101 59.44 fi 25 287 57 283 57 102 59.52 ti 25 103 59.63 ti 45 104 60.13 fi 40 176 87 174 90 105 60.29 ti 45 106 61.05 fi 40 166 89 344 89 ----- L_ -- Colour of Fracture Thickness fracture filling of filled surface fracture, mm blac, lbro lbro gray, lbro lgra carb, carb blac, gray blac, gray blac, lgre whit 1 blac, gray blac, gray gray, lbro blac, gray blac, gray blac blac, whit quar 7 blac blac whit 1 blac, gray lgra blac, gray lgra lgra blac, lgre blac, gray gray, lbro gray carb carb, carb, carb, carb Fracture shape Fracture hness smoo smoo smoo smoo smoo Remarks, splitted, splitted, splitted partly splitted dir. of lineation 150 degr. dir. oflineation 145 degr. cavern, and crystals, splitted dir. of lineation 145 degr. core sample crushed, core barrel problem and fractured rock, impossible to identify fractures splitted t:: 0..., Jll 0 -...l ;g g 0.. :;<?0 -Vl 00 -
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction (0) dip dip m m (0) CO) dir._e i'1 107 61.54 fi 70 108 61.73 fi 60 150 58 149 60 109 61.97 fi 15 110 62.41 ti 55 111 62.41 ti 35 112 62.43 fi 35 122 52 122 53 113 63.04 fi 50 132 41 133 42 114 63.15 fi 40 115 63.22 ti 30 116 63.32 fi 40 117 63.37 fi 35 6 81 4 78 118 63.39 fi 50 122 41 123 42 119 63.54 fi 45 120 63.57 fi 35 121 63.78 fi 55 122 63.87 fi 50 126 36 128 37 123 63.96 fi 55 124 64.03 fi 25 125 64.11 fi 40 108 32 111 32 126 64.19 fi 40 127 64.23 fi 40 128 64.26 fi 65 206 64 204 67 129 64.39 ti 25 130 64.48 fi 65 218 47 215 50 131 64.51 fi 70 132 64.52 fi 25 133 64.59 ti 40 134 64.68 fi 50 171 73 170 76 135 64.73 fi 60 148 53 148 55 136 64.79 fi 40 137 64.81 clfi 10 276 88 274 89 138 64.86 fisl 10 277 83 275 83 139 65.04 fi 60 140 65.14 fi 15 141 65.23 ti 60 171 73 170 76 142 65.26 ti 60 Colour of Fracture Thickness fracture filling of filled surface fracture, mm whit 1 dgra, lbro blac, lgra, lbro carb, blac, gray, lbro whit blac carb whit dgra, lgra carb whit carb 0.5 blac blac, gray, whit carb 0.5 whit whit kaol whit whit blac, lgra carb, 0.5 blac bhic dgra, lbro blac, gray blac, gray lgra carb gray carb gray gray carb 0.5 blac,gray blac, gray gray carb lgre Fracture shape trre Fracture hness smoo smoo Remarks also fisl t""'..., 0 Cil 0 -...) > "'=' "'=' g 0.. ;;:('?0 -Vl 00 N
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction e) dip dip m m CO) (0) dir.co' (0) 143 65.40 fi 60 159 20 161 22 144 65.52 fi 40 145 65.64 ti 65 146 65.67 fi 55 147 65.97 fi 45 112 25 116 25 148 66.08 fi 50 149 66.21 fi 50 119 38 121 39 150 66.46 fi 45 239 71 237 73 151 66.51 fi 65 204 19 201 22 152 66.70 fi 65 159 32 160 34 153 66.88 fi 40 29 7 35 4 154 66.95 ti 15 155 67.93 ti 85 156 68.65 fi 30 157 69.15 fi 50 158 69.59 fi 55 138 26 141 28 159 69.77 ti 55 167 66 166 68 160 69.92 fi 50 161 70.69 fi 45 121 37 123 38 162 70.90 ti 60 137 28 140 30 163 70.93 fi 55 131 35 133 36 164 71.12 fi 40 165 71.46 ti 65 164 63 163 65 166 71.62 ti 35 167 72.06 fi 20 252 83 250 85 168 72.32 fi 20 259 81 257 82 169 72.40 fi 5 275 84 273 85 170 73.14 fi 40 114 47 115 47 171 73.24 ti 35 89 32 92 31 172 73.35 fi 15 274 83 272 84 173 73.74 fi 20 98 48 99 48 174 74.47 fi 15 287 64 284 64 175 74.57 fi 25 278 61 275 61 176 74.61 fi 25 177 75.79 fi 45 139 56 139 58 178 75.95 fi 40 Colour of Fracture Thickness fracture filling of filled surface fracture, mm gray carb, whit dgra,gray carb 0.5 dgra, lgra carb gray carb, gray, lbro carb, blac, gray, lbro carb, gray carb dgra gray, lbro carb, 0.5 lgra, lbro, blac gray, whit gray dgra blac, lgra, lbro gray gray, lbro blac, lgra, ggre gray, lgre blac, lgre whit blac, lgre, lgra lgra, lbro whit, blac, lgre lgre, blac, lgra lgre whit dgra, lbro carb, kaol carb carb, carb carb, mica, chlo carb, carb kaol Fracture shape plan Fracture hness smoo smoo Remarks, splitted splitted! --- t. 0 H) J,Jil 0 t""4...,] ;g g_ ;;:<?0 -V 00 V.)
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction CO) dip dip m m (0) (0) dir.( 0 ' CO) 179 76.19 ti 45 238 72 236 74 180 76.31 fi 15 17 61 15 58 181 76.96 ti 15 182 77.20 ti 30 183 77.28 fi 15 184 77.31 fi 35 185 77.40 fisl 15 186 77.50 fi 20 187 77.51 ti 65 188 77.62 fi 70 205 74 203 77 189 77.70 fi 20 142 87 140 89 190 77.98 fi 55 147 58 147 60 191 78.07 fi 55 146 55 146 57 192 78.40 ti 50 122 36 124 37 193 79.07 fi 30 82 33 85 32 194 80.86 fisl 40 117 53 118 54 195 80.90 fi 20 196 83.22 fi 45 125 42 127 43 197 85.40 fi 60 236 54 233 56 198 86.94 ti 60 199 89.49 fisl 55 238 46 235 48 200 90.68 fi 50 201 93.62 fi 65 156 35 158 37 202 93.70 fi 55 203 94.03 ti 50 127 46 129 47 204 94.81 fi 70 168 27 170 29 205 95.20 fisl 55 147 24 151 25 206 95.21 fisl 60 214 9 211 11 207 96.03 fi 35 208 97.01 fi 35 21 82 21 80 209 97.04 fi 50 133 46 135 47 210 97.96 fi 50 193 80 193 82 211 98.20 fi 55 183 80 183 82 212 98.26 ti 50 213 98.36 fi 55 137 24 141 25 Colour of Fracture Thickness fracture filling of filled surface fracture, mm whit, lbro kaol, black, gray carb, lgre, lbro blac, whit carb,, grap 10 blac lgra, blac gray, blac blac, gray, lbro blac, gray, lbro carb, carb, grap, grap blac, gray, lbro carb, 0.5 blac, gray, whit carb,, grap 1 blac blac, lbro blac, lgra m1ca blsc, lgre blac, lbro lgra, lbro blac gray, lgra blac, gray blac, gray gray blac, gray, whit blac, gray, lbro dgra, lbro gray, lbro gray, blac mica carb kaol grap Fracture shape plan plan plan plan Fracture hness smoo smoo smoo smoo smoo smoo smoo Remarks, splitted not picked up, 10 mm carb filling between slickenside surfaces, not picked up not picked up also grfi slightly direction of lineation 115 degr. direction of lineation 35 degr. direction of lineation 35 degr. t: 0..., C/l 0 t"" -...J > "d "d g 0.. $:('?0 -V 00
