. Working Report 2004-21 Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site.. Pirjo Hella Eveliina Tammisto Henry Ahokas May 2004 POSVA OY FN-27160 OLKLUOTO, FNLAND Tel. +358-2-8372 31 Fax +358-2-8372 3709
CONTRACTOR ORGANSATONS: JP-Fintact Oy J aakonkatu 3 01620 Vantaa ORDERED BY: Posiva Oy 27160 Olkiluoto NUMBER OF THE ORDERS: JP-Fintact Oy: 9546/03/AJH, 9726/03/AJH CONTACT PERSON AT POSV A: Aimo Hautojarvi Posiva Oy CONTRACTORS' CONTACT PERSONS: Henry Ahokas JP-Fintact Oy WORKNG REPORT HYDRAULCALLY CONDUCTVE FRACTURES AND THER PROPERTES N BOREHOLES KR4 AND KR7-KR10 AT OLKLUOTO STE AUTHORS: '/ 7. : Henry Ahokas JP-Fintact Oy --p,(; Pirjo Hella JP-Fintact Oy APPROVED BY Pauli Saksa JP-FintactOy
Working Report 2004-21 Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site Pirjo Hella, Eveliina Tammisto, Henry Ahokas JP-Fintact Oy May 2004 Working Reports contain information on work in progress or pending completion. The conclusions and viewpoints presented in the report are t hose of author{s) and do not necessarily coincide with those of Posiva.
-------------------------- HelHi, P., Tammisto, E. & Ahokas, H. 2004. Hydraulically conductive fractures and their properties in boreholes KR4 and KR7-KR10 at Olkiluoto site. Eurajoki: Posiva Oy. 84 p. Working Report 2004-21. ABSTRACT As part of the program for the final disposal of the nuclear fuel waste, Posiva Oy investigates the prevailing hydrological conditions at the Olkiluoto island. Hydraulic properties of fractures are of interest for the groundwater flow modelling and for planning of grouting and analysis of leakages etc. The detailed flow logging with 0.5 m test interval and made in 1 0 cm steps is used for exact depth determination of hydraulically conductive fractures or fracture zones. Together with borehole wall images flow logging provides possibilities to detect single conductive fractures. The results of flow logging are combined to the fracture data and other rock properties. Boreholes KR4, KR7, KR8, KR9 and KRlO have been selected as pilot holes. The conductive fractures were recognised from the images primarily based on a visible flow traces along the image. n most of the cases of measured flow, no visible flow traces were seen in the image. n these cases the most probable fracture(s) to conduct the flow were picked using the single point resistance measurements as supportive information. n order to be able to analyse the properties of the hydraulically conductive fractures, the fractures in the mineralogical/drilling report corresponding to the ones picked from the borehole wall image were identified. The combination was done based on matching the depth, intersection angle and other fracture properties (reported large aperture or thickness etc.). The results from boreholes KR7 and KR8 were checked also from the core sample. According to the results the hydraulically conductive fractures/zones could be distinguished from the borehole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. Checking results from the core samples is essential in order to reliably correlate the borehole wall fractures to the core sample mappings. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures (T > 10-10 -10-9 m 2 /s) in depth range 0-150 m varies from 1 to 3 in 1 0 m sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. About 20 % of the conductive fractures are within fracture or crushed zones and another 20 % within 1 0 m distance from the zones. Single or groups of few hydraulically conductive fractures occur also on the sparsely fractured intervals. The main new information got in this study is the orientation of the conductive fractures. Keywords: Hydrology, hydraulic conductivity, transmissivity, flow logging, disposal of spent nuclear fuel
HelHi, P. Tammisto, E. & Ahokas, H. 2004. Hydraulisesti johtavat raot ja niiden ominaisuudet kairanrei'issa KR4 and KR7-KR10. Eurajoki: Posiva Oy. 84 s. Tyoraportti 2004-21. TVSTELMA Osana ydinjatteen loppusijoitustutkimusta Posiva Oy selvittaa Olkiluodon saaren hydrologisia olosuhteita. Rakojen hydrauliset ominaisuudet ovat tarkeita mm. pohjavesimallinnuksessa, vuotovesien arvioinnissa, injektoinnin suunnittelussa. 0,5 m:n mittausvalein ja 0,1 m:n syvyysvalein tehdylla yksityiskohtaisella virtausmittauksella voidaan selvittaa vettajohtavoien rakojen ja rakovyohykkeiden tarkka syvyys. Yhdessa reika-tvkuvien kanssa virtausmittaus mahdollistavaa yksittaisten vettajohtavien rakojen tunnistuksen. Tassa tyossa on virtausmittauksen tulokset yhdistetty rako- ja kivilajitietoihin. Kairanreiat KR4, KR 7, KR8 KR9 ja KR1 0 on valittu esimerkkirei'iksi. Reika-tv-kuvista vettajohtavat raot tunnistettiin paaasiassa kuvassa nakyvan virtauksen avulla. Suurimmassa osassa vettajohtavista kohdista kuvasta ei voida havaita nakyvaa virtausta, jolloin kuvasta poimittiin todennakoisin vettajohtava rako hyodyntaen vastusmittaustuloksia. Vettajohtavien rakojen ominaisuuksien analysointia varten kuvasta poimitut raot yhdistettiin kairasydannaytteesta kartoitettuihin rakoihin. Yhdistaminen tehtiin syvyyden, leikkauskulman ja raon ominaisuuksien (raportoitu avoimuus/tiiveys jne.) avulla. Kairanreikien KR7 ja KR8 tulokset tarkistettiin kairasydannaytteesta. Tulosten perusteella vettajohtavat raot/vyohykkeet pystytaan yleensa tunnistamaan reika-tv-kuvista. Vettajohtavien rakojen tunnistamisen helpottamiseksi on seka reika-tvkuvan etta vedenjohtavuustulosten syvyys korjattava vastaamaan naytesyvyytta. Tulosten tarkastaminen kairasydannaytteesta auttaa kuvasta poimittujen ja naytteesta kartoitettujen rakojen yhdistelyssa ja tarkentaa tulosta. Kallion ylaosassa (0-150 m merenpinnasta) vettajohtavia rakoja esiintyy selvasti useammin kuin syvemmalla kalliossa. Kallion ylaosassa vettajohtavia rakoja (T > 10-10 - 10-9 m 2 /s) on noin 1-3 kpl 10 m naytepituudella. Syvemmalla vettajohtavia rakoja on harvemmin, mutta ne esiintyvat usein pienina ryhmina. Noin viidesosa tunnistetuista vettajohtavista raoista sijaitsee rako- ja rikkonaisuusvyohykkeissa, suurin piirtein yhta paljon korkeintaan 10 m etaisyydelhi vyohykkeesta. Yksittaisia vettajohtavia rakoja rai niiden ryhmittymia esiintyy kuitenkin myos vahemman rakoilleessa kalliossa. Tama tyo toi ennen kaikkea uutta tietoa vettajohtavien rakojen suunnista. Avainsanat: Vedenjohtavuus, virtausmittaus, ydinjatteen loppusijoitus, hydrologia
1 CONTENTS Abstract Tiivistelma Preface... 3 1 ntroduction... 5 2 Background.............. 7 3 Data... 9 4 Recognition of the hydraulically conductive fractures... 13 4.1 Method........ 13 4.2 Results... 18 4.3 Remarks on the study method... 21 5 Checking results from the core samples... 25 6 Properties of hydraulically conductive fractures... 27 7 Conclusions... 31 References......... 33 Appendix 1 List of conductive fractures... 37 Appendix 2 Well CAD logs of conductive fractures and rock properties... 64 Appendix 3 Tables of the properties of the hydraulically conductive fractures... 76 Appendix 4 Depth calibration results... 80
2
3 PREFACE This work has been done under the contracts 9546/03/ AJH and 9726/03/ AJH by Posiva Oy. The contact person has been Aimo Hautojarvi. Henry Ahokas has guided the work done at JP-Fintact. Eveliina Tammisto has taken care of the recognition of the hydraulic fractures from the borehole wall images and compiling the required information to the Well CAD logs as well as the presentation of the results. Pirjo Hella has assisted in the gathering and checking of the input data, compiled the result tables. She has also written the report, except chapters 4.1 and 4.3 by Eveliina Tammisto, who together with Henry Ahokas has provided many valuable comments concerning also other parts of the report. All three participated also to the checking of the core samples at Loppi.
4
5 1 NTRODUCTON Posiva Oy has carried out site investigations for the disposal of spent nuclear fuel at the Olkiluoto site since late 1980's. Within the site characterisation programme, hydraulic properties of fractures are of interest for the ground water flow modelling, for planning of grouting and analysis of leakages etc. The detailed flow logging with 0.5 test interval and made in 10 cm steps provides possibilities to detect even single hydraulically conductive fractures. n this work, the results of flow logging are combined to the fracture data and other rock properties. An important data set to detect the conductive fractures has been the borehole wall images. This memorandum presents the preliminary results of the project to recognise and analyse the properties, especially orientation, of the hydraulically conductive fractures. Boreholes KR4, KR 7, KR8 (0-315 m), KR9 and KRl 0 have been selected as pilot holes. These boreholes were chosen, because they lie in the vicinity of the planned access tunnel and they give an opportunity to test the usefulness of borehole wall images made with different techniques.
6
--------------------------------------------------------- - --- -- 7 2 BACKGROUND First attempts to recognise hydraulically conductive single fractures have been made in connection of the interpretation of hydraulic tests (HTU) (Kuusela-Lahtinen & Front 1991a-c). The test interval of the BTU-measurements was mostly 30 m being far too long to make it possible to get information on individual conductive fractures. More detailed analysis based on borehole-tv and difference flow loggings (2 m interval) have been made for Kivetty and Romuvaara only. The orientation of the conductive fractures in the averagely fractured rock mass outside the known fracture zones has been analysed covering boreholes KR1, KR2, KR4 and KR10 in the depth range 300-600 m for technical planning purposes (see Appendix 1 in Rautakorpi et al. 2003). According to the results, there seems to be slight indications on the decrease in conductivity with steeper inclination of fractures. The conductive fractures in average rock mass are anyhow so sparse that the data set used in analysis has been very limited to make any definitive conclusions. n connection to the mapping of low temperature fracture minerals in core samples (see e.g. Gehor et al 2001) some attention has been paid also to the hydraulic conductivity. Single conductive fractures have not been recognised, but it has been concluded that on the hydraulically conductive intervals in places thicker covers of calcite and clay minerals occur than elsewhere. Sericite and quartz coatings, corroded spots and small hollows occur also on the conductive intervals. With respect to borehole KR9, Gehor et al. (1997) state that the hydraulic conductivity seems not to have exercised any distinct control over the mineral assemblages, since in most cases the zones having the best conductivity include the same minerals as those of lower conductivity. n the latest fracture mappings from the borehole wall images, the fractures with visible traces of flow have been picked (see Tammisto et al. 2003). For reference, an analogous project has been carried out within the Kamaishi URL programme in Japan (Ota & Amano 2003), in which the hydraulically conductive fractures have been identified based on the results of the standard geophysicalloggings. Conductive fracture mapping and correlation between borehole TV- and radar images and difference flow logging results concerning borehole KL02 at Laxemar in Sweden is reported by Carlsten et al. (2001). At Laxemar, the flow logging was carried out also by PRG-Tec with an identical measurement technique as in the boreholes analysed in this study. The borehole imaging technique (BPS) and the resolution are the same as used in borehole KR4 in Olkiluoto. Carlsten et al. (200 1) discuss the importance of depth adjustments in the correlation of the various results. They conclude that all the flow anomalies could be correlated with the BPS-features, either fractures or veins. Most of the flow anomalies (70-80% depending on the certainty of the correlation) are correlated to open fractures or fractures with cavities. The fracture type has been determined from the borehole wall image.
8
9 3 DATA The input data and how it is used in this work is described below: Hydraulic conductivity /transmissivi ty Difference flow logging in detailed mode measured by PRG-Tee (PolHinen & Rouhiainen 1996a, 1996b, 2001, Rouhiainen 2000). The corrections resulting from the comparison and summary of the different conductivity measurements presented by Ahokas (200 1) are taken into account. Results of electric conductivity measurements carried out in conjunction of the flow logging have been used in the depth calibration of the flow results. Fracturing The fracture data presented in the drilling reports (Jokinen 1994, Rautio 1995a, 1995b, 1996a, 1996b, 2000, Suomen Malmi 1990), resulting from the mineralogical studies by Kivitieto (Gehor et al. 1996, 1997, 2001) and fractures picked from the borehole wall images have been used. The borehole wall imaging in KR4 is done using BP-imaging technique with 1 pixel/1 o and 1 mm length resolution by Geosigma (Strahle 1996), in boreholes KR8 (0-315 m) and KR9 using OPTV technique with 1 pixel/0.5 and 0.5 mm length resolution by Robertsson Geologging (Wild et al. 2002a, 2002b) and in boreholes KR 7 and KR1 0 using OB40 technique with 1 pixel/0.5 and 0.5 mm length resolution by Astrock (Kallio et al. 2003). From boreholes KR4 (Strahle 1996, Tammisto et al. 2003) and KR9 (Tammisto et al. 2003) fracture mapping from the borehole wall image was readily available. n the other boreholes the mapping of the hydraulically conductive fractures was done within this work. Mainly fracture depth and orientation, but also fracture properties have been used to correlate the fractures detected in the different loggings (see chapter 4.1). The fracture properties in the final tables (see Appendix 1) are determined as follows although the original values are also shown: Orientation From borehole wall images, if not observed in the image the orientation according to the drilling report is used. Fracture type From the drilling reports Fracture in-fillings From mineralogical studies, if not reported in the mineralogical studies the in-fillings according to the drilling report. Only the main minerals, carbonates, sulphides, clay minerals, chlorite and graphite are taken into account, others are omitted. n addition, the fractures reported to contain hollows are marked. Shape of the fracture According to the drilling report Roughness of the fracture surface According to the drilling report
10 ntensity of fracturing For each of the identified conductive fracture the number of fractures on 1 meter interval (the conductive fracture in the middle) has been given. The fracture frequency has been searched from the fracture frequency results used in bedrock modelling (Vaittinen et al. 2003). The frequency is calculated from the fracture lists given in the drilling reports using the recovered sample length for each 1 m interval with 1 cm step. Rock type According to the bedrock model (Vaittinen et al. 2003), which in turn is based mainly on the mineralogical studies. Anyhow, if the fracture is clearly in another rock type as reported, the rock type is defined from the image. These situations occur because the lithology is heterogeneous and normally only the main or dominant rock type on each interval is reported although smaller intrusions of other rock type also occur. Contacts From the borehole wall images the information on whether the conductive fracture is at a lithological contact or close to contact (within few centimetres) is gathered. Foliation Picked from the image. Following definitions are used: - No foliation is present (no) - Foliation is present (yes) Foliation and the fracture are parallel Foliation and the fracture are nearly parallel Fracture is not parallel to the foliation (no) - t is not clear from the image whether the rock is foliated or not ( eos) Ri-class Defined according to drilling reports. Bedrock structures The structure type (average rock mass/hydraulic feature/fracture zone/crushed zone) in the surrounding of the fracture is defined according to the bedrock model v. 2003/1 (Vaittinen et al. 2003). Distance to the nearest fractured zone The distance along the borehole to the nearest fracture or crushed zone (as defined in the bedrock model v. 2003/1, Vaittinen et al. 2003) is also given. Table 3-1 shows the depth intervals included in the study. On these intervals both the flow logging results and borehole wall images are available.
r---------- - - -------------- - ----- - - - - - - 11 Table 3-1. The borehole intervals included in the study. KR4 KR7 KR8 KR9 KR10 tart length, m 40.0 40.0 20.0 40.1 100.0 nd length, m 901.6 811.1 315.0 601.3 614.4 ample length, m 861.6 771.1 295.0 561.1 514.4 Depth calibration Matching the depth of the different data sets is a precondition for the recognition of the hydraulically conductive fractures and analysis of their properties. Each of the methods suffers from depth errors. The core sample is not always re-sampled correctly, for example due to the core loss or broken sections. None of the selected boreholes is drilled using the current triple tube technique, which ensures better core sample recovery. n flow logging and borehole wall imaging techniques the major source of depth error is the cable elongation, which is depth dependent. f the equipment gets stuck in the borehole stepwise depth errors are possible, but otherwise the error should be at least piecewise linear. The borehole wall image depth was checked by comparing the depths of some distinct fractures/fracture zones in the image and on the other hand in the reported core sample length. The borehole wall images were rather well calibrated to the core sample depth already as a result of previous works. n borehole KR8, the borehole wall image was approximately 0.45 m below the drilling depth constantly along the borehole. The difference flow logging depth was calibrated mainly by comparing the depth to that of the BP-image and checking that the distances between flowing points in both measurements kept constant. Depth errors were controlled by plotting the depth difference between methods as a function of depth and clear outliers of the general trend were checked separately. Depth difference between correlated fractures is presented in Appendix 5. The data was used to check the correlation. n the fracture lists in Appendix 1 the original depth for each measurement is listed, only the level adjustment of KR8 borehole wall image was done.
12
--- - -- -- ------ 13 4 RECOGNTON OF THE HYDRAULCALLY CONDUCTVE FRACTURES 4.1 Method A Well CAD log for each borehole was compiled, presenting the flow logging results, rock types, fractures mapped from the core sample and the borehole wall images. Picking the conductive points from the flow logging results The list of flow points by PRG-Tec was readily available from boreholes KR4, KR7 and KR8. From the other boreholes, the flowing points were picked from the flow log in this study. Picking the conductive fractures from the borehole wall images The conductive fractures were recognised from the images primarily based on a visible flow along the image. n most of the cases no traces of flow was visible in the image although flow was measured at the same depth. n these cases, the most probable fracture(s) to conduct the flow were picked i.e. fractures, which are open at least partly or have a greater width. Reliability of the conductive fracture recognition from the borehole wall image was classified according to following principles: - Absolutely certain Clear signs of inflow from a fracture to the borehole in the mage or clearly distinguishable (partly) open fractures in the image. Certain Distinct fracture(s), usually at least partly open, sometimes also weak signs of flow in the image. Uncertain Fracture(s) are seen in the image, but it is difficult to distinguish a single conductive fracture either due to the large number of fractures or because only tight fractures are present, no signs of flow in the image. n some cases, although flow was measured no detectable fractures in the image existed. n few cases, clear signs of flow were visible in the image, but no flow was observed in the detailed flow measurement. n Figures 4-1, 4-2 and 4-3 examples of different situations occurring in the image are shown.
14 OL-KR7 Depth Lith. Fract. angle 0.20.30.40.50.60 Figure 4-1. Certain observation (OL-KR7, 52.10-52.65 m), materia/flows into the borehole.
15 KR9 Depth '1m:3m 148.9 149.0 149.1 149.2 149.3 Figure 4-2. Example of a conductive section in borehole KR9, visible upward flow can be seen from a fracture at depth 148.99 m. According to difference flow measurement there are two conductive fractures at this section with 20-30 cm depth difference, the lower one having a higher flow. The lower conductive fracture(s) is most likely the one at 149.20 m. Here also connections between fractures can be seen.
----------------------------------- - --- 16 Depth Lith. Fract. angle 0 OL.!KR9.10.80.90.00 Figure 4-3. Uncertain observation (OL-KR9, 51.60-55.10 m). The fracture is clear but not open. The fractures mapped from the core sample (Rautio 1996b) are shown on the left and there are no other fractures near by. Connecting the fractures to the fractures reported by core mappings n order to be able to analyse the properties of the hydraulically conductive fractures, the fractures in the mineralogical /drilling report corresponding to the ones picked from the borehole wall image were identified. The combination was done based on matching the depth, intersection angle and other fracture properties (reported large aperture or thickness etc.). ntersection angle was preferred above the exact depth matching as the angle can be determined more accurately than the depth. There are small inaccuracies in
17 the core sample length due to for example incomplete sample recovery. The dip direction or dip of the fracture was not used, as it is known that rather great differences in the dip direction/dip between determinations from the borehole wall image and from the oriented core sample exist. See Figure 4-4 for an example. The results of the correlation were classified into three classes: - Certain Fractures with a matching depth and intersection angle and no other as probable fractures are present. Normally the fractures are filled, but can sometimes be classified also as tight. From the images even visible flow was observed from fractures defined to be tight. - Quite certain A couple of fractures with equal properties, from which it is hard to say which one is the conductive one. - Uncertain Difference in depth or in intersection angle is big or the number of fractures is so high that it is impossible to distinguish the conductive one(s).
18 OL KR7 Depth 1m:15Ctn 240.0 lnt>!!rs. llf"l9li:" nters. m e Log(K) rn:rn driling rrom - -10 mill -4 repolt boreh:lle ime J:g(T) \. 0 E( 0 00-10 rn21!!i -4 le... lo l - 241.0 \ 2420 243.0 244.0 11.1 245.0 2460 loll t-1--- ------- - r-. hf lr-lil J t:::::--. ) -, 1- f.- 11 t- r- \ l " " (J lt i'\j.. 11 ::. 247.0 ()llr P r.... :.. C)lilk le r... l Figure 4-4. Example on correlating flow points to fractures. On the left column all the fractures mapped from the core sample are presented, in the middle the conductive fractures picked from the borehole wall image and on the right the flow logging results. The arrows show the correlation. 4.2 Results Appendix 1 contains the list of the hydraulically conductive fractures and their properties with remarks concerning their recognition and correlation and Appendix 2 WellCAD presentations of the hydraulically conductive fractures and some other rock properties. n total 287 hydraulically conductive fractures were observed in the five boreholes, the results of boreholes KR 7 and KR8 were checked also from the core sample.
19 Table 4-1 and Figure 4-5 summarise the results per borehole. The frequency of the hydraulically conductive fractures is calculated in two ways. All fractures having flow greater than the detection limit are encountered (see Figure 4-6 for the distribution of the transmissivity values). First, the average distance between conductive fractures is calculated simply by dividing the sample length by the number of observed conductive fractures. Secondly, the distance along borehole between two conductive fractures was calculated and the statistical parameters for the parameter calculated. Two depth intervals; from surface to 150 m below sea level (mbsl) and depths below 150 mbsl and on the other hand averagely fractured rock mass and the fractured zones were considered separately. There seems to be a clear decrease in the frequency of the conductive fractures around the depth 150 mbsl. The frequency of hydraulically conductive fractures is lowest in borehole KR4, whereas in borehole KR8 they are most frequent. This fact does not change even if the interval 20-40 m in borehole KR8 is omitted to make the results better comparable with the other boreholes. n borehole KR1 0 hydraulic conductivity measurements have been done only below the depth of 100 m. The results also show that hydraulically conductive fractures appear rather evenly in the near surface part of the bedrock (1-3 conductive fractures per 10 m). Deeper the variation between boreholes is considerable, the average being 5 conductive fractures per 100 m. Deeper in the rock they are less frequent, but occur often in small groups of few conductive fractures resulting in the nearly equal median distance between fractures as in the upper part of the rock. A group of conductive features is often within or close to a fracture or crushed zone, but they occur also in less frequently fractured sections. ḡ 60 en Q) '- :::1 50 u c 40 Q) 30 Q).c Q) 20 0 c ro 10 "'0 0 KR4 KR7 KR8 KR9 KR10 Total 0 Average rock mass, z < 150 mbsl Average rock mass, z > 150 mbsl --+- Fr. zones, z > 150 mbsl - n total 6 Fr. zones, z < 150 mbsl Figure 4-5. Mean distance between hydraulically conductive fractures in the boreholes in total and at two different depth intervals in averagely fractured rock mass and in fractured zones (fracture and crushed zones as defined in the bedrock model v. 2003/1, Vaittinen et al. 2003).
20 Table 4-1. Summary of hydraulically conductive fractures. 11 conductive fractures KR4 KR7 KR8 KR9 KR10 Total Count 29 73 75 69 41 287 Sample start length 40.0 40.0 20.0 40.1 100.0 Sample end length 901.6 811.1 315.0 601.3 614.4 Sample length/fracture, m 29.7 10.6 3.9 8.1 12.5 10.5 0-150 m below sea level Count 11 19 56 46 7 139 Sample length, m 124.0 130.0 160.0 127.9 50.0 591.86 Sample length/fracture, m 11.3 6.8 2.9 2.8 7.1 4.3 Distance between conductive fractures, m Average 19.4 8.4 4.1 3.2 5.5 5.66 Median 9.3 3.5 1.2 1.3 3.3 1.64 Stdev 34.9 10.7 10.2 5.9 7.5 13.35 M in 0.8 0.0 0.0 0.0 0.3 0.0 Max 121.6 39.8 71.5 37.8 21.6 121.6 >150 m below sea level Count 18 54 18 23 34 147 Sample length, m 737.6 641.1 135.0 433.3 464.4 2411.28 Sample length/fracture, m 41.0 11.9 7.5 18.8 13.7 16.4 lpistance between conductive fractures, m verage 40.2 4.5 6.0 18.2 13.7 12.68 Median 7.6 1.4 1.2 8.0 5.8 2.26 tdev 58.4 14.4 16.6 23.4 16.5 27.65 M in 0.1 0.0 0.0 0.0 0.0 0.0 Max 193.4 103.7 71.5 82.7 59.7 193.4 Deepest situating conductive fracture, ample length, m 763.5 410.1 306.6 547.8 560.6 120 100 80 c :::> e 60 40 20 0-10 -9-8 -7-6 -5-4 log(tm2/s) Figure 4-6. Distribution of the transmissivity values. The measuring limit varies between -9... -10 m 2 s depending on the quality of groundwater.
21 4.3 Remarks on the study method The depth of the conductive feature in flow logging The flow loggings have been done with 10 cm depth intervals, the measured section being 0.5 m. Thus the conductive feature is somewhere within the 10 cm interval. n some cases, the conductive sections have a bit blurred edges making the depth determination difficult. The measurement of the electric conductivity provides useful substantial information as the conductive features are seen as anomalies. Cases where several over-lapping conductive intervals exist are also a bit problematic. Taking all this into account, the achievable depth accuracy is assumed to be about ± 10 cm. Picking the conductive fractures from the borehole wall image Flow can be observed in the images only when some material flows into the borehole from a fracture. Some times it is difficult to distinct if the flow actually come from the fracture or is it only remains of drilling debris on the borehole wall. Outflow cannot be seen from the images. By comparing the fracture head to the borehole head the direction of flow, either into to the borehole or out of borehole, can be determined. The fracture heads compared to the borehole pressure were checked in sections with a visible inflow in the image. n most of the cases the flow direction was indeed into the borehole, but there were some exceptions: - KR 7 at depth 227-228.5 m (head difference 2 cm- 51 cm, see Figure 4-7) - KR8 at depths 73.98 m (head difference 11 cm) and 77.67 m (head difference 6 cm, see Figure 4-8) and - KRlO at depth 499.76 m (head difference 43 cm) Possible reasons for the changed flow directions can be natural variation in the flow conditions. The head measurements and the image logging have been done at different times. n borehole KR 7 the flow and heads have been measured twice, before and after the extension drilling. The fracture head is normally higher compared to the borehole pressure and the inflow from fracture to borehole in the later measurement done after the extension drilling. n section 227-228.5 m the head difference was also increased, but here the flow direction is opposite, from borehole to fracture. The head measurement using 2 m packer interval in the different runs is not done exactly at same depths and reason for differences can also be that the packer interval covers different fractures. n most cases no traces of flow was visible in the image. Often conductive points occur at a fractured zone, where detection of a single conductive fracture is difficult. n fractured zones several possibly conductive fractures were picked. These fractures were often connected to each other. Sometimes, when the flow log shows only one conductive point, there were many fractures with visible flow in the image. n some cases there were many fractures but none of them was open or partly open and no flow was visible in the image. n these cases the fracture(s) with the best matching depth was picked and reported as uncertain.
22 Figure 4-7. Downward flow from a fracture at depth of227.72 m in borehole OL-KR7. Another remarkable fracture at 228.13-228.23 m. Comparison of the fracture and borehole head suggests that the flow is out from borehole.
23 :KR8 Depth 1m:3m 78.0 78.2 78.4 Figure 4-8. Flow from a fracture at depth of 77.67 m in borehole OL-KR8 (in the image at depth 78.17 m, the image depth is uncorrected). The measured fracture head is here 6 cm less than borehole head.
24 The accuracy of azimuth and tilt measurements from the borehole image depends on the shape of the fracture. The orientation is most accurate when the shape is smooth and the fracture intersects the borehole image perpendicularly. For stepped and undulating fractures or fractures nearly parallel to the borehole the dip direction can be difficult to define. Errors can be even several tens of degrees. The accuracy of the orientation depends also on the accuracy of the image rotation angle and of the borehole orientation, as the fracture borehole wall image is oriented according to them. Both are assumed to be within few degrees. Combining borehole wall image fractures to those mapped from the core sample The task to combine the drilling/mineralogy fractures to those observed from the borehole wall images was found to be rather difficult and time consuming. t is hard to say for example how consequently the fracture thickness has been mapped in the core sample leggings and whether the thickness is just the thickness of the in-filling or are there any signs of openness, making the correlation difficult and uncertain. This is especially true for the intervals with frequent fracturing, where there are several alternatives and even several conductive fractures. On the other hand, if the fracturing is sparse, the correlation is straightforward and reliable also. The correlation would be more reliable if a systematic fracture correspondence study were made (like the Fracture database approach, FDB, see Saksa et al. 1997 and Karanko et al. 2000), giving better control on for example the depth errors. n the fracture correlations also the other fractures in the vicinity of the conductive one have to be taken into account.
25 5 CHECKNG RESULTS FROM THE CORE SAMPLES The fractures recognised to be hydraulically conductive in boreholes KR7 and KR8 were checked from the core sample at the national drill core depot at Loppi. The checking was done mainly to justify the correlation of image fractures and fractures reported from the core sample and also to see if any signs of flow can be detected from the core sample. The checking revealed that the correlation was done reasonably well. n many cases the conductive fractures are distinct and easily recognisable (see Figure 5-l for an example). Checking fractures from the sample helped to solve cases, where there were several alternative fractures. Also additional new conductive fractures were detected. On intervals with frequent fracturing the sample was often broken and the image is the only possible way to detect individual conductive fractures. Occasionally, the sample was taken for other studies. n Table 5-1, a summary of the checked fractures and the changes made is presented. Some observations were made during the checking: - There was often a white "collar" around the sample or white material on the fracture surface of the hydraulically conductive fractures. Often the fracture surface of the conductive fractures was smoother to touch than those of the non-conductive ones nearby, although not necessarily reported to be different in the drilling report. At some points, the conductive fracture was not through the entire sample and therefore not reported in the drilling report. At some points intersections between conductive fractures or conductive and nonconductive fractures or even termination of a fracture could be. Table 5-l. Summary of the fracture checks from the core sample at Loppi KR7 KRS Conductive fractures in total 73 76 Chanoe in correlation at Loppi 10 10 Fractures observed to be 8 13 conductive when checking the (5 from the older flow meter (many of the second alternatives core sample at Loppi results) were observed to be conductive, too) Removed from the conductive 0 1 fracture list Sample missing 3 10 Conductive intervals, but broken 9 7 sample so that individual fractures are not recoonisable
26 Figure 5-l. Two clear conductive fractures, in borehole KR 7 at sample depth 48. 71 m and 48.75 m (the image depth is uncorrected). Checking the fractures from the core sample proved to be very useful. t is recommended that in the future, the fractures recognised to be hydraulically conductive on the base of the flow measurements and the borehole wall image are correlated to the core sample fractures when both the sample and the image are at hand. This is a much faster method and gives a more reliable result than using only the reported lists of fractures. The opportunity to check both the core sample and the borehole wall image enables to solve special situations like where a fracture is missing from the reported list or for example not through the entire sample or cases of alternative or intersecting fractures right a way. A pre-condition for the work is that the image depth is matched to the sample depth with less than 10 cm difference.
27 6 PROPERTES OF HYDRAULCALLY CONDUCTVE FRACTURES The summary tables of properties of the hydraulically conductive fractures are presented in Appendix 3. n the tables the results of all and on the other hand the results of the fractures classified as certain are separated in order to see if more decisive conclusions can be deduced from the certain observations. Here the certainty refers to how accurately the fractures in the borehole image are correlated to those mapped from the core sample. The correlation of fractures in boreholes KR 7 and KR8 were checked from the core sample and thus all are counted as certain. Below some remarks based on the results are given. Rock types n total about two thirds of the hydraulically conductive fractures are on migmatitic mica gneiss sections, the main rock type in the site. Roughly 30% are in granites and only a few in the less frequent rock types; tonalite, quartz feldspar gneiss and amphibolite. There are large differences between the results of different boreholes reflecting mainly the rock type variation in the near-surface part of the borehole. Less than 10 % of the hydraulically conductive fractures are located at or in the vicinity (within few centimetres) of the lithological contacts, in borehole KR1 0 none. Foliation n total, about 40% of the hydraulically conductive fractures occur on intervals with foliated rock, but the amount varies largely between boreholes. The majority of conductive fractures in foliated rock are not oriented along the foliation. Also, here the variation between boreholes is considerable. Bedrock structures About 20% of the hydraulically conductive fractures are within the fractured or crushed zones. Also this varies between boreholes - in borehole KR4 the conductive fractures are closer related to the fractured structures than in the other boreholes. The results are here a bit vague, as in the zones the single conductive fractures are difficult to distinguish and only one flow peak is seen although several fractures can be conductive. So it is likely that the number of conductive fractures within zones is actually higher. Figure 6-1 shows the distribution of the distance to the nearest fractured zone. There is a clear peak at 0 m distance, i.e. when the fracture is within the zone. The frequency within the 10 m from zone is nearly as high, but decreases then gradually. Nearly half of the conductive fractures are within the zones or 10 m distance from the zone. Fracture frequency Figure 6-2 shows the distribution of the hydraulically conductive fractures according to the number of fractures in their neighbourhood (±0.5 m distance from the fracture). The distribution is rather even i.e. single conductive fractures are nearly as frequent as conductive fractures in the zones. Here it has to be kept in mind that in the most frequently fractured sections it is likely that every single conductive fracture can't have been differentiated because of their number and the 10 cm measurement interval. t is also possible that the flow from a single fracture dominates and masks other fractures with a smaller flow in close proximity.
28 25 100 20 80 0 (.) 15 60 c: (.) Q) c: :::J Q) 0"' :::J Q) g 10 40 - - E - :::J 5 20 0 (.) distance to nearest fracture or crushed zone, m Figure 6-1. Distribution of the distance to the nearest fractured structure (fracture or crushed zone) according to the bedrock model v. 2003/1 (Vaittinen et al. 2003). The shown distance is the upper limit of the interval. 50 ---------------------------------- 30 40+=------------------------------ 0 V 20 10 0 2 3 4 5 6 7 8 9 1 0 30 nurrt>er of fracture/ m all certain Figure 6-2. Distribution of the hydraulically conductive fractures according to the fracture frequency on one meter interval (±0.5 m) surrounding the conductive fracture. Fracture orientation n Figure 6-3 the orientation distribution of the conductive fractures are shown on equal area lower hemisphere plots (black circles certain and white circles uncertain observations, certainty according to how reliable is the recognition of the conductive fracture from the image). Noteworthy is that in some boreholes, especially in KR7, the fracture orientations are clearly depending on the borehole orientation. Anyhow the transmissivity of the fracture is not depending on the intersection angle, see Figure 6-4.