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction CO) dip dip m m CO) (0) dir.( 0 ' (0) 214 98.56 ti 40 215 98.72 fi 75 216 98.77 99.1 m 217 98.83 fi 35 218 98.87 fi 50 141 48 143 49 219 98.91 fi 60 220 99.02 fi 45 221 99.13 fi 35 107 43 110 43 222 99.20 fi 50 223 99.24 grfi 60 224 99.26 fi 70 172 29 174 31 225 100.11 ti 60 206 70 206 72 226 101.98 ti 40 102 41 105 41 227 103.35 fi 30 228 103.61 fi 35 229 103.87 ti 50 106 17 113 17 230 w w 231 96.12 fi 40 232 96.23 fi 55 233 97.09 fi 40 234 97.11 fi 55 235 98.06 fi 50 236 98.33 fi 40 237 98.40 grfi 45 238 98.51 fi 50 239 98.63 ti 40 240 98.70 fi 60 241 98.84 99.12 242 98.84 ti 50 243 98.94 ti 40 244 98.98 fi 45 245 99.01 fi 60 246 99.09 fi 50 247 99.20 fi 50 248 99.35 fi 55 249 99.37 fi 60 Colour of Fracture Thickness fracture filling of filled surface fracture, mm blac m blac gray carb blac blac gray lbro 1 gray, lbro 3 gray lgra whit kaol w w lgra carb lgra carb whit kaol gray 1 blac, gray blac blac, gray, lbro, grap 1.5 blac, gray carb, grap gray gray dgra dgra blac lgra, lbro Fracture shape m w Fracture hness m w Remarks micro fractures, wedging, core begin at 95.36 m micro fractures c 0 Sll 0 \ ---l ;g g 0.. >('?0 -V 00 V
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction CO) dip dip m m (0) (0) dir.( 0 ' e) 250 100.17 ti 60 251 100.89 ti 65 162 20 165 22 252 101.99 ti 60 208 72 208 74 253 103.73 fi 30 48 30 50 28 254 103.93 ti 45 182 85 182 87 255 105.15 ti 35 256 106.17 fi 75 175 31 177 33 257 106.94 fi 55 142 50 144 51 258 107.11 ti 65 259 107.43 ti 70 211 52 211 54 260 107.50 ti 60 261 107.50 ti 20 262 107.56 ti 70 263 108.02 fi 60 153 45 155 47 264 110.10 ti 30 265, 110.28 ti 60 15 197 2 266 110.32 fi 60 267 110.88 ti 15 268 112.42 fi 60 163 17 167 19 269 112.56 ti 50 270 112.64 ti 75 204 56 204 58 271 114.15 fi 35 117 55 119 55 272 114.30 fi 60 147 40 149 41 273 114.86 ti 15 274 114.90 fi 90 202 43 202 45 275 116.59 ti 50 276 116.62 fi 55 132 41 134 42 277 117.37 ti 40 278 117.73 fi 50 279 117.78 fi 60 280 117.94 fi 60 281 118.36 fi 50 148 64 149 65 282 118.52 fi 50 283 118.69 fisl 45 142 68 143 69 284 118.76 ti 0 285 118.79 ti 60 Colour of Fracture Thickness fracture filling of filled surface fracture, mm gray, whit whit gray, lbro whit whit, lbro dgra, whit, lbro gray, whit lbro, whit, gray gray, whit whit lgra gray blac gray, lbro lgra, lbro whit blac kaol kaol kaol kaol, kaol, carb, kaol carb carb carb, carb, grap Fracture shape Fracture hness plan 161 Remarks, splitted, direction of lineation 35 degr c l4 0 J'1 0 -...) > "tj "tj g 0..!><'?0 -V. 00 0\
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction e) dip dip m m (0) (0) dir.e) _COl 286 118.87 grfi 60 154 52 155 54 287 119.03 fi 65 167 24 170 26 288 119.52 fi 50 289 119.93 fi 50 147 68 148 69 290 120.48 fi 65 147 34 150 35 291 121.26 ti 55 141 53 143 54 292 121.54 fi 40 143 56 144 57 293 122.33 ti 55 294 123.32 fi 55 31 136 211 46 295 123.35 fi 55 296 123.36 fi 55 297 123.42 fi 65 298 123.46 fi 55 299 123.50 fisl 45 126 45 128 46 300 123.51 fi 60 144 46 146 47 301 123.53 fi 60 302 123.55 fi 50 303 123.57 fi 35 73 19 79 18 304 123.70 ti 65 305 123.72 fi 65 306 123.77 ti 60 307 123.79 fi 60 308 123.83 clfi 60 309 123.97 fi 55 310 124.31 fi 80 311 124.68 fi 40 312 124.84 fi 40 313 124.97 fi 50 314 125.02 fi 60 315 125.07 fi 50 316 125.12 fi 60 317 125.25 fi 80 318 125.85 fi 50 319 125.87 fi 70 320 125.92 ti 75 321 126.02 fi 60 Colour of Fracture Thickness fracture filling of filled surface fracture, mm blac 2 dgra, lbro gray, whit, lbro kaol, gray, whit, lbro kaol, fray, lbro gray, lbro whit carb 0.5 whit whit whit whit blac, dgra carb gray whit blac blac, gray carb, gray gray lgra lgra, whit lgra, lbro whit blac gray gray blac blac ggre ggre blac, brow gray carb carb, kaol, carb, carb Fracture shape plan plan plan Fracture hness smoo Remarks direction of lineation 30 degr mainly partly,, splitted c 0 M) Jll 0 -...l > :g g 0.. 90... V 00 -...l
' Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction CO) dip dip m m (0) CO) dir.co' (0) 322 126.04 fi 55 323 126.33 ti 75 324 126.48 fi 30 325 126.59 ti 60 326 126.85 fi 10 327 127.17 ti 50 328 127.48 fi 40 329 127.85 fi 330 128.08 fi 0 331 128.14 ti 85 332 128.96 ti 40 333 129.07 fi 30 334 131.08 fisl 25 335 131.40 fi 25 336 131.60 fi 40 33 131.73 fi 25 338 132.31 fi 50 339 132.56 ti 50 340 132.75 ti 45 341 133.02 fi 20 342 133.11 fi 20 343 134.09 fi 60 206 24 206 26 344 138.62 fi 85 206 38 206 40 345 138.79 ti 25 64 29 68 27 346 139.26 ti 40 143 73 144 74 347 142.85 ti 35 64 16 71 14 348 147.15 ti 40 162 84 163 86 349 147.26 ti 55 173 71 174 73 350 150.51 ti 75 182 60 183 62 351 168.12 fi 35 352 168.19 ti 30 353 168.23 fi 40 112 40 115 40 354 168.48 ti 35 355 168.64 fi 80 193 30 194 33 356 168.75 ti 65 357 169.21 fi 70 166 54 167 56 Colour of Fracture Thickness fracture filling of filled surface fracture, mm lgra, whit carb whit carb, kaol 0.5 whit, lgre carb, 1 whit kaol lgre lgre, lyel carb 1 lgre, lyel carb 1 blac, lyel grap lgra, lyel 0.5 lgra, gra, whit lye lgra, whit whit lgre, whit blac, dgra blac, dgra lgra, whit gray, lgra blac, gray, lbro blac, gray carb, Fracture shape Fracture hness Remarks locat. inexact, core crushed, core loss partly, splitted, undulating slippy slightly slightly slightly c 0..., Jll 0 -...] f 0.. :;<?0... V 00 00