29 Cerlain :-' Uncertain KR4 tqr7 R10 Figure 6-3. Orientation distribution of the hydraulically conductive fractures; stereograms of poles to the fractures shown on an equal-area, lower hemisphere projection.
30 (i) -4.0 20 40 80-5.0-6.0 C\1. _ -7.0 1-0>.Q -8.0-9.0-10.0-11.0.. fracture/borehole intersection angle (degrees) Figure 6-4. Transmissivity of the fracture as a function of the borehole/fracture intersection angle. Fracture properties The conductive fractures are mainly defined as filled, 70 to 80% of all conductive fractures. Open fractures were mapped only in borehole KR7, where 40% of the conductive fractures were open. But in borehole KR 7 it seems that different definitions were used in core sample logging so no further conclusions are made. t is not unusual that tight fractures are also observed to be hydraulically conductive even with certainty. t is recommended that it will be checked from the borehole wall images if the fracture is open or partly open instead of using the varying fracture definitions according to the drilling report. About 20 % of the fractures have no reported infilling materials. Typical infillings are carbonates, sulphides, clay minerals, each of which are present in about 30-50 % of the conductive fractures. Chlorite is also a typical infilling. There are not very great differences between the boreholes. The shape of the fracture is planar in 20% of the cases, irregular in 50% of the cases and undulating in 10% of the cases. 40% to 50% of the fractures have a semirough surface, whereas about 30% are rough and 10 % smooth. n both cases the proportions vary between boreholes.
31 7 CONCLUSONS This pilot study showed that it is possible to identify single hydraulically conductive fractures using the difference flow measurements (using 0.5 m test section with 0.1 m steps) and borehole wall images. Furthermore, the fractures observed from the image can be correlated with fractures observed from the core sample. The last step is tedious and most effectively done when both the image and the sample can be studied at the same time. A precondition is that the depth of flowmeter results and borehole wall images are calibrated to the sample depth with a reasonable accuracy (appr. ±10 cm). From the borehole wall image the orientation of the fracture can be interpreted and it is possible to detect the openness and shape of the fracture. Also the rock type and possible foliation can be mapped. n order to be able to analyse other properties of the hydraulically conductive fractures, like infillings, it is necessary to identify the same fractures in the core sample. Boreholes KR4, KR7, KR8 (the earlier drilled part to the depth of 315 m), KR9 and KR1 0 have been selected as pilot holes. From these boreholes all the necessary measurements were done, the borehole wall imaging with different techniques. The conductive fractures were recognised from the images primarily based on a visible flow traces along the image. Flow traces can be seen in the image, only if the flow is from the fracture to the borehole. n few cases where flow traces were observed in the image, the fracture and borehole head measurement showed that the flow direction was the opposite, from borehole to fracture. This can be due to the variation in flow conditions as the measurements have been done at different times. On most of the conductive intervals flow traces were not visible in the image and the most probable fracture(s) to conduct the flow were picked using the single point resistance measurements as supportive information. The corresponding fractures mapped from the core sample were found based on matching depth, intersection angle and other fracture properties (reported large aperture or thickness etc.). The results from boreholes KR7 and KR8 were finally checked from the core sample at the core archive. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The results also show that hydraulically conductive fractures appear rather evenly in the near surface part of the bedrock. The frequency of hydraulically conductive fractures in depth range 0-150 m varies from 1 to 3 in 10 m sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in small groups of few fractures resulting in the nearly equal median distance between fractures as in the upper part of the rock. This can be partly due to the difficulty to differentiate each single conductive fracture in the upper parts of the rock. The main new information got in this study is the orientation of the conductive fractures. The orientation distribution in different borehole varies and is dependent on the overall borehole orientation. Dominant orientation of the fractures in the Olkiluoto boreholes is dipping gently towards southeast (see for example Anttila et al. 1999), the orientation of the hydraulically conductive fractures seems to be more diverse. Subhorizontal fractures, but with varying orientation are a clear subset, but also sub-vertical ones are present.
----- ----------------------------------------------------------------------------- ------- 32 About 20 % of the conductive fractures are within fracture or crushed zones and another 20 % within 10 m distance from the zones. But single hydraulically conductive fractures occur also nearly as frequently on the sparsely fractured intervals. t is possible that on the frequently fractured sections each individual conductive fracture is not identified due to the high amount of fractures and due to the high flows which mask many less conductive fractures in close proximity. The analysis of the fracture properties of the hydraulically conductive fractures was found difficult, because of the rather varying definitions used. Most of the conductive fractures have infilling materials, carbonates, sulphates and clay minerals being present in 40% of the fractures and chlorite in 30%. The fractures are often open or partly open as can be seen from the images.
33 REFERENCES Ahokas, H. 2001. Summary of results of measurements of hydraulic conductivity and differences between different methods in boreholes KR1-KR1 0 at Olkiluoto (in Finnish with an English abstract). Helsinki, Finland: Posiva Oy. 109 p. Working report 2001-33. Anttila, P., Ahokas, H., Front, K., Heikkinen, E., Hinkkanen, H., Johansson, E., Paulamaki, S., Riekkola, R., Saari, J., Saksa, P., Snellman, M., Wikstrom, L., Ohberg, A. 1999. Final disposal of spent nuclear fuel in Finnish bedrock - Olkiluoto site report. Helsinki, Finland: Posiva Oy. 206 p. Posiva-report 99-10. Carlsten, S., Strahle, A. & Ludvigson, J.-E. 2001. Conductive fracture mapping. A study on the correlation between borehole TV- and radar images and difference flow logging results in borehole KL02. Stockholm, Sweden: Svensk Kambranslehantering AB. 75 p. R-01-48. Gehor, S., Karki, A., Maatta, T., Suopera, S. & Taikina-aho, 0. 1996. Eurajoki, Olkiluoto: Petrology and low temperature fracture minerals in drill core samples (in Finnish with an English abstract). Helsinki, Finland: Posiva Oy. 300 p. Work Report PATU-96-42. Gehor, S., Karki, A., Suopera, S. & Taikina-aho, 0. 1997. Eurajoki, Olkiluoto: Petrology and low temperature fracture minerals in the OL-KR9 drill core sample (in Finnish with an English abstract). Helsinki, Finland: Posiva Oy. 56 p. Work Report 97-09. Gehor, S., Karki, A., Maatta, T. & Taikina-aho, 0. 2001. Eurajoki, Olkiluoto: Petrology and low temperature fracture minerals in drill cores OL-KR6, OL-KR7 and OL-KR12 (in Finnish with an English abstract). Helsinki, Finland: Posiva Oy. 166 p. Working Report 2001-38. Jokinen, J. 1994. Core drilling of deep borehole OL-KR7 at Olkiluoto in Eurajoki 1994. Helsinki, Finland: Teollisuuden Voima Oy. 61 p. Working report PATU-94-38. Kallio, L., Julkunen, A. & Valitalo, J. 2003. Optical imaging in boreholes KR7, KR10, KR11, KR15-KR19, and KR15B-KR18B at the Olkiluoto site, 2002. Eurajoki, Finland: Posiva Oy. (in preparation) Karanko, A., Heikkinen, E. & Hella, P. 2000. Supplementary fracture database from deep boreholes at Olkiluoto site (in Finnish with an English abstract). Helsinki, Finland: Posiva Oy. 362 p. Working report 2000-30. Kuusela-Lahtinen, A. & Front, K. 1991a. Single Borehole Hydraulic Tests in Olkiluoto, Western Finland: nterpretation of Borehole KR1 (in Finnish with an English abstract). Helsinki, Finland: Teollisuuden Voima Oy. TVO/Site investigations Work Report 91-25. Kuusela-Lahtinen, A. & Front, K. 1991b. Single Borehole Hydraulic Tests in Olkiluoto, SW Finland: nterpretation of Boreholes KR2 and KR3 (in Finnish with an English abstract). Helsinki, Finland: Teollisuuden Voima Oy. TVO/Site investigations Work Report 91-39.
34 Kuusela-Lahtinen, A. & Front, K. 1991c. Single Borehole Hydraulic Tests in Olkiluoto, SW Finland: nterpretation of Boreholes KR4 and KR5 (in Finnish with an English abstract). Helsinki, Finland: Teollisuuden Voima Oy. TVO/Site investigations Work Report 91-43. Ota, K. & Amano, K. 2003. Characterisation of water-conducting fractures in Crystalline rocks; Experience from Kamaishi URL programme to current Millprogramme. p. 155 in MRS 2003 Scientific basis for Nuclear Fuel Management V. Kalmar Sweden June 15-18, 2003. Abstracts. 382 p. PolHinen, J. & Rouhiainen, P. 1996a. Difference flow measurements at the Olkiluoto site in Eurajoki, boreholes KR1-KR4, KR7 and KR8. Helsinki, Finland: Posiva Oy. Working report 96-43e. Pollanen, J. & Rouhiainen, P. 1996b. Difference flow measurements at the Olkiluoto site in Eurajoki, boreholes KR9 and KR10. Helsinki, Finland: Posiva Oy. 19 p. Working report 96-44e. Pollanen, J. & Rouhiainen, P. 2001. Difference flow and electric conductivity measurements at the Olkiluoto site in Eurajoki, boreholes KR6, KR7 and KR12. Helsinki, Finland: Posiva Oy. 150 p. Working Report 2000-51. Rautakorpi, J., Johansson, E., Tinucci, J., Palmen, J., HelHi, P., Ahokas, H. & Heikkinen, E. 2003. Effect of fracturing on tunnel orientation using KB Tunnel and 3DEC programmes for the repository of spent nuclear fuel at Olkiluoto. Eurajoki, Finland:Posiva Oy. 38p. Working report 2003-09. Rautio, T. 1995a. Core drilling of deep borehole OL-KR8 at Olkiluoto in Eurajoki. Helsinki, Finland: Teollisuuden Voima Oy. 24 p. Working report P ATU-95-22. Rautio, T. 1995b. Drilling at Olkiluoto in Eurajoki 1995, Extension of the borehole OL KR4. Helsinki, Finland: Teollisuuden Voima Oy. 20 p. Working report PATU-95-46. Rautio, T. 1996a. Core drilling of deep borehole OL-KR10 at Olkiluoto in Eurajoki. Helsinki, Finland: Posiva Oy. 27 p. Working report PATU-96-02. Rautio, T. 1996b. Core drilling of deep borehole OL-KR9 at Olkiluoto in Eurajoki. Helsinki, Finland: Posiva Oy. 28 p. Working report P ATU-96-32. Rautio, T. 2000. Extension core drilling of deep borehole OL-KR7 at Olkiluoto in Eurajoki 2000. Helsinki, Finland: Posiva Oy. 121 p. Working report 2000-31. Rouhiainen, P. 2000. Electrical conductivity and detailed flow logging at the Olkiluoto site in Eurajoki, boreholes KR1 - KR11. Helsinki, Finland: Posiva Oy. 387 p. Working report 99-72. Saksa, P., HelHi, P., Voipio, S., Nummela, J., Hanninen, T., Ahokas, H., Heikkinen, E. & Lindh, J. 1997. Olkiluodon syvakallion yksityiskohtainen rakotietokanta. Helsinki, Finland: Posiva Oy. 98 p. Tyoraportti 97-32.
35 Stnllile, A. 1996. Borehole-TV measurements at the Olkiluoto site, Finland 1996. Vol. 1. Report and Appendices for OL-KRl. Vol. 2. Appendices for OL-KR2 and OL-KR4. Helsinki, Finland: Posiva Oy. 20 p + app. Work report PATU-96-59e. Suomen Malmi Oy. 1990. Core drilling of deep borehole OL-KR4 at Olkiluoto in Eurajoki. Helsinki, Finland: TVO Site nvestigations. 17 p. Working report 90-24. Tammisto, E., Lehtimaki, T., Palmen, J., Hella, P. & Heikkinen, E. 2003. Fracture mapping from Olkiluoto borehole image data, 2001. Eurajoki, Finland: Posiva Oy. 108 p. Working Report 2002-22. Vaittinen, T., Ahokas, H., Heikkinen, E., Hella, P., Nummela, J., Saksa, P., Tammisto, E., Paulamaki, S., Paananen, M., Front, K. & Karki, A., 2003. Bedrock model of the Olkiluoto site, version 2003/1. Eurajoki, Finland: Posiva Oy. 266 p. Working report 2003-43. Wild, P., Siddans, A. & Kennaugh, K. 2002a. Optical Televiewer survey and processing in Olkiluoto site, Finland 2001 - Boreholes KR9, KR12, KR13 and KR14. Helsinki, Finland: Posiva Oy. 29 p. Working report 2002-02. Wild, P., Siddans, A. & Wild, D. 2002b. Optical Televiewer survey and processing in boreholes KR3, KR5, KR8 and Gyro survey in borehole KR14, at the Olkiluoto site, Finland 2001. Helsinki, Finland: Posiva Oy. 86 p. Working report 2002-11.
36
37 APPEND 1 List of conductive fractures Hydraulically conductive fractures Borehole: Depth(m): ntersection angle (degrees 0-90) : Dip direction (degrees 0-360) : Dip (degrees 0-90): LogT(/s): T-depth(m): Flow certainty: No fractures: Ri-degree: Dist to the nearest Structure (m): Struct type: Rock type: Changed at Loppi: Loppi notes: KR, where is borehole number the depth of the drilling fracture, if not correlated the depth of the borehole wall image fracture, the depth is measured along borehole length from borehole wall images, if fracture is not observed in the image the intersection angle according to the drilling report from borehole wall images, if fracture is not observed in the image the dip direction according to the drilling report from borehole wall images, if fracture is not observed in the image the dip according to the drilling report log(t) value at T-depth the depth of a single conductive fracture detected from the flow logging results the reliability of detecting single conductive fractures from the flow logging results the number of fractures on 1 meter interval (the conductive fracture in the middle) counted from the fracture list of the drilling report refined according to drilling reports the distance along the borehole to the nearest fracture or crushed zone (as defined in the bedrock model v. 2003/1) the structure type (average rock mass/hydraulic feature/fracture zone/crushed zone) in the surrounding of the fracture is defmed according to the bedrock model v. 200311 (Vaittinen et al. 2003) according to the bedrock model (Vaittinen et al. 2003), which in turn is based mainly on the mineralogical studies, if the fracture is clearly in another rock type as reported, the rock type is defined from the image x- if borehole wall image fracture or fracture correlations has been changed after checking results from the core samples Empty- if results has not been changed, boreholes KR 7 and KR8 Notes of checking fractures from the core samples, boreholes KR7 and KR8 Fractures from borehole wall image mage fracture depth(m): depth of the fracture picked from the borehole wall image, m
38 APPEND 1 ntersection angle (image) (degrees 0- ) : Azimuth (image) (degrees 0-360) : Tilt (image) (degrees 0-90): mage note: Contact: Foliation: Azimuth of foliation: Cert. of observation: from borehole wall image from borehole wall image from borehole wall image notes of fracture picking from the borehole wall images the information on whether the conductive fractme is at or close to a lithological contact defined from the image, following defmitions are used: -No foliation is present (no) -Foliation is present (yes) - t is not clear from the image whether the rock is foliated or not (not clear) - Foliation and the fracture are parallel (parallel to the fracture) -Foliation and the fracture are nearly parallel (rather parallel to the fracture) -Fracture is not parallel to the foliation (not parallel to the fracture) the reliability of the conductive fracture recognition from the borehole wall image before checking of the results from the core samples Fractures from core sample mapping (drilling) Drilling fracture Depth(m): ntersection angle (drilling) (degrees 0- ) : Drill note: Fracture type: Shape of the fracture surface: the depth of the correlated drilling fracture from the drilling report notes of drilling fracture correlation to borehole wall image fractures from drilling report: av- open tii- filled ti- tight avha - open slickensided tiha - tight slickensided tiiha - filled slickensided tiisa- clay filled tamu- grain filled from drilling report tasa - planar etas - irregular kaar - undulating
39 APPEND 1 Type of the fracture surface: Cert of drill fracture: from drilling report kark-rough pkar-semirough tasa-smooth the reliability of fracture correlation before checking of the results from the core samples Fractures from mineralogical studies Miner. fracture Depth(m): ntersection angle (miner) (degrees 0-90) : Karb: Sulphides: Clay: Corroded: Chlorite: Graphite: the depth of the correlated fracture from mineralogical report the intersection angle of the correlated fracture from mineralogical report carbonate minerals in fracture filling according to mineralogical report sulphide minerals in fracture filling according to mineralogical report clay minerals in fracture filling according to mineralogical report from mineralogical report chlorite in fracture filling according to mineralogical report graphite in fracture filling according to mineralogical report
OL-KR4: List of conductive fractures FT -3.7.2003-Hydrology Appendix 1 HYDRAULCALLY CONDUCTVE FRACTURES lt 116 KR04 49.29 47 119 49... t!! -7.9 49.55 f ol ill 1 31.21 J J J Mica gneiss KR04 50.65 57 89 31-8.7 50.65 2 29.85 Mica gneiss KR04 51.92 49 146 51 5 28.58 Mica gneiss KR04 61.23 74 225 22-5.2 61.25 7 19.27 Hydraulic feat. Mica gneiss KR04 82.22 54 107 38-5.4 82.36 30 0.00 Fracture zone Mica gneiss KR04 83.20 72-8.3 83.20 6 0.00 Fracture zone Mica gneiss KR04 98.94 63 134 36-8.7 98.50 1 14.84 Mica gneiss KR04 110.93 81 148 14-8.0 110.75 1 26.83 Mica gneiss KR04 116.00 80 172 3-6.6 116.00 5 31.90 Hydraulic feat. Mica gneiss KR04 116.83 71 115 21-4.9 116.83 5 32.73 Hydraulic feat. Mica gneiss KR04 141.61 78 71 42-7.5 141.61 3 57.51 Mica gneiss 0 KR04 263.23 79 220 15 KR04 300.96 76 111 2-8.9 263.23-7.3 301.00 8 49.27 7 11.54 Mica aneiss Granite KR04 307.23 69 130 29-6.9 307.31 6 5.27 Hydraulic feat. Mica gneiss KR04 307.82 78 124 15-7.5 307.82 5 4.68 Hydraulic feat. Mica gneiss KR04 313.48 42 7 34-5.8 313.49 18 3 0.00 Fracture zone Mica gneiss KR04 313.88 15 7 61 KR04 313.94 35 40 44-6.9 313.80-7.8 313.94 14 3 0.00 15 3 0.00 Fracture zone Fracture zone Mica gneiss Mica gneiss KR04 357.56 69 261 15-8.6 357.40 5 40.86 Mica gneiss KR04 366.39 51 64 32-6.6 366.15 5 49.69 Hydraulic feat. Mica gneiss KR04 370.49 73 165 32 KR04 510.33 71 111 20 KR04 522.63 42 170 65 KR04 528.01 68 110 26-8.4 370.34 uncertain -7.9 510.33-8.5 522.12-8.2 528.00 20 3 312.50 6 11.89 20 4 0.00 4 3.79 Crushed zone Mica gneiss )> "U "U m z c ><... PH,ET/Fintact4.12.2003 KR4_properties-TK-klpul.xls\Sheet1
OL-KR4: List of conductive fractures FT-3.7.2003-Hydrology Appendix 1 --- - ----11'.! -4tl'URES FROM BOREHOLE WALL MAGE 1 i. j KR04 49.29 49.56 47 KR04 50.65 50.61 57 KR04 51.92 51.78 49 KR04 61.23 61.12 74! 119 49 no drilling fracture 89 31 not speciafically open 146 51 Could this be correlated to at-value? 225 22 Any of these or even all, the other possibilities include 61.211 58f76/26 and 61.262 49/205/53 ' J 11 yes yes yes yes ' FRACTURES FROM CORE SAMPLE MAPPNG (DRLLO). Jl i it 1 rather parallel quite certain to the fracture 49.29 72 no other fractures ti etas kark quite certain rather parallel uncertain 50.65 72 la etas pkar quite certain to the fracture parallel to the 51.92 54 la tasa pkar quite certain fracture not parallel to certain 61.23 72 different in FOB ll etas pkar uncertain the fracture J il! il il FRACTUERS FROM MNERALOGCAL STUDES tl 11 J 6 49.37 70 SK KA 50.70 80 cc SK 51.93 65 cc -1 SK MO KR04 82.22 82.28 54 KR04 83.20 KR04 98.94 107 38 Either one or these, the alternative is 82.324 34/82154 tight fractures, unpossible to say which is conductive no clear fractures not clear certain 82.22 77 zone, alternatively la etas kark uncertain 82.18 83.20 72 la ha etas pkar quite certain 98.94 63 no fractures, la etas pkar uncertain graphite, according to mineralogy rvl -1 cc MK+SK L 83.19 75-1 KR04 110.93 no clear fractures 110.93 81 below la tasa pkar quite certain 110.93 85 cc SK KR04 116.00 115.91 80 KR04 116.83 116.75 71 KR04 141.61 141.50 78 KR04 263.23 263.27 79 KR04 300.96 300.95 76 KR04 307.23 307.23 69 KR04 307.82 307.84 78 172 3 downward flow 115 21 open fracture 71 42 open fracture with clear downward flow, also above possible fractures like 141.455 421159/24 220 15 Clear open fracture 111 2 Two open fractures, the one above has greater aperture, can be either one, the alternative is 301.022 75/125/20 130 29 Clear open fracture 124 15 Clear open fracture contact yes rather parallel Absolutely 116.00 81 la etas pkar uncertain gne/gran 9 to the fracture certain cm below gne/gran yes parallel to the Absolutely 116.83 63 3 parallel and ll etas pkar uncertain fracture certain similar fractures yes parallel to the fracture not clear gan/gne not yes not parallel to parallel to the fracture gran/gne 5 cm above yes not clear parallel to the fracture Absolutely 141.61 59 or 141.57 la etas pkar quite certain certain certain 263.23 72 la etas sile uncertain certain 300.96 81 or 301 tamu etas pkar quite certain certain 307.23 63 2-3 parallel and la mu etas pkar quite certain similar fractures certain 307.82 81 ti etas pkar quite certain 116.02 85 cc SK L 116.88 70 cc 141.61 70 cc klor 300.90 45 SK 307.23 80 KA - KR04 313.48 313.53 42 KR04 313.88 313.86 15 KR04 313.94 313.94 35 KR04 357.56 357.54 69 KR04 366.39 366.34 51 KR04 370.49 370.49 73 KR04 510.33 510.35 71 R04 522.63 522.64 42 R04 528.01 527.98 68 7 34 Fracture zone, both are possible 313.535 221234.18f75 7 61 Distinct fracture 40 44 belongs to the same zone as the previous one, orientation uncertain 261 15 Alternatively 357.846 63/208/38, the lower one is more remarkable 64 32 Open fracture 165 32 Fracture zone 111 20 wide fracture, the orientation according to the lower edge 170 65 Remarkable fracture zone 110 26 Rather small fracture not clear not clear not clear yes rather parallel quite certain to the fracture 357.56 63 or357.79 la etas pkar quite certain not clear possibly Absolutely 366.39 50 etas pkar quite certain parallel to the certain fracture yes yes yes yes not clear not parallel to the fracture certain 313.48 54 Amu etas kark uncertain certain 313.88 45 ll etas kark uncertain certain 313.94 36 ti etas pkar uncertain not clear uncertain zone la not clear/not certain 510.33 81 or 510.31 la ha etas pkar quite certain parallel to the fracture quite certain 522.63 54 other possibilities la kaar pkar quite certain exist uncertain 528.01 72 other possibilities la etas pkar quite certain exist cc SK+CU cc SK+CU cc SK+CU 366.40 45 SK KA -1 cc SK sv -1 cc L 522.63 50 L 528.03 80 L )>., m z c 5< PH,ET/Fintact 4.12.2003 KR4_properties-TK-lopul.xls\Sheet1
OL-KR4: List of conductive fractures FT-3. 7.200l-Hydrology Appendix 1 HYDRAUUCALLYCONDUFRACTURES. J t! KR04 564.37 56 359 16 J J -8.0 564.06 al ill 6 40.15 r j KR04 757.74 56 157 55-10.7 757.37 uncertain 10 3 0.00 Crushed zone Quartz feldspar gneiss KR04 761.54 67 138 38 KR04 763.48 69 194 40-10.7 761.08 uncertain -10.7 762.88 uncertain 4 4 0.00 7 0.00 Crushed zone Crushed zone Pegmatite Pegmatite KR04 864.36 43 71 39-6.1 863.73 5 100.16 Pegmatite N )> "'0 "'0 m z c >< PH,ET F intact 4.12.2003 KR4_properties-TK-lopul.xls\Sheet1
OL-KR4: List of conductive fractures FT-3. 7.2003-Hydrology Appendix 1 HYDRAULC FRACTURES FROM BOREHOLE WALL MAGE J! j l it t KR04 564.37 564.36 56 KR04 757.74 757.68 56 KR04 761.54 761.50 67 KR04 763.48 763.40 69! i t 359 16 Open fractures, the lowest is the most remarkable the the upper one, the alternatives are 564.253 73/103/12 and 563.908 7114412 157 55 Clear open fracture 138 38 Clear open fracture 194 40 Clear open fracture '& i : Ji ;) yes not parallel to certain the fracture yes parallel to the certain fracture [gne/qran not clear not clear certain in gran/gne yes parallel to the certain contact fracture FRACTURES FROM CORE SAMPLE MAPPNG (DRLLG) i i il il t '&!!i fl i j il! 564.37 59 other possibilities ta tasa si le quite certain 564.27 or 563.92 757.74 72 different in FOB, tliha quite certain 757.66 other 'possibility 761.54 90 tlimu etas pkar uncertain 763.48 54 ta etas pkar uncertain FRACTUERS FROM MNERALOGCAL STUDES lj 11 ll J 564.39 70 SK -1 L+SV 763.50 50 cc L KR04 864.36 864.30 43 ----- -.. 71 39 The most probable one, other alternatives include 862.937 43/69/38 and 862.676 ---... 26180160 not clear not parallel to quite certain the fracture. 864.36 41 other possibilities ta etas sile uncertain are 862.69 and 862.72.. 864.31 45 L.,J:::. V-,) )> "tj "tj m z c ><..a. PH,ET/Fintact 4.12.2003 KR4_properties-TK-opul.xls\Sheet1
OL-KR7: List of conductive fractures FT -3.7.2003-Hydrology Appendix 1 HYDRAUUCALL Y CONDUCTVE FRACTURES h! J V KR07 42.21 47 175 64-8.0 42.20 hi 1.0 4.51. f :, ' h J J 1 ''*-' KR07 44.57 50 167 50-8.6 44.40 KR07 46.86 33 285 20-6.9 46.90 KR07 46.90 62 282 18-6.9 46.90 KR07 48.71 62 236 44-6.9 48.80 4.0 6.87 6.0 9.16 6.0 9.20 2.0 11.01 core sample broken core sample broken this and the following one very clear cases, a photo should be taken KR07 48.75 48 267 55-6.9 48.80 2.0 11.05 this and the previous one very clear casas, a photo should be taken KR07 52.28 54 254 46-7.6 52.40 1.0 14.58 KR07 59.29 63 241 49-8.4 59.50 KR07 60.74 47 267 72-7.8 60.90 1.0 0.00 5.0 0.00 KR07 74.59 67 167 43-8.5 74.70 2.0 7.31 Picked from the image after Loppi KR07 82.99 49.77 179 53-10.7 83.21 uncertain 83.122 44.55 173 61 10.0 0.00 Crushed zone No single conductive fracture can be detected. The orientation is the according to the zone visible in the image. The depth is measured from the top and bottom point of the zone, zone is approximately 13.2 cm thick. KR07 91.66 41 317 46-8.9 91.70 KR07 109.70 46 182 38-7.8 109.90 1.0 7.76 3.0 25.80 Peamatite Pegmatite KR07 110.63 54 205 36-7.5 110.80 5.0 26.73 Pegmatite..r::....r::.. KR07 123.48 69 202 60-8.7 123.70 KR07 125.34 53 197 39-9.2 125.37 uncertain KR07 132.31 56 233 38 not measured KR07 172.10 35 238 16-8.4 172.30 4.0 39.58 1.0 41.44 1.0 48.41 4.0 53.10 Core sample is missing. KR07 172.55 48 248 33-7.9 172.70 5.0 52.65 Core sample is partly missing. KR07 202.16 60 196 47-7.9 202.40 KR07 205.32 52 241 37-8.2 205.60 4.0 23.04 2.0 19.88 Mica gneiss Mica gneiss Form the two close by fractures the lower is the conductive one. The alternative could be excluded. Core sample is missing. KR07 206.31 77 232 64-8.2 206.60 KR07 211.92 50 83 25-7.1 212.20 KR07 212.31 39 252 23-8.0 212.50 KR07 215.49 74 234 60-6.2 215.80 KR07 215.64 75 235 66-6.2 215.80 KR07 219.01 47 176 77-6.9 219.20 KR07 223.13 72 227 54-6.1 223.40 KR07 223.14 55 226 35-6.0 223.40 KR07 223.19 81 216 62-6.1 223.40 KR07 225.21 61 250 76-5.7 225.50 4.0 18.89 9.0 13.28 8.0 12.89 3.0 9.71 2.0 9.56 4.0 6.19 9.0 3.0 2.07 9.0 3.0 2.06 9.0 2.01 6.0 0.00 Crushed zone Mica gneiss Mica gneiss Mica gneiss Granite pegmatite Granite pegmatite gne Granite pegmatite Granite pegmatite Granite pegmatlte Granite pegmatite Picked from the image after Loppi (211.91). Change of the TV-fracture after Loppi, should be 215.49. Changed the core sample fracture to second alternative, it might be possible that both are conductive. Fracture not through the sample, not reported in the drilling report. ntersecting the next fracture. A photo should be taken. ntersecting the previous one correlation changed at Loppi. Fracture not through the sample, not reported n the driiung report. ntersecting the next fracture. A photo should be taken. )>., m z c 5< PH,ET/FT 2.3.2004 KR7 _properties-tk_tark-lopul.xls\sheet1