-- ---- Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction (0) dip dip m m (0) (0) dir.( 0 \ (0) 358 169.79 fi 40 182 88 2 89 359 171.57 ti 40 104 47 107 47 360 171.64 ti 45 123 45 126 46 361 171.71 ti 35 362 171.92 fisl 65 151 56 152 58 363 171.95 fi 70 165 46 167 48 364 172.92 fi 40 365 173.18 fi 45 366 173.53 fi 10 286 68 285 68 367 174.14 fi 55 139 45 141 46 368 174.64 ti 25 67 33 71 31 369 174.72 fi 60 370 175.18 fi 40 111 32 116 32 371 175.31 fi 40 372 175.55 fi 35 92 25 98 24 373 175.74 fi 60 182 74 182 77 374 177.01 ti 50 187 76 187 79 375 179.89 ti 10 376 180.24 fi 60 162 63 163 65 377 180.65 fi 70 173 49 174 51 378 180.69 fi 40 118 17 127 18 379 180.85 fi 65 165 56 166 58 380 180.98 fi 70 175 56 176 59 381 181.90 fi 40 132 59 134 60 382 181.95 fi 40 3 9 358 6 383 181.96 fi 55 141 50 143 52 384 182.38 fi 65 172 64 173 66 385 182.98 ti 45 85 14 96 13 386 183.50 ti 40 238 65 238 67 387 183.80 ti 25 388 183.91 ti 40 389 184.17 fi 60 166 58 167 60 390 184.44 fi 60 169 66 170 68 391 186.14 fi 60 392 186.36 fi 60 139 48 141 50 393 186.92 ------- ti 45 Colour of Fracture Thickness fracture filling of filled surface fracture, mm gray carb blac gray whit blac, whit lgra blac, gray blac, lgra, lbro blac, gray blac, gray blac, gray, lbro gray gray blac, gray lgra whit blac, whit, ggra blac lgra blac whit, lbro gray whit, lbro whit lgra carb carb carb carb, carb carb, kaol kaol, carb, carb, carb kaol, carb Fracture shape plan plan Fracture hness smoo smoo Remarks direction of lineation 20 degrees partly, splitted c f4 0..., 0 t-'4 -...1 i g 0.. $<' 90 -V 00 \0
... Fracture Start End Type Fracture Dip Dip number depth depth angle direction (0) m m (0) (0) 394 187.96 fi 60 150 57 395 188.28 fi 65 163 56 396 189.69 fi 65 152 24 397 189.79 fi 70 168 55 398 190.12 fi 25 399 190.25 ti 0 400 191.75 ti 25 354 24 401 191.81 ti 20 402 193.12 ti 60 403 193.14 fi 45 404 193.21 ti 50 405 193.29 ti 35 406 194.10 fi 0 3 47 407 194.56 ti 40 353 88 408 194.60 fi 60 409 195.30 ti 60 248 47 410 196.03 fisl 45 101 21 411 196.17 clfi 60 412 196.21 ti 70 413 196.33 fi 60 414 196.46 ti 30 415 196.51 fi 55 416 196.55 fi 60 417 196.66 fi 40 418 196.85 ti 35 67 17 419 197.10 fi 70 168 57 420 197.17 ti 50 421 197.18 ti 55 140 50 422 197.96 fi 40 98 33 423 198.57 ti 65 424 199.67 fi 50 128 34 425 200.15 fi 50 426 200.57 fi 65 153 50 427 200.92 ti 65 428 200.96 ti 60 165 63 429 201.15 fi 30 Recalc. Colour of dip dip fracture dir.co' e) surface 152 59 whit 164 58 whit 157 26 blac, gray 169 58 whit, lgra whit 352 21 blac, whit 3 44 lgra, lbro 353 85 whit 246 49 109 21 blac, gray blac, gray whit, dgra whit dgra, whit, lbro whit 76 15 169 60 blac, dgra 142 52 103 33 whit, gray 132 35 gray whit 155 52 blac, whit 166 66 whit, blac - -- -- ----- Fracture Thickness Fracture filling of filled shape fracture, mm kaol kaol carb, kaol carb, plan plan kaol, carb, kaol, carb 1 kaol, plan - ---- --- Fracture hness smoo smoo smoo Remarks undulating, splitted, direction of lineation 35 degrees also grfi and fisl slightly c 0 1-+j 0 J 0 -...:1 > :g g Q.. ><?0 -Vl \0 0
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction (0) dip dip m m (0) (0) dir.(o' CO) 430 202.20 fi 60 197 7 197 10 431 203.00 fi 30 31 77 32 74 432 210.59 ti 45 433 211.10 fi 40 82 14 95 13 434 211.57 fi 35 78 20 87 19 435 212.36 fi 40 62 13 74 11 436 212.48 ti 15 437 212.58 fi 60 155 16 162 19 438 212.73 fi 60 152 12 161 14 439 212.78 ti 25 440 212.95 fi 40 103 20 112 20 441 213.04 ti 70 158 26 162 29 442 213.21 fi 50 123 11 138 12 443 213.36 fi 40 444 213.71 ti 30 445 214.03 fi 40 108 32 113 32 446 214.05 fi 50 447 214.08 fi 45 448 214.82 ti 40 449 214.86 fi 50 117 5 147 6 450 214.99 ti 50 192 80 192 83 451 215.52 fi 50 262 16 253 18 452 215.57 fi 45 275 26 269 27 453 216.10 fi 50 454 216.18 ti 60 133 45 136 47 455 216.21 clfi 55 138 48 141 50 456 216.24 ti 55 457 216.27 fi 50 135 21 142 23 458 216.29 ti 50 459 216.36 fi 55 131 15 142 17 460 216.44 fi 60 135 21 142 23 461 216.48 fi 35 86 23 94 22 462 216.53 ti 50 463 216.62 ti 60 464 217.20 ti 35 152 86 152 88 465 218.76 fi 55 Colour of Fracture Thickness fracture filling of filled surface fracture, mm blac, gree chlo lbro blac, lgra blac, lgra gray carb carb carb whit carb 0.5 gray, lgra carb 0.5 lgra, lbro whit whit whit whit whit carb, kaol kaol kaol lgra, whit, lbro carb, 0.5 lgra whit, lbro whit carb, kaol kaol whit kaol, carb 1.5 whit, lgra kaol whit, lgra carb, kaol 0.5 whit kaol, whit whit Fracture shape plan plan plan Fracture hness smoo Remarks, partly slightly partly ra 0 1-+).,Cil 0 @...:! 8. :;<'?0,_. V,_. \0
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction CO) dip dip m m CO) (0) dir.co) (0) 466 218.81 fi 50 118 27 125 28 467 219.49 ti 60 468 220.43 fi 40 469 220.52 fi 20 470 223.56 ti 55 146 49 148 51 471 223.58 ti 55 472 223.61 ti 55 473 223.88 fi 25 110 57 112 57 474 224.99 fi 65 151 34 154 36 475 226.41 fi 45 280 6 257 7 476 226.63 fi 65 148 40 150 42 477 226.66 fi 60 135 20 141 21 478 226.78 fi 70 479 226.82 fi 55 139 20 145 22 480 226.83 ti 60 481 226.87 ti 60 482 227.08 ti 60 483 227.86 fi 35 348 82 348 80 484 229.45 ti 15 485 229.47 fi 25 342 78 341 76 486 229.58 ti 35 487 230.10 ti 60 142 25 146 27 488 231.03 fi 60 156 23 159 25 489 232.83 fi 65 236 69 235 71 490 491 229.49 ti 15 492 229.63 fi 40 493 230.10 ti 50 494 230.91 fi 60 495 232.58 ti 40 151 82 151 84 496 232.89 fi 60 238 34 235 36 497 233.62 ti 50 498 233.64 ti 60 499 233.83 ti 50 500 233.89 ti 55 501 234.09 ti 60 136 24 140 25 Colour of Fracture Thickness fracture filling of filled surface fracture, mm whit, gray kaol, whit whit kaol kaol blac, whit, lbr kaol, gray, whit carb, kaol ggra whit, gray whit whit, gray kaol 0.5 gray gray whit lgra, blac lgra whit lbro, blac carb carb kaol mica carb kaol mica Fracture shape Fracture hness Remarks wedging, core begin at 229.27 m spliutted t:..., 0 vfll 0 r...:1 "0 (') ::s 0.. ;;<!X> -Ul \0 N