i OL-KR7: List of conductive fractures FRACTURES FROM BOREHOLE WALL -..AGE e! i 0 tt tl ' t: j i of 1 t J 11 Jt! E! 42.20 47 175 64 not clear yes parallel to the uncertain fracture 46.81 33 285 20 upward and downward flow not clear certain 46.81 62 282 18 downward flow not clear certain 48.68 62 236 44 upward flow yes not parallel to certain the fracture FRACTURES FROM CORE SAMPLE MAPPNG (DRLUG) r lj., i. t e o j! il! ll J 42.21 54 only possible av etas karll certain fracture 44.57 50 av tasa pkar uncertain 46.86 27 la etas pkar certain 46.90 72 la etas karll quite certain 48.71 63 la etas pkar certain FRACTUERS FROM MNERALOGCAL STUDES c:j li i i lt J 6 8 8 42.22 45 SK 44.60 45 KA 46.85 25 cc 46.90 75 cc 48.70 65 cc KA FT -3.7.2003-Hydrology Appendix 1 48.72 48 267 55 upward flow yes not parallel to certain the fracture 48.75 45 la kaar pkar certain 48.75 40 cc KA 52.32 54 254 46 upward and downward flow yes not parallel to certain the fracture 52.28 63 only possible av etas karll certain fracture 52.30 30 KA 59.40 63 241 49 downward flow no certain 60.82 47 267 72 downward flow no certain 74.63 67 197 62 downward flow yes parallel to the fracture 83 50 179 53 open fracture downward and upward flow not clear absolutely 83 45 173 61 certain 110.03 46 182 38 downward flow, image too low no certain 110.96 54 205 36 downward flow, image too low no certain 123.56 69 202 60 downward flow no certain 125.45 53 197 39 upward flow no certain 132.42 56 233 38 upward flow no absolutely certain 172.13 35 238 16 not open yes not parallel to uncertain the fracture 59.29 63 ta etas karll certain 60.74 45 only possible la etas sile certain fracture 74.59 77 ta etas pkar quite certain zone, the depths av tasa karll uncertain are the upper and lower bounds of the zone 91.66 41 av etas karll certain 109.70 45 borehole image is av etas karll certain lower than other sections 110.63 59 borehole image is av etas pkar certain lower than other sections 123.48 72 ti etas karll certain 125.34 54 av etas karll certain 132.31 63 only possible la etas karll certain fracture 172.10 36 ta etas karll certain 59.30 45 cc KA 60.80 50 cc 74.57 60 cc SK ' 83.36 70 KA 91.67 45 cc SK KA 109.79 60 SK KA 110.66 50 cc SK KA 125.34 55 KA 132.31 70 cc SK Kl 172.15 45 Kl Vl 172.58 48 248 33 open fracture yes not parallel to certain the fracture 202.22 60 196 47 clear fracture not clear certain 172.55 63 the intersection ta etas pkar uncertain angle difference is big, but there isn't a better drilling fracture 202.16 54 taha etas pkar quite certain 202.23 40 cc SK L 205.36 52 241 37 open fracture yes not parallel to certain the fracture 206.35 77 232 64 open fracture no certain 211.90 50 183 43 no 212.31 39 252 23 open fracture no uncertain 215.49 74 234 60 yes not parallel to certain the fracture 215.64 75 235 66 open fracture not clear certain 219.00 47 176 77 open fracture yes parallel to the certain fracture 223.19 72 227 54 upward flow not clear certain 223.20 55 226 35 upward flow not clear certain 223.30 81 216 62 upward flow not clear certain 225.26 61 250 76 clear fracture 10 cm below not clear certain 205.32 54 could be 205.34 la tasa karll quite certain 206.31 72 av etas karll certain 211.92 54 av etas karll quite certain 212.31 45 tiiha kaar karll certain 215.49 72 av etas karll certain 215.64 72 av etas pkar certain 219.01 45 could be 219.01 av etas karll quite certain 223.13 could be 223.29 av etas karll quite certain 223.14 ta etas karll uncertain 223.19 ti etas karll uncertain 225.21 54 av kaar pkar certain 205.40 50 cc SK L 206.50 60 L 211.90 50 cc L 212.40 45 cc SK 215.50 80 L 215.65 70 cc 219.05 45 L - )> "'tj "'tj m z c >< PH,ET/FT 2.3.2004 KR7 _properties-tk_tarll-lopul.xls\sheet1
OL-KR7: List of conductive fractures FT -3.7.2003-Hydrology Appendix 1 J 1 t! J f KR07 225.24 64 247 72-5.7 225.50 KR07 227.29 40 248 23-6.8 227.50 '. f hi :1 6.0 0.00 Crushed zone 30.0 4.0 0.00 Crushed zone f h Granite oeamatite broken core sample o'...' KR07 227.58 44 197 27-6.0 227.70 30.0 4.0 0.00 Crushed zone Granite pegmatite broken core sample KR07 227.72 37 187 21-6.0 227.70 30.0 4.0 0.00 Crushed zone Granite pegmatite broken core sample KR07 228.13 68 229 49-5.2 228.40 30.0 4.0 0.00 Crushed zone Granite pegmatite broken core sample KR07 234.11 57 184 67-7.7 234.30 5.0 4.91 Granite pegmatite KR07 239.63 57 65 90-5.0 239.80 KR07 241.49 73 237 75-6.3 241.60 7.0 10.43 Hydraulic feat. 1.0 12.29 a ne gne The alternatives could be excluded. KR07 242.24 63-9.1 242.40 KR07 243.67 65 238 87-8.6 243.80 KR07 244.87 71 238 76-7.7 245.10 2.0 13.04 5.0 14.47 4.0 15.67 Granite oeamatite gne gne This was recognised to be conductive at Loppi. KR07 244.95 71 238 76-7.7 245.10 4.0 15.75 gne 0\ KR07 244.96 81 227 76-7.7 245.10 4.0 15.76 gne This fracture is not through the core sample and thus not reported in the drilling report. KR07 246.28 54 180 60-8.5 246.50 3.0 17.08 Granite pegmatite KR07 246.80 67 47 89 246.65 KR07 246.81 72 230 85-7.4 247.00 KR07 248.34 33 82 71 248.30 KR07 248.77 63 248.60 KR07 248.94 57 196 42-5.4 249.10 5.0 17.60 5.0 17.61 3.0 19.14 7.0 19.57 7.0 19.74 Granite pegmatite a ne Granite pegmatite Granite pegmatite gne This was recognised to be conductive at Loppi. From the older flowmeter results. This was recognised to be conductive at Loppi. From the older flowmeter results. This was recognised to be conductive at Loppi. From the older flowmeter results. KR07 251.26 47 208 28-7.4 251.40 KR07 254.14 69 232 54-5.9 254.20 KR07 261.18 72 261.30 KR07 262.05 64 243 59-7.3 262.20 KR07 263.48 75 233 75-8.9 263.60 KR07 272.65 65 229 48-6.6 272.80 KR07 274.22 35 274 80-8.3 274.40 KR07 276.57 69 239 67-8.6 276.70 KR07 278.89 71 236 61-6.4 279.10 KR07 279.47 53 209 34-7.8 279.70 KR07 280.63 57 248 52-5.2 280.80 KR07 282.82 34 86 81 282.70 6.0 22.06 2.0 24.94 Hydraulic feat. 3.0 18.02 8.0 17.15 1.0 15.72 2.0 6.55 1.0 4.98 6.0 2.63 11.0 3.0 0.31 8.0 3.0 0.00 Fracture zone 9.0 3.0 0.00 Fracture zone 3.0 0.00 - ----- L...-- Granite oeamatite a ne Granite pegmatite Granite oegmatite gne Granite oeamatite Granite oeamatlte Granite oeamatite Granite oegmatite Granite j)eginatite Granite pegmatite Granite pegmatite Chanaed the core sample fracture to sacond alternative. This was recognised to be conductive at Loppi. From the older flowmeter results. Chanaed the correlated drilina fracture at Loooi. This - recognised to be conductive at Loppi based on the older flowmeter results. )> "'D "'D m z c >< PH,ETFT 2.3.2004 KR7 _properties-tk_tark-lopul.xls\sheet1
OL-KR7: List of conductive fractures Jl c! '& i 'lit tt t f i 11 S fl 225.29 64 247 72 clear fracture 10cm below not clear certain 225.24 227.29 40 248 23 possibly downward flow; not clear certain at 226.91 m fracture head 2 cm less than borehole head 227.58 44 197 27 upward and downward flow; not clear certain at 227.98 fracture head 51 cm less than borehole head 227.72 37 187 21 downward flow not clear certain 228.13 68 229 49 clear fracture; not clear certain at 228.99 fracture head fracture head 29 cm less than borehole head 234.16 57 184 67 upward flow yes parallel to the certain 234.11 fracture 239.67 57 65 90 upward flow no certain 239.63 241.47 73 237 75 upward flow no certain 241.49 242.24 243.67 65 238 87 upward flow no certain 243.67 244.97 71 238 76 upward flow yes not parallel to certain 244.87 the fracture i J. ie 'C i t t il il 63 av kaar pkar zone, individual fractures not reported, no fractures a rough estimate zone, individual fractur fractures not e zone reported, no fractures a rough estimate zone, individual fractur fractures not e zone reported, no fractures a rough estimate zone, individual fractur fractures not ezone reported, no fractures a rough estimate 63 taha tasa pkar 54 ta tasa _pkar 77 only possible av etas pkar fracture 63 ti etas pkar 68 ta etas pkar 50 av etas pkar certain le si Jl 227.10-1 cc 227.10-1 cc 227.10-1 cc 228.60 80 cc certain 234.10 50 uncertain certain 241.50 85 uncertain certain quite certain g SK K+SV SK K+SV SK K+SV SK K+SV SK L FT-3.7.2003-Hydrology Appendix 1 244.97 71 238 76 upward flow yes not parallel to certain 244.95 the fracture 72 av etas pkar quite certain..j::>. -.J 244.96 81 227 76 upward flow yes not parallel to certain the fracture 246.29 54 180 60 upward flow yes parallel to the certain 246.28 fracture 246.80 67 47 89 no 246.80 246.81 72 230 85 upward flow no certain 246.81 248.35 33 82 71 no 248.34 248.77 50 av etas kark 81 av kaar pkar 77 av etas kark 32 ta etas pkar 63 av etas pkar certain 246.35 50 246.85 85 cc certain 246.86 85 cc 248.35 30 cc 248.75 30 cc SK SK SK SK Kl L SV sv 248.95 57 196 42 upward flow 2 cm below yes parallel to the certain 248.94 fracture 251.25 47 208 28 upward flow no certain 251.26 254.12 69 232 54 open fracture no certain 254.14 261.18 262.04 64 243 59 upward flow no certain 262.05 263.47 75 233 75 upward flow no certain 263.48 272.69 65 229 48 upward flow not clear certain 272.65 274.26 35 274 80 upward flow not clear certain 274.22 276.59 69 239 67 upward flow not clear certain 276.57 278.93 71 236 61 upward flow not clear certain 278.89 279.50 53 209 34 upward flow gne/ara not clear certain 279.47 280.65 57 248 52 upward flow not clear certain 280.63 282.86 34 86 81 no 282.82 54 av etas pkar 54 ti etas kark 72 av etas kark 72 av etas pkar 72 av etas _pkar 72 ti tasa pkar 63 av tasa kark 36 av kaar kark 72 ti kaar kark 72 ti etas pkar 50 could be 279.51 ta etas pkar 68 could be 280.68 or av etas pkar 280.69 41 ta tasa pkar... certain uncertain certain 254.15 80 cc certain 262.10 70 cc certain certain 272.60 60 certain 274.20 30 cc certain 276.60 70 cc certain 278.95 70 cc quite certain 279.50 45 cc quite certain 280.65 50 cc 282.85 40 ---- SK SK SK SK SK SK L L SV L )> "tj "tj m z c ><...a. PH,ET/FT 2.3.2004 KR7 _properties-tk_tark-lopul.xls\sheet1
OL-KR7: List of conductive fractures t j f KR07 284.77 30 212 40 284.80 hi f :1 30.0 4.0 0.00 Crushed zone Granite pegmatite.. h J This was recognised to be conductive at Loppi. FT-3. 7.2003-Hydrology Appendix 1 KR07 284.96 57 214 38-0.7 285.10 30.0 4.0 0.00 Crushed zone Granite pegmatite KR07 285.96 64 190 71-5.2 286.30 30.0 4.0 0.00 Crushed zone Top of the zone KR07 286.23 65 208 47-5.2 286.30 10.0 0.00 Crushed zone Bottom of the zone. KR07 287.59 56 184 54-6.6 287.80 30.0 4.0 0.00 Crushed zone KR07 289.70 2.0 1.80 Could be, sample shows signs of flow. Recognised to be conductive at Loppi. 1 KR07 300.77 45 190 30-8.8 301.10 3.0 12.87 KR07 305.86 79 225 77-8.5 305.90 7.0 17.96 The second alternative Tv-fracture was selected at Loppi. Core fracture OK. KR07 409.53 51 8 77-8.6 409.40 13.0 3.0 0.00 Fracture zone broken sample KR07 4 10.11 60 182 55-8.9 410.00 KR07 415.03 29 183 11-8.7 414.80 15.0 3.0 0.00 Fracture zone 11.0 3.0 2.33 Pegmatite broken sample 00 )> ""0 ""0 m z c ><..a. PH,ET/FT 2.3.2004 KR7 _properties-tk_tar11-lopul.xls\sheet1
OL-KR7: List of conductive fractures FT-3.7.2003-Hydrology Appendix 1 i. i ' i r &! fl c. J! ' ec: ; ' i lt t 264.77 30 212 40 no 264.96 57 214 36 upward flow not clear certain 265.96 64 190 71 top depth of fracture zone not clear certain 266.23 65 208 47 bottom depth of fracture zone not clear certain :!!.. i a G. zone, individual fractures not reported, no fractures a rough estimate zone, individual fractures not reported, no fractures a rough estimate zone, individual fractures not reported, no fractures a rough estimate in the fracture section above, no fractures estimated. ei il il 11! lt ll i 264.95 70 cc 265.95 50 286.15-1 SK 6 J i 6 Kl SV J i. 287.59 56 164 54 upward flow not clear certain zone, individual fractures not reported 287.45-1 cc Kl 300.89 45 190 30 open fracture yes parallel to the certain 300.77 45 fracture 305.75 79 225 77 open fracture, alternatively 305.747 no certain 305.86 75 14/210/58 409.51 51 8 77 open fracture, alternatively 409.615 35f7/83 not clear certain 409.53 60 410.12 60 182 55 open fracture not clear certain 410.11 70 415.00 29 183 11 open fracture no certain 415.03 30 none fits well taha etas pkar very uncertain 300.85 45 cc thickness 3 mm, tamu tasa karl< quite certain could also be 305.78 could also be tamu etas pkar uncertain 409.54 tamu kaar pkar quite certain tamu etas pkar quite certain 305.86 75 cc SK 409.53 60 cc SK 410.11 70 cc SK 415.03 30 SK L Kl Kl Kl \0 )> ""0 ""0 m z c ><...a. PH,ET/FT 2.3.2004 KR7 _properties-tk_tar1<-lopul.xls\sheet1
OL-KR8: List of hydraulically conductive fractures FT-3.7.2001 -Hydrotogy Appendix 1 HYDRAUYCONDUcnN FRACTURE8 11 i lltl! t! 11 d Ht hi i lhl v-. 0 PH.ET/Fintact 2.3.2004 KR8_properties-TK_afk-loputxts\Sheet1
OL-KR8: List of hydraulically conductive fractures FT-3.7.2001-Hydrology Appendix 1 FRACTURES FROM BOREHOLE WALL MAGE FRACTURES FROM CORE SAMPLE MAPPNG (DRLUO) FRACTUERS FROM MNERALOGCAL STUDES i ' tt _ t! 2034 30 19 t illlt t JJ! f b 11. 11 J 11 f J 1 '11! ] f_l 11 J ll i ii 6 Vosibleftow r -9cmbetow jnotclear notparallelto rsotutely 2022 23 tii kaar pkar quotecertaon 11....r :;- -; ;1!!:::---]2 :::?:::::::,;.; := :ft=-=-.... - - - --.1 ' - - -:-::------'-------f-- ju:an ------- ;-- r_:_ - in _j t_j -;r-rn 1-- 2---92 90 No clear and open fracture --- yes :±--- - -----:- - pkar :::_:::_ ----- L not clear not parallel to uncertain 40.01 27 loniy'possible ta etas kar1< quite certain 40.03 15 KA -- 43.59 --:i7 5s 31' cieartracture, no- visible flow----- ----foo---- <:!.!_- quite certain -32- ----------a- r--eiss -Dkar- '43:65-15 ----- --- -' ---- lyes neay luncertaon 49 90 41 only reported to uncertain 49.92 45 parahelto the fracture fohatoon 59.60 24 257 52 Clear fracture, but no vosoble flow, fracture f; 'yes not parallel to uncertaon 59 58 27 ta etas quite certain 59.61 20 74.01 r 41 +- 280 4o :a:'. 1 o:rds, gran/gne yes 0 :to )AhsOiutOty -- 7398 4s - - -- ti tasa Pi<Sr- quiiecertain- "'74.60" 50 1- -r--l-+---l--l- - ::: 1 :,q ;;;;;;; F,-F-- :-r= =: --=- -;.;;.;;- = --.. -...,,., 0 --ltt 7579m _J_ 77. 70 T 3o-_ 4_7_1 21 clear fracture With flow both upwards and +-----jy.;s--- parahel to tiie-!at>soluteiy -- 77.67 32_ ----------ti etas kar1< - quote certiiin- 7i713 o - -+------+--+--+--- EJ:; -:!i;,z :t:= i =3 =-==m:: f== ==r.. : ;::: --l - : -=;H H ; ; :: -H ::. ;,; ;: - :;-. - :11 :- hre m 82.35 68 360 56 stinct open fracture/broken zone ---- notdear Absolutely 82.30 72 tiimu tasa kar1< certain 82.30 80 L certain ' ----T -----+-_]-- -- ;;;:ell;;_----- ------==-ear ------ quite certain 83.59-14 --=- -:_,:: _ 105.11 t 46 20 + 34 Partly open fracture, the lowest is the most no 32 kaar pkar quite certain probable, alternatives include 105.026 m 631330138 and 104.851 m 461302127 r-;,,4 c:'==== ------ ;:'::. ---- q:= =- 63-- ----------- -:--:--: 106.05 65 62 M - 355 106.-- 0 40 Remar1<1e open fracture, atternatively yes not parallel to jcertain 106.98 72 Alternatively ta etas pkar uncertain 106.624 40/25/84 the fracture 106.62 m 107.37 65 76 1Remar1<1e open fracture, atternatively jno!certain 1107.34 68!Alternatively taha etas site uncertain 107.38 50 CC SK 107.196 611323138 107.18 m Vl PH,ET/Fintact 2.3.2004 KR8_properties-TK_tar1<-klpul.xls\Sheet1