Fracture Start End Type Fracture Dip Dip number depth depth angle direction (0) m m (0) (0) 502 234.50 ti 60 184 7 503 234.51 ti 50 504 235.00 fi 60 183 10 505 235.27 fi 35 152 73 506 235.68 fi 50 151 66 507 235.78 ti 5 508 236.65 fi 40 152 509 238.11 ti 60 75 510 246.15 ti 45 178 82 511 246.56 ti 20 512 250.43 fi 50 55 4 513 251.31 ti 55 136 23 514 251.85 ti 50 93 5 515 252.14 ti 40 355 11 516 259.05 ti 45 169 81 517 260.31 ti 40 518 260.62 ti 40 150 80 519 264.56 fi 50 188 3 520 266.93 fi 40 521 268.94 fi 55 142 13 522 269.34 fisl 80 523 269.60 fi 80 183 36 524 270.30 fisl 55 171 6 525 270.80 fi 40 83 14 526 270.89 ti 50 527 270.96 ti 30 54 24 528 271.11 fisl 50 127 34 529 271.17 fi 60 142 21 530 271.83 ti 85 189 46 531 271.88 fi 30 22 17 532 272.11 fi 40 533 272.62 ti 50 534 274.37 fi 40 86 17 535 274.72 fi 40 11 45 536 274.90 fi 40 25 6 537 275.50 _!L_ -- 35 28 13 --- ---- Recalc. Colour of dip dip fracture dir.( 0 '1 (0) surface 187 10 185 13 whit 152 75 gray 151 68 lgra 152 77 lgra 178 85 102 2 whit 141 25 126 5 347 8 169 84 150 82 192 6 gray, whit whit 151 15 whit blac, lgra, lbro 183 39 gray 179 9 blac 95 13 blac, gray 58 22 131 35 blac 148 23 blac 189 49 22 14 blac, gray blac 96 16 blac, lgra, lbro 10 42 gray, lgra, lbro 33 3 dgra, lgra, lbro 31 10 blac,lbro Fracture Thickness Fracture filling of filled shape fracture, mm kaol carb carb plan carb kaol plan carb, kaol plan kaol kaol carb, 1rre carb, carb, carb, 0.5 _jrre -- - -- Fracture hness smoo smoo Remarks splitted, dir. of lineation 5 degrees dir. of lineation 30 degrees dir. oflineation 15 degrees c 0...,,.cn 0 t"" -...) > 't:l 't:l g 0. ><?0 -V \0 w
Fracture Start End Type Fracture Dip Dip Recalc. number depth depth angle direction e) dip dip m m (0) (0) dir.( 0 ' (0) 538 277.35 ti 45 109 24 115 24 539 277.48 fi 50 118 17 127 18 540 277.59 ti 40 541 277.69 fi 25 542 279.48 fi 40 543 280.44 fi 60 142 24 147 26 544 280.58 fi 45 102 9 121 9 545 280.88 fi 25 546 280.93 fi 40 42 13 49 10 547 281.14 fi 40 88 28 93 27 548 281.24 fi 40 96 23 103 23 549 281.88 fi 45 102 19 111 19 550 282.02 fi 50 551 282.05 fi 45 88 11 104 10 552 282.11 fi 40 84 14 96 13 553 282.13 fi 50 554 282.24 fi 35 555 282.33 fi 35 556 282.49 fi 50 123 22 129 23 557 282.91 fi 40 86 14 98 13 558 283.00 fi 40 81 15 92 14 559 283.15 fi 40 108 32 112 32 560 284.56 fi 55 128 21 135 22 561 285.95 fi 50 562 286.17 fi 45 294 14 280 14 563 291.52 fi 45 11 20 9 17 564 291.89 ti 45 565 292.21 fisl 65 158 21 162 24 566 292.81 clfi 35 83 21 90 20 567 293.45 fi 25 57 14 66 12 568 297.58 fi 35 82 19 90 18 569 297.84 fi 40 87 11 103 10 570 299.90 ti 50 103 12 118 12 571 300.33 fi 5 572 300.40 fi 40 99 26 105 26 573 300.53 fi 35 Colour of fracture surface blac, gray dgra, lgra, yell dgra, lbro dgra, lgra lgra, gray, lbro blac b1ac, lgra, lbro dgra, lgra lgra, lbro gray, lbro blac whit, lbro gray, whit blac blac gray gray, lbro gray, whit gray, whit dgra, lbro whit gray, whit, lbro lgra blac, lbro, gray blac, gree whit. lgre, blac whit whit, lbro whit whit whit whit Fracture filling carb carb, carb, carb, carb, kaol, kaol, kaol kaol, carb carb, kaol kaol kaol, kaol kaol Thickness Fracture Fracture of filled shape hness fracture, mm 1 plan 1 plan 1 plan plan plan Remarks partly direction of lineation 35 degrees c f4 0 i ri Jll 0 t"'" -...1 't:l g 0.. ;;('?0 -Vl ':f
Fracture Start End Type Fracture Dip Dip number depth depth angle direction CO) m m COl COl 574 301.62 fi 20 575 301.70 fi 55 134 20 576 303.89 fi 45 103 14 577 304.57 ti 60 143 42 578 308.74 fi 75 193 33 579 309.15 fi 50 113 22 580 309.19 ti 70 581 309.42 ti 60 143 25 582 309.48 ti 40 583 309.51 ti 60 584 309.58 ti 65 585 309.76 ti 70 151 37 586 310.02 ti 55 149 65 587 310.70 fi 45 588 310.75 fi 40 589 335.41 fi 55 243 53 59o' 242.06 ti 60 231 8 591 345.31 ti 50 122 15 Recalc. Colour of Fracture Thickness dip dip fracture filling of filled dire' _CO) surface fracture, mm whit 141 22 whit kaol 115 14 whit kaol 145 44 192 36 whit kaol 120 23 lgra carb 147 27 153 39 149 67 240 55 220 11 133 16 whit whit kaol Fracture shape Fracture hness Remarks t: 0 M-) Cil 0 [""' -...1 \0 V i [... ><?0 -V
Fracture Start End Type Fracture Dip Dip number depth depth angle direction (0) m m (0) (0) 1 2.52 fi 65 2 2.55 fi 65 3 3.04 fi 80 4 3.31 fi 50 5 3.47 fi 25 6 3.54 fi 75 7 3.73 fi 60 8 3.86 fi 35 9 4.12 fi 70 10 4.15 fi 60 11 4.17 fi 55 12 4.20 fi 70 13 4.22 fi 60 14 4.24 fi 60 15 4.26 fi 60 16 4.27 fi 60 17 4.38 fi 65 18 4.43 fi 50 19 4.58 fi 90 20 4.59 fi 80 192 52 21 4.80 fi 50 151 55 22 4.87 fi 60 155 54 23 6.26 ti 60 158 25 24 6.38 ti 55 152 39 25 7.05 fi 50 135 47 26 7.28 fi 65 27 7.29 fi 60 162 22 28 7.86 fi 30 38 20 29 8.33 fi 50 132 16 30 8.47 fi 25 343 81 31 8.84 fi 50 32 8.91 fi 70 33 8.96 fi 60 151 33 34 9.64 fi 35 12 84 35 9.69 fi 40 36 9.87 ti 50 Colour of Fracture Thickness fracture filling of filled surface fracture, mm dgre, whir blac, whit carb blac, whit, brow carb, blac, whit carb whit, lbro carb, 1gra, 1bro carb, 0.5 dgre, lbro, lgre, carb whit kaol whit, blac lgra, dgre carb whit, dgre whit, dgre dgre dgre dgre, lgre carb dgre blac, gray, whit carb gree, blac blac, dgre blac, gray blac, gray, lbro carb, ggre, gray, lbro carb, gray, lbro, lgra, carb gray gray dgra, whit, brow kaol, gray blac, dgre, yell carb, blac, gray, lbro carb, lbro, carb 1 gray, lgra carb blac, gray, lbgra carb gray Fracture shape Fracture hness smoo Remarks, splitted, splitted partly splitted,, t""" 0..., a,.en 0 t""" -...] w > 'tl 'tl g 0..?0 -V \0 0\
Fracture Start End Type Fracture Dip Dip number depth depth angle direction (0) m m COl CO) 37 10.06 10.14 38 10.11 fi 60 39 10.19 grfi 40 82 30 40 10.26 grfi 50 134 39 41 10.40 fi 60 141 35 42 10.79 ti 60 43 10.88 fi 50 151 53 44 11.71 fi 45 45 12.20 fi 50 133 32 46 12.79 ti 50 136 32 47 12.89 ti 40 48 13.29 fi 60 142 35 49 13.40 fi 50 50 13.95 ti 80 51 14.46 fi 20 117 76 52 14.59 fi 70 178 31 53 14.77 fi 40 54 14.77 fi 65 233 31 55 14.83 fi 60 238 39 56 14.96 fi 60 57 14.99 fi 65 180 16 58 15.46 fi 70 163 24 59 15.99 clfi 30 76 25 60 16.00 fi 80 61 16.00 17.05 62 fi 30 63 fi 25 64 fi 25 65 fi 50 66 fi 50 67 fi 40 68 ti 40 69 18.50 fi 30 70 18.74 ti 60 71 18.93 ti 40 Colour of Fracture Thickness fracture filling of filled surface fracture, mm blac, gray blac, dgre blac, gray lgra, lbro carb, lgra, lbro, whit whit carb, 1 lgra, lbro carb, lgra whit 0.5 blac, lbro carb blac, dgre dgre dgre, whit, lbro carb, dgre, blac blac, lgra carb gree, lbro, lgre lbro dgre 7 dgre gray blac blac lgre 1gre lgra lbro, whit, carb Fracture shape plan plan plan plan Fracture hness smoo Remarks micro fractures splitted, partly weathered rock crushed, all fractures impossible to identify ---- - -- c 0..., Jll 0 -..1 tc i g 0..!><'?0 -Vl 1.0 -..1
Fracture Start End Type Fracture Dip Dip Colour of number depth depth angle direction CO) fracture m m (0) (0) surface 72 18.97 fi 25 whit 73 19.03 ti 40 74 19.18 fi 0 blac, lgra 75 19.78 fi 60 gray, lgra 76 19.91 fi 55 gray, lgra 77 20.59 fi 30 whit 78 20.64 fi 70 blac, lgra 79 20.73 ti 65 80 20.74 fi 30 whit 81 20.85 ti 45 82 21.12 ti 55 83 21.14 ti 40 84 21.46 fi 60 whit, lbro 85 22.07 fi 40 gray, lgra, lbro 86 22.11 fi 30 gray, lgra, lbro 87 22.15 fi 50 gray, lgra, lbro 88 23.27 fisl 45 blac 89 23.41 fi 35 blac, lgra 90 23.42 fi 50 blac 91 22.52 clfi 10 blac 92 22.53 fi 60 blac 93 22.55 fi 61 blac 94 22.67 ti 50 95 22.72 fi 55 blac 96 22.72 24.33 97 fi 55 lgra 98 fi 35 dgra 99 fisl 25 blac 100 24.38 25.25 101 24.38 fi 30 whit 102 24.50 fi 35 whit, blac 103 24.57 grfi 40 blac, whit Fracture Thickness Fracture filling of filled shape fracture, mm carb carb 0.5 carb carb 0.5 carb plan carb, carb, carb, grap plan carb 20 carb grap Fracture hness smoo smoo Remarks slightly slightly partly, partly, also grfi and clfi splitted also grfi and fisl, crushed rock not picked up not picked up not picked up crush structured rock crushed, all fractures impossible identyfy densely fractured section, weathered rock, not picked up, main fractures identyfied, shear zone, not picked up, not picked up not picked up c fa. 0 Uf/l "-l to > :g [ ;;;:?0 -V.. \0 00
Fracture Start End Type Fracture Dip Dip Colour of number depth depth angle direction (0) fracture m m CO) CO) surface 104 24.66 fi 60 blac 105 24.70 fi 20 whit, blac 106 24.78 fi 45 blac, whit 107 24.85 fi 30 blac, whit 108 24.95 clfi 45 blac, gray 109 25.07 fi 40 blac, gray 110 25.12 fi 35 blac 111 25.16 fi 80 blac, whit 112 25.22 clfi 20 blac, gray 113 25.29 fisl 20 blac, gray 114 25.42 ti 20 115 25.58 fi 55 blac 116 25.77 fi 55 lbro 117 26.12 fi 70 191 60 gray 118 26.21 fi 55 161 62 lgra 119 26.51 fi 55 171 68 lgra, lbro 120 26.70 fi 50 whit, blac 121 26.80 fi 35 164 82 blac, lgra 122 27.16 fi 50 139 45 lgra, lbro 123 27.40 fi 55 183 78 blac, lbro, lgra 124 27.45 fi 80 lbro 125 27.61 fi 65 211 65 blac, lgra 126 27.69 fi 15 273 81 ggra, lbro 127 27.70 fi 50 162 68 blac, whit, lbro 128 27.81 fi 80 blac 129 27.91 fi 65 168 58 blac, lgra 130 27.93 fi 85 gree, whit 131 27.94 fi 75 blac 132 27.97 fi 75 blac 133 27.99 fi 75 blac 134 28.01 fi 75 208 23 blac, lgbro 135 28.04 fi 70 blac 136 28.09 fi 70 blac 137 28.11 fi 70 blac 138 28.36 fi 70 170 51 gray, lbro _112 28.51 fi 60 whit Fracture Thickness Fracture filling of filled shape fracture, mm plan carb carb plan carb,, kaol plan carb carb,, carb carb carb, 1 1 plan Fracture hness smoo smoo smoo Remarks not picked up not picked up not picked up not picked up not picked up not picked up not picked up not picked up not picked up also clfi, partly, -- c 0 Jll 0 -...) Jj "C g p,.?0... V \0 \0
Fracture Start End Type Fracture Dip Dip Colour of number depth depth angle direction (0) fracture m m (0) e) surface 140 28.56 fi 65 176 61 blac, gray 141 28.83 fi 20 blac, lbro 142 28.85 fi 60 174 66 lgra, lbro 143 29.02 fi 50 151 59 dgra, gray, lbro 144 29.20 fi 70 194 30 blac, whit, lbro 145 29.57 fi 40 whit, brow 146 29.64 fi 70 lgra 147 29.79 fi 65 gray, lbro 148 29.91 ti 20 149 29.96 fi 60 blac, lgra 150 30.12 fi 75 203 30 gray, lbro 151 30.24 ti 30 152 30.50 fi 75 177 30 dgra 153 30.49 fi 45 blac, dgra 154 30.58 fi 20 blac, whit 155 30.62 fi 75 205 30 blac, brow 156 30.63 fi 35 blac 157 31.03 fi 45 103 18 blac, lgra, lbro 158 31.19 fi 20 blac 159 31.40 fi 80 blac, gray 160 31.42 fisl 30 124 52 blac, dgre, lbro 161 31.45 fi 55 202 82 blac, whit, lbro 162 31.46 fi 50 183 80 gray, blac, whit 163 31.54 fi 50 194 82 blac, gray 164 31.55 fi 50 blac 165 31.78 fi 60 blac, gray 166 31.82 fi 40 lbro 167 32.00 fi 70 blac, lbro 168 32.12 ti 20 321 17 169 32.28 fi 35 blac, gray, lbro 170 32.34 fi 60 whit 171 32.40 ti 0 172 32.46 fi 35 112 51 whit, ggre 173 32.49 ti 70 174 32.79 fi 55 183 73 whit, ggra 175 33.04 ti 10 Fracture Thickness Fracture filling of filled shape fracture, mm carb, carb, carb, 0.5 carb, 0.5 carb 0.5 carb, plan quar 10 carb carb, chlo carb, 0.5 carb carb carb, carb 1 Fracture hness smoo smoo smoo Remarks caverns and crystals direction of lineation 45 degrees slightly ides 0 1-t) J (/) 0 --..) to > :g g 0.. >(" 90... V... 0
Fracture Start End Type Fracture Dip Dip number depth depth angle direction CO) m m CO) CO) 176 33.09 ti 40 177 33.18 fi 15 178 33.53 fi 25 272 54 179 33.84 ti 55 146 14 180 34.05 fi 50 156 7 181 34.11 fi 5 182 35.25 fi 30 183 37.48 fi 50 136 25 184 37.72 fi 70 185 38.25 ti 50 193 4 186 39.00 fi 40 187 39.24 fi 40 188 39.32 fi 10 67 52 189 39.49 fi 60 165 12 190 39.65 fi 45 113 20 191 39.87 fi 60 203 14 192 40.22 fi 50 134 28 193 40.26 fi 50 194 40.39 fi 50 195 40.47 fi 65 196 40.61 fi 60 225 19 197 40.77 ti 50 198 40.86 fi 55 199 40.95 ti 50 200 41.02 fi 50 201 41.05 ti 60 202 41.62 ti 80 192 35 203 41.69 fi 40 204 41.77 fi 40 120 38 205 42.10 fi 45 145 67 206 42.15 ti 70 207 42.31 fi 10 208 42.71 fi 40 160 17 209 43.00 fi 50 176 72 210 43.26 fi 60 197 72 211 43.59 ti 60 168 60 Colour of fracture surface lgre, lgra whit blac, dgra, lbro blac dgra, lbro brow brow gray, lbro gray, lbro blac, gray, lbro blac, lbro, lgra lgra lgra, lbro blac, lbro blac blac, lgra, lbro blac dgre,gray gray, lbro gree, lgra blac ggra, whit gray, dbro lgra, whit, lbro gray, whit, blac blac, lgra, lbro gray Fracture filling carb kaol carb carb,, carb carb kaol mica, carb, carb, Thickness Fracture Fracture of filled shape hness fracture, mm plan plan plan i,rre 1.5 Remarks splitted partly,! undulating, splitted, mainly t'-4 ra 0..., J Jll 0 t'-4 -...) g p,. ;;<?0,_. Vl,_. 0,_.