OL-KR8: List of hydraulically conductive fractures FT-3.7.2001-Hydrology Appendix 1 lrll J J 11111 111 -- 09.8 :..: r 29- - - 1 109.90 5 8.3. Hydraulcfeat. Granite J 1 J 1 lh sample is missing ;@thr -r 1 - J :- = 1 -- :;-= === 1 conductive. KR08-11862 35 l 42 49-7.1 11850 - -- - 6 0-- Fracture zone -- --- gne - - ---- sample is missing - -- -- KR08 118.57 27 1 50 56-7.1 118.50 --s 0 Fracture zone gne - x Newconducuvefractures,alsothesecondalternativesofthefollowingoneare,...,- -"''" -,-r;; --.,-- cro 1 12140---- ---4-- 20-3-- 0 Ractum zone Granite--- ----tiroken sami)ie----------------.. - -- - - --..--- ----- = - =- r :2; --:*;_ - :- :""'- =!::.-:::--:- +..::;:-"...,.;;--=--= l l,... '"'" " j '" ",., f ''"' ' "' --,_, "',00 ----i - --- --. - ---- :::_-r:= ;! t--: t-===f: -:: - --- ---=e r --:1==-===--::-:::::. =--:-=--:-_-::== KR08 135 49 23 55 57-7.0 1 135.40 1 12 3 0.99 Granite x Uncorrected image depth 135.92 V N :r::-:t KR08 138.95 18 [ 74 32 12 3 0 Fracturezone Granite Atthedepth138.20-139.50brokenzoneinwhichatleastfourconductive fractures check these, core sample fractures 138.22 and 139.54 (the lower _; :, M- -r; -:=-::; -:;-t-; - ------- ---, ftft ft ft ftft ft ft ft ft ft 11 3 0 Fracture zone Granite l broken sample ::: --t : :; _, ; : - :: 1- ::-l-::::----- -1-: 0 Fracturezone :: ----------- ------! KROs -r 148 93-50- - 22 - --49-T :S:s-- --148.90--- - - --- r g-f -- 743-- - i<r08] 15242 --46 284_-- 2---:--:--=-t :F --= - ---- re s 1 2 11 ------------------------ -- - - -kth-1-: _: - j -} l- ----it-- -f.-:=--- ---... -----.. +-- - KR08 250.06 ' 33 276 21-5.3 249.90 5.64 Hydrauic feat. gne sample is missing, three possibilities with similar properties. 1 KR08 251.63 ' 63 78-8.7 251.50, 4.07 Granite Not conductive PH,ET/Fintact 2.3.2004 KR8_proper1ies-TK_tarl<-lopul.xls\ShMt1
OL-KR8: List of hydraulically conductive fractures Jl 11 tt t! 109.89 42 291 28 Clear fracture J 1 i _J, yes 1 i 111 n 1 11 not parallel to!certain 109.87 50 the fracture 11:::: 45 296 29 n:::=res, \yes :;:':to jcertain 112. 41 45 11t;;';;:ely t kaar kark quotecertaon -:12.47 50 CC j ::r-=-:+:. =:::::=t--:r- s== -:-f ---== = - F f-: ::-:=Ftt 1 the fracture 115.85 23 64 28!Only visible fracture, but not open yes r_ atherparalel-uncertain 115.82 18 Alternatively tahl quotecertaon 11586 30 CC : SK ill' - to the fracture 115.88 m! 118.59 27 5oT ss,...-t-,o - -1''Twofriiclufe5-CioseloeaCiiOther, yes p,jraiieitothe - 1 18.57 27 - - ""!Aha tasa pkar - 118 56 50-1 eitheronej- ---!=..yes.- a;arallel t rtain. 118.62 36 Alternatively taha t85a- pkar QUite certain 11 40 -- ---1 of them or both, alternatively 118.625 m \yes to the fracture 1118.62 m 121.29 12 92 69!paralleltotheborehole,uncertain i----ln.; - ----- quitecertain 121.35 18 i2ooiid taha ei8ssii8"- uncertaon -- 12055----=l cc ----rri-tx--+--1 depth and orientation. Also other fracture close by, difficult to say which is the conductive one. Alternative s 120.675 m 11/81/39 j 122.48, the other. one could be j 1 ;f';!;e_=_b:::::::::7--:":::=--:=- ij-=-=: --=- --::--;:- ::-:-=::l 1 1 the fracture conductive fracture also at depth app F- :.:::=:::::::::=- =fe:- :::: -=--= = :::::: --.: :J=-=--== -- 1 132.99 32 --:i clearr;.act.;e----------- gra/gne6cm yes ratherpiiraiieil certain-- -133.00 32 - -PTrl 133.06 30 ccabove to the fracture 1 2-3 - 57 Open fracture, alternatively 135.874 yes!not parallel to!absolutely 135.49 27 Alternatively tilha tasa 1 sile uncertain 135.85 60 CC 28/53/35!the fracture!certain 135.89 m 18 74 32 138.96 18 74 ' 32!Clear fracture, alternatively 139.159 m cc SK L 29/52/26 or 139.229 m 54/17/50 certaon J f everal conductive --H-fr-f ---- --l t. i:jtiiiraciiii'e ilardly-cooiductive 'bui-oio ----- -- ---- + ; :;; ken - --- --- ncertliin -139 42 -- ---2-3 ---- -- -- --------- i --f--ts$8- f --i>kar -- unceilaon ----39-44 - 3a+ --- f --- ===][=:==[=_=][ - -======================= =========== ======== :::::::=========== ================-===== ==============-====:= 140:25 142.84 27 other fracture close by, w not the ones r ju r:nnected to the prevoous conductove -y.- to 45 28 65 Clear fracture, no other possobihties close by ---!Yes rather paraftel.certaon - l'"'"i40.:i.3-41 - t - - taha etas the fracture 52-49" Ciear fracture.-no other possoboloties close by --- - not parallel to certaon the fracture pkar uncertain 1--:;40.24 50 142.80 18 ta kaar si le uncertain 14i 88 25 l MK E;i; ::::::::f= ;:::_--.::: r oe 148.92 50 ta tasa pkar quite certain 148.95 60 cc L -- - t --- 178.68 13 197 SK " li.. ;t==rr.--- 47!Only possible!yes not parallel to 'uncertain 178.61 14 only one with a ti tasa pkar certain 178.50 CC SK --- 250.1 1 33 276 21!Open fracture, others also in the same zone, alternatives include 250.085 m 29/317/3 and 250.135 32/289/11 ----- -x- yes. ::::::to Absolutely 250.06 36 = :-=:'----tal--,tasa :---+-S-o-.le-+-q""" ui,... te-certa --,-,- in -l-c2=50-=-.=os,--30'""+-l-+-- the fracture certain mineralogy 3 parallel fractures, the middle one l ----------;----------l-------+o:;='iiy-:;;n p.;ssill;i;,distirlci-itiet- ----------j ------- --t --------------r------------- l - 251-:-63 --"--- - s3 --- - r-'! --------------A ---r---ta58 ---1-- P<.. -,- ---;"iiecertairi -- 12s1sT :--ss-hct-- 8K--+------ ----- 1--cS,.,-K,... FT-3. 7.2001-Hydrology Appendix 1 Vl w PH,ET/Fintact 2.3.2004 KR8_properties-TK_tark-lopul.xls\Sheet1
OL-KR8: List of hydraulically conductive fractures FT-3.7.2001-Hydrology Appendix 1 ll!lltl! KR08 254.89 32 281 13 KR08 254.92_, 23-l- 185 48 ' J -5.6 254.70 i<roe -r2ss.54-37 r 295 -r - :;-r r =s::i J 2s5:so - -! 11111 hi 0.81 -- -- -., 0.78! - -s --r -3 -----ois - T' J J gne Grane gne ll l New conductive fractura recognised at Loppi. - ------ se-veiiiiilr&c:tlir&s iiieoiiewiiha -oenii&.iiiiiqki isiiiepiob&bie-ioiie ooiliiuctiv9: KRos -r 256.34 28 264 18-6:0 256.40-5 f.if: Fracture zooe gne 1- -sampleismissini - KRii8-273. 76 47 311 25 :s:9-j 273.6o -- -! 1o 3 --1606 - '" --- - -=ti:::== """:.. =t ± ';i""'":========== Peg-matite -... -,, : : : KROB i 274 95 47 130 84 - - -1 5 25 --- Pegmatite - x New conductive fracture recognised at Loppi. Uncorrected TV :fracture depth os mu KROB 275 10 46 22 31-7.9 275 00 5 17.4 gne JT. 64 :_ -L ::.?. -.J - _:-J.1_o_6_.0 KR08 307.98 60 5 41-7.6 1 307 80 3 50.28 gne --- -1; : =:11-_ E!i ii :,;:oo:"- Ros_ 284 93 _ 1-314 80-7-2 284.80 - - 3 ---v23-1- Pegmatite _. _Me_:stive exd ----- _ --- _ V't PH,ET/Fintact 2.3.2004 KR8_properties-TK_tatl<-lopul.xls\Sheet1
OL-KRB: List of hydraulically conductive fractures FT-3.7.2001-Hydrok>gy Appendix 1 254.92 68 249 Both fractures are open and partly overlapping, can be either one of these or both, the other alternative is 254.921 m -. -? 21249!_2_7_ - 27 Vl Vl PH,ET/Fintact 2.3.2004 KR8_properties-TK_tark-lopul.lds\Sheet1
OL-KR9: List of hydraulically conductive fractures FT -3.7.2003-Hydrology Appendix 1 HYDRAUUCALL Y CONDUCTVE FRACTURES c 0! 1 t & c! KR09 41.88 51 1 f... a. r 18-8.1 41.90,!! s i 4 104.52 J J gra KR09 42.77 46 7 23-8.6 43.00 uncertain 1 103.63 Veined gneiss KR09 43.59 56 354 12-7.4 43.62 4 102.81 Veined gneiss KR09 49.07 46 353 22-6.4 49.21 2 97.33 Veined gneiss KR09 53.79 28 346 KR09 54.97 55 136 41-8.0 53.92 48-6.4 55.12 1 92.61 1 91.43 Tonalite Tonalite KR09 63.73 26 332 44-6.2 63.82 1 82.67 Hydraulic feat. Tonalite KR09 66.36 66 282 5-5.5 66.42 1 80.04 Hydraulic feat. Tonalite KR09 68.75 45 KR09 69.15 15 355 KR09 69.40 9 354 KR09 69.50 40 344-8.1 68.50 83-7.2 69.32 uncertain 77-7.2 69.52 29-7.2 69.52 6 77.65 8 77.25 7 77 6 76.9 Tonalite Veined gneiss Veined gneiss Veined gneiss KR09 70.64 55 81 25-7.0 70.72 6 75.76 Hydraulic feat. Veined gneiss KR09 71.04 44 138 61-8.1 71.12 6 75.36 Hydraulic feat. Veined gneiss KR09 72.21 35 150 KR09 74.49 47 154 74-6.9 72.13 62-7.7 74.52 5 74.19 5 71.91 Hydraulic feat. Veined gneiss Veined gneiss Ul 0\ KR09 74.49 50 158 65-8.1 74.82 5 71.91 Veined gneiss KR09 76.74 66 123 KR09 77.94 30 86 30-7.6 76.92 56-8.7 78.20 2 69.66 3 68.46 Veined gneiss Veined gneiss KR09 78.70 19 85 68-8.4 78.90 2 67.7 gra KR09 79.01 77 66 KR09 80.78 81 158 KR09 85.87 47 5 4-8.8 79.20 7-8.9 80.70 21-8.0 86.02 2 67.39 1 65.62 11 60.53 Veined aneiss Veined aneiss Veined gneiss KR09 88.86 14 284 69-8.5 88.88 2 57.54 Veined gneiss KR09 89.59 43 115 KR09 92.20 KR09 100.83 67 107 KR09 103.99 65 47 54-8.5 89.52-8.7 92.22 18-8.4 101.02 4-8.0 104.12 2 56.81 3 54.2 2 45.57 3 42.41 Veined gneiss Veined gneiss Veined gneiss Veined gneiss KR09 104.79 26 158 85-8.1 105.02 7 41.61 Veined gneiss KR09 105.39 69 146 KR09 107.65 40 170 KR09 108.95 52 254 KR09 109.98 59 236 KR09 116.80 63 145 KR09 118.72 81 KR09 119.72 68 KR09 124.20 41 348 37-7.2 105.52 72-7.9 107.82 38-7.6 109.02 42-8.6 109.80 41-8.8 116.80-8.8 118.20-8.7 119.50 27-6.9 124.32 4 41.01 4 38.75 5 37.45 3 36.42 6 29.6 1 27.68 7 26.68 3 22.2 Veined gneiss Veined gneiss Veined gneiss Veined gneiss Migmatic mica gneiss Migmatic mica gneiss Amphibolite )> "'tj "'tj m z c ><... PH,ET/FT 2.3.2004 KR9_properties-TK-opul.xls\Sheet1
OL-KR9: List of hydraulically conductive fractures FT -3.7.2003-Hydrology Appendix 1.. H i FRACTURES FROM BOREHOLE WALL MAGE ft i. E ;. 41.80 51 1 18 c E only possible fracture r 8 jj ';i :1 8 :. 11 not clear '; certain FRACTURES FROM CORE SAMPLE MAPPNG (DRLLG) e J!..! ';i 'C ft 11,!ll J 0 e c. li ';i! il c: i 41.88 23 too big intersection la etas pkar uncertain angle difference FRACTUERS FROM MNERALOGCAL! STUDES u :! lt 1 l! t.!.6: A ll' :sr l u fi 41.88 22.5 cc SK 42.74 46 7 23 43.57 56 354 12 49.05 46 353 22 53.78 28 346 41 54.96 55 136 48 63.65 26 332 44 66.33 66 282 5 69.16 15 355 83 69.36 9 354 77 69.34 40 344 29 70.62 55 81 25 only possible fracture clear fracture not clear clear fracture only possible fracture clear fracture clear fracture fracture zone fracture zone fracture zone clear fracture yes not parallel to uncertain the fracture yes not parallel to certain the fracture gran/gne yes not parallel to uncertain the fracture not clear certain yes parallel to the uncertain fracture yes not parallel to certain the fracture yes not clear not clear not clear not clear not parallel to certain the fracture certain certain certain certain 42.77 54 only possible ti etas kark quite certain 43.59 63 ti etas kark certain 49.07 54 ti etas kark quite certain 53.79 32 la etas kark certain 54.97 59 la etas pkar certain 63.73 45 too big intersection ti kaar kark uncertain angle difference 66.36 68 ta etas kark certain 68.75 45 la kaar kark uncertain 69.15 18 la kaar kark certain 69.40 18 la kaar kark uncertain 69.50 23 could also be ti etas uncertain 69.34, 69.4 70.64 63 ti etas kark certain kiis 53.79 31.5 cc KA 54.97 58.5 cc SK 66.36 67.5 cc 68.75 45 cc 69.15 18 cc KA 69.40 18 cc L 69.50 22.5 cc L kiis 71.01 44 138 61 72.16 35 150 74 74.46 47 154 62 clear fracture very unclear fracture uncertain, alternatively 74.608 m 66/183/45 yes parallel to the certain fracture yes parallel to the uncertain fracture no uncertain 71.04 41 la tasa sile certain 72.21 41 ta tasa kark uncertain 74.49 50 Alternatively 74.64 la etas kark certain 71.04 40.5 SK 72.21 40.5 SK SM 74.49 49.5 cc SK SM Vl -J 74.49 50 Alternatively 74.64 la etas kark uncertain 74.49 49.5 cc SK SM 76.72 66 123 30 78.08 30 86 56 78.69 19 85 68 85.81 47 5 21 89.52 43 115 54 100.80 67 107 18 103.96 65 47 4 only possible fracture not clear not open no fractures no fractures fracture in the same fracture zone not clear open fracture only possible fracture not clear certain yes not parallel to uncertain the fracture yes not parallel to uncertain the fracture yes not parallel to certain the fracture no no no uncertain certain quite certain 76.74 77 ti tasa pkar certain 77.94 59 la etas pkar uncertain 78.70 23 ta etas kark certain 79.01 77 Alternatively 78.7 ti etas pkar quite certain 80.78 81 ti etas kark quite certain 85.87 50 taha tasa sile uncertain 88.86 14 only possible ti etas pkar quite certain ahough tight 89.59 59 la etas pkar uncertain 92.20 from mineralogy quite certain 100.83 68 la etas kark certain 103.99 63 la tasa pkar certain 77.94 58.5 KA 78.70 22.5 cc KA 85.87 49.5 cc 88.86 13.5 cc 89.59 58.5 cc 92.20 58.5 cc kiis 103.99 63 KA 104.74 26 158 85 105.38 69 146 37 107.68 40 170 72 108.92 52 254 38 124.18 41 348 27 possibly this fracture possibly this fracture both are possible, alternative is 107.622 34/170n8 clear fracture no fractures clear fracture yes not parallel to uncertain the fracture not clear uncertain no certain yes not parallel to certain the fracture gne/amf yes not parallel to certain the fracture 104.79 23 la etas pkar certain 105.39 77 la etas kark certain 107.65 36 ahematively 107.7 la tasa pkar certain 108.95 59 ti etas kark certain 109.98 59 weathered ti tasa pkar quite certain according to mineralogy 116.80 63 alternatively taha tasa si le uncertain 116.97 118.72 81 only possible ti kaar kark uncertain 119.72 68 syiipynyt ti kaar!quite certain 124.20 41 tii tasa pkar certain 104.79 22.5 cc SK 105.39 76.5 cc 107.65 36 cc 109.98 58.5 SK KA 116.80 63 cc 118.72 81 KA 119.72 67.5 124.20 40.5 cc SK SM+KA )> ""0 ""0 m z c >< PH,ET/FT 2.3.2004 KR9_properties-TK-opul.xls\Sheet1