Fracture Start End Type Fracture Dip Dip number depth depth angle direction CO) m m (0) (0) 212 43.95 fi 50 213 44.18 ti 80 186 46 214 44.59 fi 55 150 56 215 44.79 fi 35 216 44.81 fi 60 143 39 217 44.85 fi 60 148 30 218 44.94 fi 70 159 36 219 45.01 fi 60 132 26 Colour of Fracture Thickness Fracture fracture filling of filled shape surface fracture, mm gray blac, gray, lbro blac blac, gray, lbro plan gray, dgre, lbro plan lbro, dgre, whit gray, dgra Fracture hness Remarks slightly c 0..., Jn 0 -...] t:x1-0 N > :g [ >l' -V.
103 Fracture frequency and RQD, OL-KR37 Appendix 8.16 Start End Break frequency Natural fractures RQD Remarks m m pc/m J_c/m % 39.96 40 1 less than meter 40 41 18 7 82 41 42 13 9 73 42 43 5 4 100 43 44 6 7 84 44 45 4 6 90 45 46 12 11 63 46 47 5 5 93 47 48 6 5 98 48 49 1 0 100 49 50 6 5 95 50 51 4 3 95 51 52 4 2 99 52 53 4 2 100 53 54 3 2 100 54 55 4 3 95 55 56 10 6 99 56 57 15 13 - values inexact, core loss 57 58 - - - values inexact, core loss 58 59 15 7 - values inexact, core loss 59 60 5 4 92 60 61 2 2 100 61 62 5 4 100 62 63 2 3 98 63 64 5 11 51 64 65 19 15 27 65 66 7 9 85 66 67 7 7 88 67 68 2 1 100 68 69 2 1 100 69 70 6 4 100 70 71 5 3 97 71 72 4 3 100 72 73 7 3 92 73 74 11 4 90 74 75 2 3 86 75 76 5 2 100 76 77 5 3 100 77 78 14 9 71 78 79 3 2 93 79 80 3 1 100 80 81 2 2 96 81 82 2 0 100 82 83 2 0 100 83 84 2 1 100 84 85 1 0 100 85 86 2 1 100 86 87 1 1 100 87 88 1 0 100 88 89 3 0 100
104 Fracture frequency and RQD, OL-KR37 Appendix 8.16 Start End Break frequency aturalfractures RQD Remarks m m pc/m pc/m % 89 90 3 1 100 90 91 1 1 100 91 92 3 0 100 92 93 2 0 100 93 94 2 2 92 94 95 2 2 100 95 96 4 2 99 96 97 1 1 100 97 98 4 3 97 98 99 3 8 76 99 100 5 5 87 100 101 3 1 100 101 102 3 1 100 102 103 1 0 100 103 103.97 4 3 100 less than meter 95.36 96 2 0 less than meter 96 97 7 2 100 97 98 3 2 98 98 99 6 9 69 99 100 5 5 89 100 101 3 2 100 101 102 2 1 100 102 103 1 0 100 103 104 3 2 100 104 105 2 0 100 105 106 2 1 100 106 107 2 2 100 107 108 3 5 87 108 109 2 1 100 109 110 2 0 100 110 111 4 4 96 111 112 2 0 100 112 113 3 3 92 113 114 3 0 100 114 115 3 4 96 115 116 2 0 100 116 117 2 2 97 117 118 5 4 95 118 119 3 6 82 119 120 4 3 100 120 121 1 1 100 121 122 3 2 100 122 123 3 1 100 123 124 12 16 62 124 125 3 4 97 125 126 6 7 73 126 127 15 6 96 127 128 20 3 100 values inexact, core loss 128 129 14 3 94 129 130 5 1 100
105 Fracture frequency and RQD, OL-KR37 Appendix 8.16 Start End Break frequency Natural fractures RQD Remarks m m pc/m pc/m % 130 131 2 0 100 131 132 6 4 100 132 133 3 3 100 133 134 3 2 91 134 135 2 1 100 135 136 1 0 100 136 137 2 0 100 137 138 2 0 100 138 139 3 2 100 139 140 2 1 100 140 141 2 0 100 141 142 1 0 100 142 143 3 1 100 143 144 2 0 100 144 145 1 0 100 145 146 1 0 100 146 147 2 0 100 147 148 1 0 100 148 149 5 2 100 149 150 2 0 100 150 151 1 1 100 151 152 2 0 100 152 153 2 0 100 153 154 2 0 100 154 155 2 0 100 155 156 1 0 100 156 157 1 0 100 157 158 1 0 100-158 159 2 0 100 159 160 1 0 100 160 161 3 0 100 161 162 2 0 100 162 163 1 0 100 163 164 2 0 100 164 165 2 0 100 165 166 1 0 100 166 167 3 0 100 167 168 2 0 100 168 169 4 6 89 169 170 4 2 100 170 171 3 0 100 171 172 6 5 83 172 173 2 1 100 173 174 3 2 100 174 175 4 3 91 175 176 8 4 100 176 177 2 0 100 177 178 2 1 100 178 179 2 0 100 179 180 4 1 100
106 Fracture frequency and RQD, OL-KR37 Appendix 8.16 Start End Break frequency Natural fractures RQD Remarks m m pc/m pc/m % 180 181 5 5 96 181 182 5 3 94 182 183 3 2 100 183 184 2 3 100 184 185 2 2 100 185 186 2 0 100 186 187 5 3 100 187 188 2 1 100 188 189 3 1 100 189 190 4 2 90 190 191 2 2 100 191 192 2 2 94 192 193 1 0 100 193 194 3 4 83 194 195 8 3 95 195 196 3 1 100 196 197 9 9 87 197 198 4 4 92 198 199 1 1 100 199 200 4 1 100 200 201 4 4 96 201 202 2 1 100 202 203 1 2 100 203 204 1 0 100 204 205 1 0 100 205 206 1 0 100 206 207 3 0 100 207 208 2 0 100 208 209 2 0 100 209 210 1 0 100 210 211 2 1 100 211 212 2 2 100 212 213 5 6 80 213 214 3 4 96 214 215 2 6 90 215 216 2 2 95 216 217 7 11 48 217 218 2 1 100 218 219 1 2 95 219 220 1 1 100 220 221 2 2 91 221 222 4 0 100 222 223 4 0 100 223 224 2 4 95 224 225 3 1 100 225 226 1 0 100 226 227 4 7 88 227 228 2 2 100 228 229 1 0 100 229 230 2 3 98
107 Fracture frequency and RQD, OL-KR37 Appendix 8 16 Start End Break frequency Natural fractures RQD Remarks m m pc/m pc/m % 230 231 1 1 100 231 232 3 1 100 232 232.9 2 1 less than meter 229.2 230 18 2 less than meter 230 231 3 2 100 231 232 2 0 100 232 233 4 2 100 233 234 1 4 92 234 235 2 3 99 235 236 4 4 90 236 237 1 1 100 237 238 1 0 100 238 239 3 1 100 239 240 2 0 100 240 241 1 0 100 241 242 3 0 100 242 243 2 0 100 243 244 2 0 100 244 245 3 0 100 245 246 3 0 100 246 247 2 2 100 247 248 4 0 100 248 249 2 0 100 249 250 1 0 100 250 251 4 1 100 251 252 2 2 100 252 253 2 1 100 253 254 3 0 100 254 255 1 0 100 255 256 1 0 100 256 257 3 0 100 257 258 3 0 100 258 259 3 0 100 259 260 4 1 100 260 261 2 2 100 261 262 1 0 100 262 263 3 0 100 263 264 1 0 100 264 265 3 1 100 265 266 3 0 100 266 267 2 1 100 267 268 1 0 100 268 269 3 1 100 269 270 2 2 100 270 271 4 4 84 271 272 4 4 89 272 273 2 2 100 273 274 1 0 100 274 275 4 3 100 275 276 3 1 100
108 Fracture frequency and RQD, OL-KR37 Appendix 8.16 Start End Break frequency Natural fractures RQD Remarks m m pc/m pc/m % 276 277 1 0 100 277 278 5 4 90 278 279 2 0 100 279 280 1 1 100 280 281 6 4 95 281 282 3 3 90 282 283 5 9 80 283 284 2 1 100 284 285 2 1 100 285 286 2 1 100 286 287 1 1 100 287 288 2 0 100 288 289 1 0 100 289 290 1 0 100 290 291 2 0 100 291 292 2 2 100 292 293 5 2 100 293 294 4 1 100 294 295 2 0 100 295 296 3 0 100 296 297 2 0 100 297 298 3 2 100 298 299 2 0 100 299 300 2 1 100 300 301 3 3 93 301 302 3 2 92 302 303 4 0 100 303 304 3 1 100 304 305 2 1 100 305 306 2 0 100 306 307 1 0 100 307 308 2 0 100 308 309 1 1 100 309 310 3 7 80 310 311 3 3 95 311 312 1 0 100 312 313 1 0 100 313 314 3 0 100 314 315 1 0 100 315 316 1 0 100 316 317 1 0 100 317 318 3 0 100 318 319 1 0 100 319 320 1 0 100 320 321 3 0 100 321 322 2 0 100 322 323 2 0 100 323 324 4 0 100 324 325 1 0 100 325 326 1 0 100
109 Fracture frequency and RQD, OL-K.R37 Appendix 8.16 Start End Break frequency Natural fractures RQD Remarks m m pc/m pc/m % 326 327 2 0 100 327 328 2 0 100 328 329 1 0 100 329 330 3 0 100 330 331 2 0 100 331 332 2 0 100 332 333 3 0 100 333 334 3 0 100 334 335 3 0 100 335 336 2 1 100 336 337 2 0 100 337 338 1 0 100 338 339 2 0 100 339 340 2 0 100 340 341 2 0 100 341 342 3 0 100 342 343 3 1 100 343 344 2 0 100 344 345 1 0 100 345 346 2 1 100 346 347 4 0 100 347 348 2 0 100 348 349 2 0 100 349 350.00 2 0 100
110 Fracture frequency and RQD, OL-7B Appendix 8.16 Start End Break frequency aturalfractures RQD Remarks m m pc/m _pc/m % 2.17 3 6 2 less than meter 3 4 6 6 93 4 5 15 14 71 5 6 3 0 100 6 7 3 2 100 7 8 4 4 99 8 9 5 5 88 9 10 2 3 95 10 11 6 6 76 11 12 1 1 100 12 13 3 3 90 13 14 3 3 100 14 15 9 7 91 15 16 5 3 99 16 17 20 7 29 values inexact, core loss 17 18 3 0 100 values inexact, slightly core loss 18 19 2 4 93 19 20 5 4 97 20 21 7 5 94 21 22 6 3 98 22 23 8 3 92 23 24 20 9 52 values inexact, core loss 24 25 20 10 12 values inexact, core loss 25 26 16 8 72 26 27 6 5 91 27 28 7 12 77 28 29 5 9 82 29 30 6 7 88 30 31 7 7 85 31 32 10 10 81 32 33 5 8 79 33 34 5 5 86 34 35 2 2 94 35 36 2 1 100 36 37 3 0 100 37 38 5 2 100 38 39 5 1 100 39 40 8 6 92 40 41 4 8 65 41 42 5 5 80 42 43 3 4 95 43 44 4 4 100 44 45 9 6 79 45 45.1 1
111 Fractured zones, core loss, OL-KR37 Appendix 8.17 Start End Class of the Core loss Remarks m m fractured zone m 45.27 45.92 Rilll 56.23 57.50 Rill Because of core loss impossible to identify end of the fractured zone exactly. 56.74 58.44 0.67 Core barrel problem and fractured rock. 63.15 65.23 Rill! 123.32 123.83 Riiii About half of fractures. 127.57 127.99 0.10 Problem with core barrel and fracture almost parallel with core.
112 Fractured zones, core loss, OL-KR37B Appendix 8.17 Start End Class of the Core loss Remarks m m fractured zone m 4.12 4.59 Rilll 16.00 17.05 RiiV 0.40 Weathered rock crushed during drilling. 23.27 25.28 RiiV 23.72 24.33 0.33 Crush structured, fractured rock crushed during drilling. 27.61 28.11 Rill About half of fractures are.