OL-KR9: List of hydraulically conductive fractures FT-3.7.2003-Hydrology Appendix 1 i t, KR09 125.35 53 270 J 29-7.2 J 125.42 f! 4 hi 21.05 J J Veined gneiss KR09 126.99 29 237 72-8.7 127.12 uncertain 1 19.41 Veined gneiss 'KR09 127.77 38 264 51-7.0 127.82 4 18.63 Veined gneiss KR09 141.61 58 123 40-6.7 141.72 6 4.79 Veined gneiss KR09 142.79 41 185 71-8.4 143.00 3 3.61 Veined gneiss KR09 147.33 61 174 52-5.4 147.52 10 0 Crushed zone Veined gneiss KR09 147.33 58 160 53-8.3 147.52 10 0 Crushed zone Veined gneiss KR09 148.92 49 114 47-7.7 149.22 18 3 0 Crushed zone Veined gneiss KR09 149.26 77-5.2 149.00 14 4 0 Crushed zone Veined gneiss KR09 187.10 31 54 KR09 188.35 49 73 44-7.9 30-8.0 187.22 188.15 2 8 36 37.25 Peamatite_granite Pegmatite granite KR09 188.54 41 70 KR09 188.56 42 9 KR09 215.64 64 73 KR09 219.20 54 131 KR09 219.62 18 334 KR09 227.61 27 KR09 245.01 27 183 38-8.3 25-8.3 7-8.6 45-8.7 87-8.4-8.5 85-8.1 188.62 188.62 215.82 219.02 219.74 227.62 244.82 5 5 6 uncertain 4 6 1 6 37.44 37.46 64.54 68.1 68.52 76.51 93.91 Pegmatite granite Pegmatite granite Mica gneiss Quartzite gneiss Quartzite gneiss Quartzite gneiss Quartzite gneiss Vl 00 KR09 245.49 67 172 KR09 252.31 72 116 46-8.8 23-8.5 245.52 251.92 4 6 94.39 101.21 Quartzite ijneiss Quartzite gneiss KR09 280.61 34 162 79-7.5 280.82 10 129.51 Veined gneiss KR09 361.81 59 166 51-10.7 361.50 3 81.39 Pegmatite granite KR09 444.52 81 156 23-6.9 444.35 20 3 0 Fracture zone Veined gneiss KR09 444.58 65 197 48-6.9 444.35 22 3 0 Fracture zone Veined gneiss KR09 445.09 70 144 37-7.6 444.82 uncertain 15 0 Fracture zone Veined gneiss KR09 474.68 61 72 KR09 474.78 68 118 KR09 490.38 54 KR09 496.20 68 118 KR09 522.71 13 9 KR09 547.81 45 191 KR09 567.65 85 175 7... 9 14... 9-8.0 14-8.3 77-8.5 68-8.5 32-7.7 474.52 474.52 490.12 496.12 522.82 547.52 567.40 10 10 9 1 8 uncertain 12 3 13 0 Fracture zone 0 Fracture zone 10.38 16.2 21.99 0 Fracture zone 1.05 Veined gneiss Veined gneiss Veined gneiss Veined gneiss Veined gneiss )> "'D "'D m z c ><..a. PH,ET/FT 2.3.2004 KR9_properties-TK-opul.xls\Sheet1
i OL-KR9: List of hydraulically conductive fractures '! it i :si. E J c. J 125.33 53 270 29 126.98 29 237 72 127.75 38 264 51 141.57 58 123 40 142.75 41 185 71 147.33 61 174 52 clear fracture clear fracture E both are possible, not open, alternative is 127.694 m 45/263/42 open fracture clear fracture open fracture in fracture zone c 0 jl of S ft 8 :. j yes not parallel to certain 125.35 the fracture yes not parallel to certain 126.99 the fracture yes not parallel to uncertain 127.77 the fracture yes parallel to the certain 141.61 fracture yes not parallel to uncertain 142.79 the fracture no certain 147.33 jl! Ji -! i Ji Jl 01 c r! 54 ti tasa pkar 32 ta etas kark 50 Atternatively 127.7 ti etas kark m 59 tamu tasa kark 41 ta tasa pkar 54 ta etas pkar a le n si li certain 125.35 54 0 certain 126.99 31.5 quite certain uncertain 141.61 58.5 certain 142.79 40.5 certain 147.33 54 s i cc cc cc SK SK,.. a i 8 t5 FT-3.7.2003-Hydrology Appendix 1 J 147.36 58 160 53 open fracture in fracture zone no certain 147.33 54 could be 147.35 ta etas pkar quite certain 147.33 54 SK 148.99 49 114 47 open fracture in fracture zone not clear certain 148.92 63 ti kaar kark uncertain 187.12 31 54 44 188.37 49 73 30 look 149.22, maybe one of them upward flow from the fracture upward and downward flow from the fracture 149.26 no certain 187.10 no certain 188.35 77 several tamu tamu etas pkar fractures 32 ta etas sile 50 this is a conductive ti tasa pkar fracture, but difficutt to correlate tot-value uncertain 149.22 85.5 certain 187.10 31.5 certain 188.35 49.5 SK L L 188.57 41 70 38 188.57 42 9 25 215.63 64 73 7 219.55 18 334 87 245.51 67 172 46 280.69 34 162 79 downward flow from the fracture open fracture open fracture open fracture no fractures clear fracture upward and downward flow from the fracture no certain 188.54 no certain 188.56 no certain 215.64 219.20 not clear certain 219.62 227.61 245.01 not clear certain 245.49 252.31 not clear certain 280.61 45 tamu tasa pkar 50 ti tasa kark 63 ti tasa kark 54 ta etas kark 36 ta etas sile 27 ta kaar kark 27 Atternatively taha kaar sile 244.93 72 ta etas sile 72 Atternatively ti tasa kark 251.79 36 the depth matches ti tasa better to 280.66 but intersection angle don't certain 188.54 45 certain 188.57 45 uncertain 215.64 63 [quite certain 219.20 54 uncertain 219.62 36 quite certain 227.61 27 quite certain 245.01 27 certain 245.49 72 uncertain 252.31 72 uncertain cc cc cc SK SK L L KA SM+PA L L L Vl \.0 444.53 81 156 23 444.61 65 1g7 48 445.03 70 144 37 474.67 61 72 7 474.73 68 118 14 496.32 68 118 14 522.81 13 9 77 567.81 85 175 32 no fractures open fracture open fracture open fracture, alternatives 444.969 75/212/19 and 444.93 74/151/36 open fracture open fracture can't say which one of the fractures not clear not open alternatively 566.878 20/1 02/75 361.81 no certain 444.52 no certain 444.58 not clear certain 445.09 no certain 474.68 no certain 474.78 490.38 yes parallel to the uncertain 496.20 fracture no uncertain 522.71 547.81 no uncertain 567.65 59 the upper ti etas kark alternative is closed,alternatively 361.76 m 77 tamu etas kark 77 ta etas pkar 72 Attematives ta etas pkar include 445.02 and 445.04 59 ti tasa pkar 45 ta etas pkar 54 ta etas kark 81 ta etas pkar 18 taha etas sile 45 taha etas pkar 81 too many drilling ta tasa pkar fractures quite certain certain certain 444.58 76.5 certain 445.09 72 certain 474.68 58.5 uncertain 474.78 45 quite certain 490.38 54 uncertain uncertain quite certain uncertain 567.65 81 cc cc cc cc cc cc SK SK SK SK SK )> "'tj "'tj m z c >< PH,ETFT 2.3.2004 KR9_properties-TK-opul.xls\Sheet1
OL-KR10: List of hydraulically conductive fractures FT -3.7.2003-Hydrology Appendix 1. j J cl KR10 117.03 49 199... r 50-8.0 1 117.24 1S i!e! lt!i 3 142.97! KR10 118.02 54 KR10 124.72 50-9.2-9.2 118.04 124.78 1 141.98 8 135.28 KR10 125.06 17 317 27-9.2 125.36 10 134.94 KR10 129.75 72 KR10 130.47 62 135 KR10 133.75 33 179 KR10 155.35 62 206 KR10 157.04 65 22-9.6 70-8.8 30-9.0 71-8.4 84-7.8 129.86 130.66 133.27 155.63 157.29 2 130.25 3 129.53 2 126.25 3 104.65 2 102.96 Granite oeamatite Granite pegmatite Granite pegmatite Migmatltlc mica gneiss KR10 157.05 64 20 79-7.8 157.29 2 102.95 KR10 158.82 49 209 83-8.6 159.15 1 101.18 KR10 161.54 7 253 KR10 210.45 16 42 KR10 211.86 74 131 KR10 213.66 72 139 KR10 224.06 54 26 KR10 253.86 31 46 80 81-9.0 73-8.3 69-9.0 89 65-9.0 210.66 211.97 213.70 253.92 uncertain 1 98.46 2 49.55 2 48.14 4 46.34 uncertain 2 35.94 3 6.14 gra gne gne Granite pegmatite KR10 254.61 30 50 KR10 260.47 47 324 KR10 260.54 51 316 77-9.2 55-6.2 65-6.2 254.73 260.65 260.65 1 5.39 5 4 0.00 5 4 0.00 Crushed zone Crushed zone 0"1 0 KR10 308.68 46 209 59-10.7 308.77 uncertain 2 46.68 KR10 320.71 61 16 KR10 320.76 77 358 KR10 326.36 66 340 KR10 327.43 60 196 89-8.3 87-8.3 74-7.0 61-5.5 320.87 320.87 326.57 327.59 4 45.79 4 45.74 10 3 40.14 9 39.07 Hydraulic feat. KR10 360.20 18 341 KR10 367.02 22 316 23-8.7 32-8.2 360.35 367.22 2 6.30 6 4 0.00 Crushed zone Granite pegmatite KR10 368.32 39 343 44-8.2 368.08 uncertain 30 4 0.00 Crushed zone KR10 376.69 44 188 KR10 401.61 55 177 KR10 407.32 24 191 KR10 417.00 29 152 KR10 420.71 20 208 KR10 424.09 43 171 KR10 454.56 44 164 43-8.9 49-9.1 19-8.8 26-8.1 17-9.1 37-8.2 40-8.4 376.75 401.70 407.48 417.05 420.85 424.11 454.56 1 6.59 3 31.51 3 37.22 1 46.90 2 50.61 2 53.99 0 366.50 Granite pegmatite Pegmatite )> "'0 "'0 m z c x..a. PH,ET/FT 2.3.2004 KR10_properties-TK-opul.xls\Sheet1
quite OL-KR10: List of hydraulically conductive fractures FT -3.7.2003-Hydrology Appendix 1 u c:.! j '0 c: E 'Ot J 11 Jl t 1lf E : Si! t 117.06 49 199 50 downward flow yes not parallel to certain 117.03 the fracture 118.02 124.72 'ii g! '&i 1 i :ef J al! 50 the only possible ti tasa kark 54 only possible ta kaar pkar 50 from mineralogy il il. 1: u il it il! certain certain 118.03 45 cc quite certain 124.72 50 : l! 11: :a CO.!!- C' SK u KA L 0 1 fi J 125.13 17 317 27 yes not parallel to certain 125.06 the fracture 14 could be 125.04 taha etas pkar quite certain 125.18 10 SK KA 129.75 130.49 62 135 70 no other fractures no uncertain 130.47 133.05 33 179 30 tight fracture no uncertain 133.75 155.32 62 206 71 downward flow no certain 155.35 157.03 65 22 84 no other fractures, possibly downward flow not clear certain 157.04 72 i etas kark 63 ta etas pkar 63 none fits ti tasa pkar 72 ti etas okar 63 ti etas pkar ncertain 129.81 75 certain uncertain 133.78 75 cc certain 155.30 70 cc certain 157.04 64 20 79 no other fractures, possibly downward flow not clear certain 157.05 68 ti etas pkar certain 158.81 49 209 83 no other fractures yes not parallel to uncertain 158.82 the fracture 54 ti tasa kark certain 158.85 50 162.02 7 253 80 possibly upward flow no uncertain 161.54 210.56 16 42 81 no other fractures no uncertain 210.45 211.92 74 131 73 upward flow no certain 211.86 213.75 72 139 69 uncertain no uncertain 213.66 224.14 54 26 89 upwardflow no certain 224.06 253.84 31 46 65 only possible yes not parallel to uncertain 253.86 the fracture 254.60 30 50 77 upwardflow yes not parallel to certain 254.61 the fracture 260.46 47 324 55 upwardflow no certain 260.47 260.54 51 316 65 upwardflow no certain 260.54 0 no reported flow ta kaar pkar 32 don'tfrtwell ta kaar pkar 81 ta la sa kark 72 ta etas pkar 54 ta la sa pkar 32 could be 253.82 ta tasa pkar 41 no other possible ta etas pkar drilling fractures 45 tamu etas kark 52 could be 260.65, tamu tasa sile but the intersection angle difference would be bigger 161.88 0 uncertain certain 211.78 80 cc certain 213.67 80 certain 224.10 45 quite certain 253.94 30 certain 254.56 30 certain 260.45 45 cc certain 260.60 40 kiis SK SK SK SK L KA+SV L sv L tk 0\ 308.68 46 209 59 upwardflow yes not parallel to certain 308.68 the fracture 50 ta tasa pkar certain 308.65 40 Kl 320.78 61 16 89 clear fracture not clear uncertain 320.71 320.82 77 358 87 clear fracture not clear uncertain 320.76 326.44 66 340 74 open fracture not clear certain 326.36 327.48 60 196 61 open fracture, could be also 327.396 no certain 327.43 53/204/57 360.15 18 341 23 clear fracture no uncertain 360.20 366.99 22 316 32 clear fracture, could be also 367.328 uncertain 367.02 18/25/30 368.32 39 343 44 no certain 72 ta etas lpkar 81 ta etas lpkar 72 could be 326.41 taha etas si le 59 could be 327.42 or ta etas pkar 327.45 23 ti etas kark 23 ta tasa kark too many possible drilling fractures certain 320.70 70 certain 320.75 70 ;quite certain 326.15-1 cc quite certain certain 360.20 20 certain 367.00 20 cc 368.40 40 SK SK SK KA KA L KA 376.67 44 188 43 clear fracture no uncertain 376.69 401.60 55 177 49 open fracture no certain 401.61 407.33 24 191 19 clear fracture yes not parallel to certain 407.32 the fracture 416.98 29 152 26 clear fracture yes not parallel to certain 417.00 the fracture 420.69 20 208 17 clear fracture no uncertain 420.71 424.08 43 171 37 no uncertain 424.09 454.56 44 164 40 no uncertain 41 ta etas lpkar 45 could be 401.56 ta kaar lpkar 27 ta tasa pkar 27 ta etas kark 23 ta tasa lpkar 45 ti etas kark no drilling fractures reoorted certain 376.68 45 certain certain 407.20 10 cc certain 417.05 30 cc 420.82 20 cc certain 424.12 45 SK SK Kl )> "'C "'C m z c S<...a. PH,ETFT 2.3.2004 KR 1 O_properties-TK-opul.xls\Sheet1
OL-KR10: List of hydraulically conductive fractures FT -3.7.2003-Hydrology Appendix 1 'V c J lr KR10 458.56 66 171 KR10 469.38 70 158 J 62-8.3 89-9.2 f 1 i 458.63 469.43 ih f 1 88.46 j 2 99.28.. J Mica gneiss KR10 499.70 42 127 54-7.6 499.70 12 3 129.60 gne KR10 559.38 41 168 KR10 560.60 64 330 33-9.2 84-9.0 559.38 560.55 1 189.28 7 190.50 KR10 599.29 43 138 46-10.7 599.41 1 229.19 ------ 0'\ N > "'0 "'0 m z c >< PH,ETFT 2.3.2004 KR10_properties-TK-opul.xls\Sheet1
OL-KR1 0: List of hydraulically conductive fractures! 11.. c. jl r c:t! 458.55 66 171 62 469.29 70 158 89 E c. clear fracture r E 1S l! c: sf at lt c: li 0 il lii )i!.!! :2 ci no certain 458.56 68 yes parallel to the uncertain 469.38 68 fracture J lii 'C! ;! i 11! ta etas pkar certain could be 469.29 as ta tasa pkar quite certain well gf! : lt 3! i! 'i ci! 458.56 70 SK 469.45 50 cc SK i 1..2 g ) 6 L FT -3.7.2003-Hydrology Appendix 1 J 'i 499.66 42 127 54 downward flow; at depth 499.76 m fracture head 43 cm less than borehole head no certain 499.70 27 too big intersection ta kaar uncertain angle difference, could also be 499.76 or 499.63 559.41 41 168 33 560.62 64 330 84 unclear no uncertain 559.38 41 yes not parallello uncertain 560.60 59 the fracture ta la sa pkar certain ta etas pkar certain 559.30 45 cc 560.60 65 cc 599.32 43 138 46 unclear no uncertain 599.29 63 too big intersection ti etas pkar uncertain angle difference L ------ - --- -------- ------ 0\ w )> "tj "tj m z c 5< PH,ETFT 2.3.2004 KR10_properties-TK-opul.xls\Sheet1
64 APPEND2 Well CAD logs of conductive fractures and rock properties Hydraulically conductive fractures Depth(m): ntersection angle (degrees 0- ) : Oriented fractures (degrees 0-360): Fracture frequency (1/m): Log(K) (m/s): LogT (ta/s): Lith: Str: Hyd: Ri: measured along borehole length from borehole wall images, if fracture is not observed in the image the intersection angle according to the drilling report from borehole wall images, if fracture is not observed in the image the orientation according to the drilling report, colour according to fracture type according to the bedrock model v. 2003/1 (Vaittinen et al. 2003) hydraulic conductivity 2 m, log m/s transmissivity, log m /s rock types according to the bedrock model (Vaittinen et al. 2003), which in turn is based mainly on the mineralogical studies the structure type of structure model (average rock mass/fracture zone/crushed zone) in the surrounding of the fracture is defined according to the bedrock model v. 2003/1 (Vaittinen et al. 2003) the structure type of hydro geological model (average rock mass/hydraulic feature/fracture zone/crushed zone) in the surrounding of the fracture is defined according to the bedrock model v. 2003/1 (Vaittinen et al. 2003) Ri-class (Rilll, RiiV, RiV), based on engineering geological mapping (Vaittinen et al. 2003)
""',..., 65 APPEND2 OL-KR4 ntersection angle: Open Tight Filled Op. si. e Ti. si. Fi. si. Clay filled Grain filled 0 Unknown Oriented fractures: cf' Certain observation Uncertain observation, colours as above Log(K): Log(T): Hydraulic conductivity 2 m, log m/s Transmissivity, log m2/s Lithology: Granite D Quartz feldspar gneiss Structural section, structural model: D lntact rock Fracture zone - Crushed zone Structural section, hydr. model: D ntact rock Hydraulic feature Fracture zone - Crushed zone Ri-class, based on engineering geological mapping: D Ri ll Ri V. RiV Depth ntersection angle Oriented fractures Fract.freq. Log(K) Lit h. Str Hyd Ri - - -- -- -- -- 1 m:1700m 0 90 0 90 0 1/m 20-10 m/s -5 KR04_ KR04 - Log(T) - - - 50.0-100.0 150.0..... f il r\ C- r 0 / -10m2/s -5 :- ==- er- " 0.---.-- 2 lc1..11aa lc1..11aa f- V'" V'" la A ll ( \..., ( () \ r- '180/23 0 >--fo-" > > 'nn 1180/23 200.0 1-.. > r- 250.0 > ;:=c lp 1-11 p F 300.0 ( ( "V' - t---r-- 41.. la t 6.41-4
66 APPEND2 1-1- 350.0 t- 400.0 - O. ' li' d <) hi U 12 Q"-'?nA F""i r" RH70A '"' U 137/18 loo- 4 1- p.--- ir">u'\'h'> lr">u'\nr> 0 126112 1126/12 R = (., f;_ > 1-450.0 t:> ( 500.0 c c) F? [ lo t= D 1- c 0 \ t;> 1- r- 600.0 - f> i;> b ( ' ( = t 650.0 ( 550.0 j.:::::> b- :=- 10:- ) b - P- - 700.0... ) :::::- ==b..