113 Core orientation, OL-KR37 Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m 1 49.90 39.96 56.74 16.78 2 67.90 58.44-3 74.00 - - 4 76.96-77.27 18.83 5 82.15 77.62-6 86.00 - - rejected 7 88.99 - - 8 95.02 - - mark near center, rejected 9 97.96 - - 10 100.97-103.97 26.35 11 104.05 99.37-12 110.04 - - 13 113.01-118.87 19.50 14 119.02 118.87-15 122.00-123.73 4.86 16 131.00 mark near center, rejected 17 137.00 134.09-18 140.00 - - 19 142.95 - - 20 146.00 - - 21 149.01 - - 22 152.00 - - 23 155.00 - - 24 158.00 - - 25 161.00 - - 26 163.97 - - 27 170.01-171.92 37.83 28 173.00 171.92 175.32 3.40 29 178.52 175.33-30 181.56 - - 31 185.01 - - 32 190.97 - - mark near center, rejected 33 194.00-196.22 20.89 34 197.01 196.22-35 206.00 - - 36 208.96 - - 37 212.01 - - 38 218.00 - - 39 221.00 - - 40 224.01 - - 41 227.00 - - 42 229.96-232.90 36.68 43 235.99 mark near center, rejected 44 239.00 231.52-45 242.03 - - 46 245.02 - - 47 247.99-248.69 17.17 48 250.98 248.69-49 253.98 - - 50 257.00 - - 51 260.02-52 262.99 - -
53 266.00 - - 54 269.00 - - 55 275.00 - - 56 278.00 - - 57 280.99 - - 58 284.03 - - 59 292.98-293.45 44.76 60 299.01 293.45-61 305.02 - - 62 307.98 - - 63 310.97 - - mark near center, rejected 64 313.97 - - 65 320.07 - - 66 323.03 - - 67 326.03-68 329.02 - - 69 335.06 - - 70 338.04 - - 71 341.00 - - 72 343.99 - - mark near center, rejected 73 346.99-350.00 56.55 114
115 Core orientation, OL-KR37B Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m 1 10.92 4.60-2 13.98-16.00 11.40 3 20.05 loose core head, drilled twice, rejected 4 28.90 25.77-5 34.90 - - 6 41.09 - - 7 44.07-45.10 19.33
116
! Start End Rock Degree of Foliation Foliation Description E v 1 850 1 850 crc 1 crc 2 Smax depth depth type foliation angle CO) angle CO) of foliation m m a J3 GPa MPa MPa MPa MPa MPa 12.19 12.61 MGN 0-2 50 0 regular 42.93 0.16 4.45 4.03 88.96 80.54 13.79 36.83 37.33 MGN 0-2 20-40 0 regular, (undulating) 37.59 0.19 4.03 4.50 80.54 89.96 10.05 48.87 49.31 MGN 0-2 85-60 0 regular 37.70 0.14 6.97 4.40 139.45 87.96 4.51 78.07 78.40 MGN 2 45-55 0 regular, twisting 45.00 0.11 6.95 4.64 139.05 92.77 15.06 109.39 109.83 MGN 0-2 35-50 0 regular 29.39 0.14 5.11 4.64 102.18 92.77 10.26 137.00 137.49 GRAN 0 0 32.26 0.05 3.83 6.75 76.54 135.04 12.14 144.73 145.14 TON 0-1 70 0 weak 24.68 0.24 5.57 4.23 111.40 84.55 16.13 171.96 172.38 TON 0-1 70 0 weak 39.99 0.31 5.11 5.54 102.18 110.80 11.94 200.15 200.57 MGN 0-1 65 0 regular 39.50 0.14 3.33 5.30 66.52 105.99 9.11 228.74 229.34 MGN 0-2 50-70 0 regular, even reverse 62.01 0.36 6.52 7.97 130.43 159.49 15.52 259.05 259.70 MGN 0-1 65 0 regular, twisting 35.43 0.15 4.41 9.65 88.16 192.95 12.47 289.53 290.02 MGN 0-1 35-55 regular, twisting 34.89 0.11 4.87 5.61 97.37 112.20 13.21 319.43 320.07 MGN 0-1 0 impossibletospecify 57.80 0.33 4.51 7.09 90.16 141.85 8.91 348.38 348.80 MGN 0-1 impossible to specify 36.36 0.35 3.78 8.25 75.54 165.10 14.40 average All 39.68 0.20 5.43 108.59 11.96 average MGN 41.69 0.20 5.50 110.00 11.57 average TON )2.3_±_ 0.28 5.11 102.23 14.04 g -...) s o,.o 0 W::r' e. 0 e:..... 0 Cll 8. -... a... 0 = Cll ft - 8. -...) "0... g 0 Cll -0..,Cil 0 re "0 [... :.><?0 -\!:)
118
119 -- -- - -.. --. -- -------- ----- - - \.-..,._"
120. - -.,;. ;;w. --. f -- ""' -..- ': ( 4
121 v :V - jl'-.. _... -. -. 9... =-.... li!.s: tl.. ---- ----. -.,. --=--- - - -.. _..it' - - - ------- --------- -------... -. '\ _r_ --... - - ----- - -- - -- - ---- - - --- - - ----=-...-.....( -- - - -
122.,..i\f.:. ' --... '.,..._.:.:;:, -- ---- - \ '......A(; --.._--=-----. -- -.....,_ --..-.;-._ -. :., -"'.'f:t (. -.. '.. f--:. ""=---; (-;.,.,...? " _., _, ---"-. - --; '
123,..- - - - - - - - - -, - - -J -,..., ' '.;.J; ' - - ' r::... ---.- -- '. - - -,>JQ;... -... -.-.. t - -. - ',.. ----------... - -. -- - -----.._..._._...-....-- ;j:- :... -- ;f z ; - '.. '. lj.jf...-j1 r...,, - -- ------- -.. -- t\,ll-,k :.:.l."'""'-"'-g"' ll. - -- - - '.,.. --'7 -.y.:; :'J'' ""
124 ""' '..::: :.. -,i.:.$.. '. - -,.,..,...
125. ' ;. - p_ ' tl :... > - - -
... 126 - - -- = - --., ----==--- -- -_,._. ---., '"f' El - - -. r ------------- - :.._- - ------, -,. - fb:m ---- - - l Bll,". '". _'.;,, ---- ---==--:-- --==--- -. '!!' :-;.;. -- -.. ' - --- --- ---.. -- -..... -.- ::- -- -- l J h
127 --- ::.-...,... -... ----- -- "..:6 ".. ; - - ---- -- --=-=-----. t ;,,. -... _ - - --- -,.. '+. -... rp,.,r -. _._ -
128 "" - c....--..-:- - - -,.,;. _i_ - --- --- - - - -...._.., -..:,.r..:}r. - "j J,.. ' ""-- --...w:.;..;. ; D., r..._r.; : -. --. ---- L ' - >:' - ----- y - -_---.. --- o;...--._,. ---- - -:
129. -, -= ---------- - - -- ---..-- - -...).. ;; r..-- --- ----= --- ---- ----.a-.... ' /- -- - - - - -- - --... --.._... - ---- ----.. "' ;:""'. -- Z,.-,-., -,. J._.. " ',. - -... _. : "1'" "' -. t '!4"-:,,... :...,... _. -'...._, -...,).... "'- ' ;..
130 - ------ ---,..,... -......_ -- - ;-).. :,\_::, =- -;..,::.;.;::.,.-:: -. :. :; ": : >(. -:-----.--- --,.f:... '.. -.., '} Y'f:. < '.U.' "(- 6' '.. '1P J l -- -- - ----- - - -..., _,J,#.,, \t.,.., -.., a.....,!.. 211rJ 51'1 -------
131.,. -;;. J " - r.f....,. (..,.-.-..._._
----=-- - 4 - - - -... ', 132.,/ ----- ----------- -- J 11 - -- -,_.._,...,..._. -- --... jt;"' ---:..., : -., ::. -... '.. - - --------------- - - ---...--- - -;:.... - ;:.rr. f-:;;-.,:,; : :;::.:."j>ttiw "s;---=-=-- -,._ :.-v.',... - l.. :::.... -. ). '..... _ -
133
134!. --.!'fl.: ', :... :..1{ :.: - 1.. -::..,.:' : -... "r- ' : :...-...... -. ;... :- F..... ' '... '
135 ' --... --- - ------- - -.......t.'f',.,.,... =: / -:.... -- - -::: ----- - -----..-... --- - -: rj.- ---- --.;,«- " """-:- - - -,t. --- -.... ----- --.,, '...so.:;. '....._:,. '..... -...,.....,... -:"",... -... "'
136 -.. ' ".., t.;1'.'-,.,..,.,. l...., - '
137 ( - - -............ t, ",.,,. r c- ':. ""''" ;.;;..4*...A - <'t
138
139 OL-KR37 29.8.2005
140 -------- --- ------. ' - :... (.,.,.------ -- - -------.. ---------'"'-'---=-:::-- -.... " - ---=-.-c- 11 -..... :.....,... :., ' -- -... -.., i.;
141 Jii. '.&."\o; - -- "' /i!j <W."ir <..... - "c. -. ---:- - ---- - ---- --. - ----- - - - - - ---;-- :;.r- -- --------- -- ---. -- - --- ------- -- :. - '.. - -- - --. -- --- - -.... --- - -. -'\
- -- 142 -- - ---------- -- ----- ---- ------- - -.. l....-...-----.,.. --.. _..,,.. --- --... -.- _, (,. > i4/..- ------ ---- -... - -.......,::j:... ---- -------......- ------- :... -..-/!t-.. ;... '......,..:: _,.....,.,... _ -,_ ---.... :.,.. -;:..,., ':.. 1:t.--i_,. :11"'
. 143,..r_.: -=---,..,.--- --. - -- -...... -... ' m OL-KR37B 29.8.2005... )."'...... ' a.\ " b -------....... "' to...,...,. ;:.... -......:---""' -... - - - - '-7...:. ( ;........,... - - 20cm - --- ---- m OL-KR378 29.8.2005
144-1/A ------- -.r -, -- --- --- -= -..,..,....>; -...------.... -,j,. -... --- ""' -,..t '< " ' "., ' S; m OL-KR37B 29.8.2005