67 APPEND2
68 APPEND 2 OL-KR7 ntersection angle: Open Tight Filled Op. si. e Ti. si. e Fi. si. Clay filled e Grain filled 0 Unknown Oriented fractures: d Certain observation / Uncertain observation Log(K): Log(T): Hydraulic conductivity 2 m, log m/s Transmissivity, log m2/s Lithology: Granite Structural section, structural model: D ntact rock D Fracture zone Structural section, hydr. model: D ntact rock Hydraulic feature Crushed zone Fracture zone Crushed zone Ri-class, based on engineering geological mapping: D Ri 111 Ri V Ri V Depth ntersection angle Oriented fractures Fract.freq. Log(K) Lith. Str Hyd Ri 1m:1700m 0 90 0 90 0 1/m 20-10 m/s -5 KR07_ KR07 Log(T) v.v -10m2/s -5 - = 50.0-100.0 h \ ' ro 0 150.0 0 0 200.0 - '""' U 1... U - 250.0 Ul
69 APPEND2 (lp 300.0 1-.. ; 1- r ( lo 411 f t- > 17RH 0( :L'lnt :.!'b/1:.!' l:iloil:il n.n.o.u.., 126/12 f- 350.0 t- f- 400.0 > t- r 450.0 t- 0 T 411 0 - =- '""'"" 5...::: 1' = r 500.0 v==- - - 550.0 M t- r- 600.0 l$ - 650.0 { r- s-" ;
70 APPEND2 OL-KR8 ntersection angle: Open Tight Filled Op. si. Ti. si. Fi. si. Clay filled e Grain filled 0 Unknown Oriented fractures: if. Certain observation Uncertain observation Log(K): Log(T): Hydraulic conductivity 2 m, log m/s Transmissivity, log m2/s Lithology: Granite D Quartz feldspar gneiss Structural section, structural model: D lntact rock Structural section, hydr. model: D ntact rock Hydraulic feature Crushed zone Ri-class, based on engineering geological mapping: D Ri ll RiiV. RiV ntersection angle Oriented fractures Log(K) Lith. Ri 0 90-10 m/s -5 Log(T) 50.0 100.0 150.0 200.0 250.0
71 APPEND2 () N 5. F? r 300.0 ll 0 ) F= F= - F=? F= 350.0 '!a_ =? ls""' 1- -- { D'" - 400.0 = :::::1 - - 450.0 - " 1 ( V L,..:.iS" = ===! 11R =... r;::- = > j i l - --" - 500.0 r- -,..,...,...,... = :::::1!!!! : 550.0 =...- <r-
72 APPEND2 OL-KR9 ntersection angle: Open Tight Filled Op. si. e Ti. si. e Fi. si. Clay filled Grain filled 0 Unknown Oriented fractures: ("'</ Certain observation t.._,...j Uncertain observation, colours as above Log(K): Log(T): Hydraulic conductivity 2 m, log m/s Transmissivity, log m2/s Lithology: D Granite D Quartz feldspar gneiss Amphibolite D Tonalite Structural section, structural model: D ntact rock Fracture zone - Crushed zone Structural section, hydr. model: D ntact rock Hydraulic feature Fracture zone Crushed zone Ri-class, based on engineering geological mapping: D Ri 111 - Ri V Ri V Depth 1m:1700m o ntersection angle 90 0 Oriented fractures Fract.freq. Log(K) 90 0 1/m 20-10 m/s -5 Log(T) Lith. Str Hyd Ri KR09_ KR09_ v. v -10m2/s -5-50.0 c la - lo 0 fo do lo l - c l,. p 1-100.0 - c 150.0-0 la" (.411 (. C).. J 1 '/ )c C> t:=!!l ' rl = re lk Fa 11 0 N > 10: t-4 M... \ '-... v /J > <) ;;;;;;;;.. 0 r--- lr 1' l p ( "r----. 80/23 RH19B RH19B 1180/23 180/23 01-'"A.., F== 200.0-1- 250.0 0 4.41 lo 0 0 v r- v t fa ( io_ q [; l'b [. i:s" :.. Fa l:r ' \ "'-r-- > (
73 APPEND2 4 \ 1 300.0... C> ( p ( tr=- -..J - 1-350.0 400.0 > :> ::::>? r,.- ::>= r- )!< RH20A 0 Q r f""' r- i=' l.)f/10 f- 450.0 \ "V p=f"''.. RH20B RH20B 1-... 126112 1126/12 f- 500.0 t- s- 0 t- = 0 0- je jjii f- 550.0 t- t:::nn n 0 b "....,j { 3 - = ft'c F==?? :;
74 APPEND2 OL-KR10 ntersection angle: Open Tight Filled Op. si. e Ti. si. e Fi. si. Clay filled Grain filled 0 Unknown Oriented fractures:.. :::{' Certain observation Uncertain observation Log(K): Log(T): Hydraulic conductivity 2 m, log m/s Transmissivity, log m2/s Lithology: Granite Structural section, structural model: D ntact rock Fracture zone Crushed zone Structural section, hydr. model: D ntact rock Hydraulic feature Fracture zone Crushed zone Ri-class, based on engineering geological mapping: D Ri ll - Ri V Ri V Depth 1m:1700m o ntersection angle 90 0 Oriented fractures Fract.freq. Log(K) Lith. Str Hyd Ri 90 0 1/m 20-10 m/s -5 KR10_ KR10_ Log(T) v.v -10 m/s -5-50.0 t- r- 100.0 t- 150.0-200.0 0... - p eo c 0 ' F F\ t \, l!:>!f=? '- f--._ - (\_ i <>c 7 3.: = ;;z 0 - r> 2-? ). - 0 9 lo r c ( l r :;:J 250.0 d 0 V \ '\ - > RH?nA RH?OA 1137118 137/18
75 APPEND2 F f- 300.0 0 J > 0? 1- o ;> f- 350.0 j:. 1- - 1- c f\?' ( p f6 10 400.0 [U \ 450.0 ;&;;;;. l.l0/1"' l"'oil"'!51!1 = p lo t> lt p -!ii >- < < '\ ) 9 n 10 ""' \ lo O ( t> =p ',(r 'r =- = 1-500.0 f- 550.0 1- ( [)., lr. "'' t:3::- ls ) c;=- )? 0 b b=- > ) 600.0 k ("'\ ['- F <) > >
Properties of the hydraulically conductive fractures 76 APPEND 3 1/4 KR4 KR7 KRS KR9 KR10 Total all 29 73 75 69 41 287 (quite)certain 11 25 17 53 Rock type KR4 KR7 KRS KR9 KR10 Total (quite)certain 0 GN 9 17 17 79 GR 1 4 0 36 Tonalite 0 2 0 3 Quartz 1 1 0 2 Amphibolite 0 1 0 1 all GN 24 41 23 54 33 171 GR 4 32 50 6 8 81 Tonalite 0 0 1 5 0 6 Quartz 1 0 0 6 0 7 Amphibolite 0 0 0 1 0 1 Lithological contacts KR4 KR7 KRS KR9 KR10 Total l(quite)certain at contact 1 1 2 close to contact 0 no contacts 10 24 17 51 all at contact 5 1 1 2 9 close to contact 1 3 4 8 no contacts 23 69 70 67 41 270 Foliation KR4 KR7 KRS KR9 KR10 Total (quite)certain in foliated rock 9 7 6 22 parallel 4 1 5 rather parallel 2 2 not parallel 3 6 6 15 no foliation present 12 8 20 not clear 2 6 3 11 undefined 0 all in foliated rock 15 17 43 24 10 109 parallel 5 7 13 7 1 33 rather parallel 3 7 10 not parallel 5 10 23 17 9 64 no foliation present 24 15 18 22 79 not clear 10 26 11 17 5 69 undefined 5 6 6 19 4 40 Fracture type KR4 KR7 KRS KR9 KR10 Total (quite)certain Filled (Hi) 5 15 9 29 Filled slickensided (Taha) 1 2 3 Grain filled (Tamu) 3 2 2 7 Open (Av) 0 Tight (Ti) 2 8 4 14 all Filled (Ta) 19 17 46 39 24 145 Filled slickensided (Taha) 3 4 8 6 2 23 Grain filled (Tamu) 4 4 4 7 2 21 Open (Av) 30 30 Tight (Ti) 4 7 9 26 10 56 PH,ET/JP-Fintact summary _results.xls\sheet1
Properties of the hydraulically conductive fractures 77 APPEND 3 2/4 Clay filled (Hisa) 1 Fracture infillings KR4 KR7 KR8 KR9 KR10 Total [(quite)certain Carbonates 2 11 6 19 Sulphides 4 12 7 23 Clay minerals 6 8 6 20 Corroded 2 2 Chlorite 4 4 6 14 Graphite 1 1 No reported infillings 2 2 4 8 all Carbonates 14 35 28 37 10 124 Sulphides 13 28 22 26 12 101 Clay minerals 14 38 20 23 12 107 Hollows 4 5 3 12 Chlorite 11 19 32 13 10 85 Graphite 3 2 2 1 8 No reported infillings 3 19 20 14 9 65 Shape of the fracture KR4 KR7 KR8 KR9 KR10 Total [(quite)certain planar (tasa) 1 10 6 17 irregular (etas) 8 14 10 32 undulating. (kaar) 1 1 1 3 undefined 1 3 4 all planar (tasa) 5 9 27 19 13 73 irregular (etas) 23 45 30 40 20 158 undulating (kaar) 1 8 10 9 5 33 undefined 11 8 1 3 23 Fracture surface KR4 KR7 KR8 KR9 KR10 Total [{g_uite)certain rough.(kark) 1 10 4 15 semirough (pkar) 9 12 11 32 smooth (sile) 1 3 2 6 undefined 0 3 3 all rough (kark) 3 28 22 31 9 93 semirough (pkar) 22 33 35 25 26 141 smooth ( sile) 4 1 10 8 1 24 undefined 11 8 4 3 26 Fracturing degree KR4 KR7 KR8 KR9 KR10 Total [(quite)certain 0-2 () 9 23 14 46 3 1 2 1 4 4 1 2 3 all 0-2 () 22 57 60 64 35 238 3 5 8 15 4 2 34 4 2 8 1 4 15 Structure type KR4 KR7 KR8 KR9 KR10 Total [(quite)certain Average rock () 6 16 14 36 Hydraulic Feature 3 3 1 7 Fracture zone 0 4 4 Crushed zone 2 2 2 6 all Average rock () 14 55 46 54 36 205 Hydraulic Feature 6 2 12 5 1 26 Fracture zone 5 4 17 6 32 Crushed zone 4 12 0 4 4 24 PH,ET /JP-Fintact summary _results.xls\sheet1
Properties of the hydraulically conductive fractures 78 APPEND3 3/4 Percentages Rock type l(quite)certain GN GR Tonalite Quartz Amphibolite all GN GR Tonalite Quartz Amphibolite Lithological contacts (quite)certain at contact close to contact no contacts all at contact close to contact no contacts Foliation (quite)certain in foliated rock parallel rather parallel not parallel no foliation present eos undefined all in foliated rock parallel rather parallel not parallel no foliation present eos undefined Fracture type (quite)certain Filled (Hi) Filled slickensided (Taha) Grain filled (Tamu) Open (Av) Tight (Ti) all Filled (Ta) Filled slickensided (Taha) Grain filled (Tamu) Open (Av) Tight (Ti) KR4 82 9 0 9 0 KR7 79 56 10 44 0 0 3 0 0 0 KR4 KR7 9 0 91 17 1 3 4 79 95 KR4 KR7 82 44 22 33 0 18 0 52 23 33 41 20 0 33 59 0 33 34 36 17 8 KR4 KR7 45 9 27 0 18 66 23 10 5 14 5 0 41 14 10 KR8 KR9 KR10 Total 68 100 149 16 0 68 8 0 6 4 0 4 4 0 2 31 78 80 60 67 9 20 28 1 7 0 2 0 9 0 2 0 1 0 0 KR8 KR9 KR10 Total 4 0 4 0 0 0 96 100 96 1 3 0 3 5 0 0 3 93 97 100 94 KR8 KR9 KR10 Total 28 35 42 14 0 23 0 0 9 86 100 68 48 47 38 24 18 21 0 0 0 57 35 24 38 30 29 10 30 16 0 0 9 53 71 90 59 20 26 54 28 15 25 12 24 8 28 10 14 KR8 KR9 KR10 Total 60 53 55 0 12 6 8 12 13 0 0 0 32 24 26 61 57 59 51 11 9 5 8 5 10 5 7 0 0 0 10 12 38 24 20 PH,ET/JP-Fintact summary_results.xls\sheet1
Properties of the hydraulically conductive fractures 79 APPEND 3 4/4 Fracture infillings j(quite)certain Carbonates Sulphides Clay minerals Hollows Chlorite Graphite No reported infillings all Carbonates Sulphides Clay minerals Hollows Chlorite Graphite No reported infillings Shape of the fracture (quite)certain planar (tasa) irregular {etas) undulating {kaar) undefined all!planar {tasa) irregular {etas) undulating {kaar) undefined Fracture surface (quite)certain rough {kark) semirough {pkar) smooth {sile) undefined all rough {kark) semirough (pkar) smooth ( sile) undefined Fracturing degree l(quite)certain 0-2 {) 3 4 all 0-2 () 3 4 Structure type (qulte)certain Average rock () Hydraulic Feature Fracture zone Crushed zone all Average rock () Hydraulic Feature Fracture zone Crushed zone KR4 18 36 55 0 36 0 18 KR7 48 48 45 38 48 52 14 7 38 26 10 0 10 26 KR4 KR7 9 73 9 9 17 12 79 62 3 11 0 15 KR4 KR7 9 82 9 0 10 38 76 45 14 1 0 15 KR4 KR7 82 9 9 76 78 17 11 7 11 KR4 KR7 55 27 0 18 48 75 21 3 17 5 14 16 KR8 KR9 KR10 Total 44 35 36 48 41 43 32 35 38 8 0 4 16 35 26 0 6 2 8 24 15 37 54 24 43 29 38 29 35 27 33 29 37 0 4 0 4 43 19 24 30 3 3 2 3 27 20 22 23 KR8 KR9 KR10 Total 40 35 32 56 59 60 4 6 6 0 18 8 36 28 32 25 40 58 49 55 13 13 12 11 11 1 7 8 KR8 KR9 KR10 Total 40 24 28 48 65 60 12 12 11 0 18 6 29 45 22 32 47 36 63 49 13 12 2 8 11 6 7 9 KR8 KR9 KR10 Total 92 82 87 8 6 8 0 12 6 80 93 85 83 20 6 5 12 0 1 10 5 KR8 KR9 KR10 Total 64 82 68 12 6 13 16 0 8 8 12 11 61 78 88 71 16 7 2 9 23 9 0 11 0 6 10 8 PH,ET/JP-Fintact summary_results.xls\sheet1
KR4 - Drilling fracture correlation 0.40 0.30 0.20 0.10 -s 0.00 R 2 = 0.0383 Q) (.) a3-0.10 L.. :0-0.20. -0.30 "C -0.40-0.50 00 0-0.60-0.70 0.00 200.00 400.00 600.00 800.00 1000.00 drilling depth (m) depth(t}-depth(drill) tv-depth-drilling depth, class certain PH FT 3.10.2003 KR4-taulukko_ v2.xls\chart1 depth(hav)-depth(drill) T -depth-drilling depth, class certain - unear (T-depth-drilling depth, class certain) - Linear (tv-depth-drilling depth, class certain) )> ""C ""C m z c ><
KR7 - Drilling fracture correlation 0.70 0.60 0.50 o.4o 0.30 c Q) 0.20 =a o.1o Q) "'0 0.00 t--= -0.10-0.20 y = 0.0003x + 0.1041 R 2 = 0.0948 00... -0.30 0.00 100.00 200.00 300.00 400.00 500.00 drilling depth (m) PH FT 8.10.2003 KR7 -taulukko v2.xls\chart1 depth(t)-depth( drill) tv-depth-drilling depth, class certain depth(hav)-depth(drill) T-depth-drilling depth, class certain - unear (T-depth-drilling depth, class certain) - unear (tv-depth-drilling depth, class certain) )> ""0 ""0 m z c )(
KRS - Drilling fracture correlation 0.8 0.6 0.4 E' -; 0.2 () c Q) 0 :.0.s::::. c.. -0.2 Q) "'C -0.4-0.6 *xx x x v,... x x 4 V,... x -x')).( Jlf. _0 xj\ "% y = 0.0002x + 0.4467 V R 2 = 0.2941 :s: ll " y = -0.0006x + 0.0566 R 2 = 0.4817 Core sample broken 138.55-139.20 m, depth errors possible * - y e 00 N -0.8 0 50 100 150 200 250 300 drilling depth (m) T -depth-drilling depth tv-depth-drilling depth, class certain PH FT 8.10.2003 KR8-taulukko korj_ v3.xls\chart1 tv depth-drilling depth T -depth-drilling depth, class certain - Linear (tv-depth-drilling depth, class certain) - Linear (T -depth-drilling depth, class certain) )> "'tj "'tj m z c x.c:.
KR9 - Drilling fracture correlation 0.4 0.3 0.2 -- 0.1 E... Q) 0 u c Q) -0.1 :0-0.2 0.. Q) "'C -0.3 y = 3E-05x - 0.0172 R 2 = 0.0235 00 (j,) -0.4 = -0.0008x + 0.1935 R 2 = 0.7673-0.5-0.6 0 100 200 300 400 500 600 drilling depth (m) T -depth-drilling depth tv-depth-drilling depth, class certain PH FT 3.10.2003 KR9-taulukko_ v2.xls\chart1 tv-depth-drilling depth - unear (T-depth-drilling depth, class certain) T -depth-drilling depth, class certain - unear (tv-depth-drilling depth, class certain) )> "'C "'C m z c ><
KR1 0 - Drilling fracture correlation 0.60 a> (.) c a> L- 0.40 0.20 0.00 :0-0.20..c... Cl. a> "'0-0.40 y = -0.0005x + 0.2653 R 2 = 0.3655 R 2 = 0.0356 00-0.60-0.80 0 100 200 300 400 500 600 700 drilling depth (m) T-depth-drilling fracture tv-depth-drilling depth, class certain PH FT 3.10.2003 KR 1 O-taulukko.xls\Chart1 tv-drilling fracture - unear (tv-depth-drilling depth, class certain) T -depth-drilling depth, class certain - unear (T-depth-drilling depth, class certain) )> "'tj "'tj m z c x.c:.