Sähkölämmitys ja lämpöpumput sähkönkäyttäjinä ja päästöjen aiheuttajina Suomessa

Koko: px
Aloita esitys sivulta:

Download "Sähkölämmitys ja lämpöpumput sähkönkäyttäjinä ja päästöjen aiheuttajina Suomessa"

Transkriptio

1 TAMPEREEN TEKNILLINEN YLIOPISTO TAMPERE UNIVERSITY OF TECHNOLOGY Rakentamistalouden laitos. Raportti 2005:2 Institute of Construction Economics. Report 2005:2 Juhani Heljo, Hannele Laine Sähkölämmitys ja lämpöpumput sähkönkäyttäjinä ja päästöjen aiheuttajina Suomessa Näkökulma ja malli sähkönkäytön aiheuttamien CO 2 -ekv päästöjen arviointia varten Tampere 2005

2

3 1 Tampereen teknillinen yliopisto. Rakentamistalouden laitos. Raportti 2005:2 Tampere University of Technology. Institute of Construction Economics. Report 2005:2 Juhani Heljo & Hannele Laine Sähkölämmitys ja lämpöpumput sähkönkäyttäjinä ja päästöjen aiheuttajina Suomessa Näkökulma ja malli sähkönkäytön aiheuttamien CO2-ekv päästöjen arviointia varten Tampereen teknillinen yliopisto. Rakentamistalouden laitos Tampere 2005

4 ISBN ISSN

5 3 Esipuhe Tässä raportissa kuvataan sähkölämmitystä ja erilaisia lämpöpumppulämmityksiä sähkönkäyttäjinä Suomessa. Lisäksi on tarkasteltu lämmityssähkön vaikutuksia sähköntuotantoon ja päästöihin. Vaikutuksia voidaan tarkastella useilla eri periaatteilla, jotka johtavat erilaisiin lopputuloksiin. Tässä raportissa on esitetty uusi periaatteellinen tarkastelutapa, joka asettuu marginaalitarkastelun ja keskimääräistarkastelun väliin. Taustalla on tavoite ymmärtää paremmin, miten mm. sähkölämmitystapojen muutokset ja erilaiset sähkönsäästötoimet vaikuttavat sähköntuotannossa. Tästä on apua jos pyritään laittamaan energiansäästötoimia ja lämmitystapoja paremmuusjärjestykseen eri ominaisuuksien suhteen. Kovin tarkkaan tarkasteluun ei tässä raportissa ole pyritty. Se ei käytännössä ole edes mahdollista sähkönkulutuksen ja sähköntuotannon monimutkaisuuden ja pohjoismaisten sähkömarkkinoiden aiheuttaman jatkuvan sähkön hintavaihtelun aiheuttaman tuotantorakenteen elämisen johdosta. Tavoitteena on kuitenkin tuoda lisää ymmärrystä tähän vaikeaan asiaan ja auttaa päätöksentekijöitä näkemään erilaisten sähkönkäyttötapojen todennäköiset vaikutukset. Tutkimus on osa Ympäristöklusterin tutkimusohjelman ohjelmakauden projektia Rakennuskannan ekotehokkaampi energiankäyttö (EKOREM). Yksi tutkimuksen tavoitteista on edesauttaa sitä, että kauppa- ja teollisuusministeriöllä ja ympäristöministeriöllä olisi parempi yhteinen näkemys erilaisten lämmitystapojen ja energiansäästötoimien energiankäyttö- ja päästövaikutuksista. Tutkimuksen on rahoittanut kauppa- ja teollisuusministeriö osana EKO- REM-projektia. Yhteyshenkilönä ministeriössä on toiminut ylitarkastaja Pentti Puhakka. Ohjausryhmänä on toiminut EKOREM projektin ohjausryhmä. Tutkimus on tehty Tampereen teknillisessä yliopistossa Rakentamistalouden laitoksella. Vastuullisena tutkijana on toiminut dipl.ins. Juhani Heljo ja tutkijana dipl.ins. Hannele Laine. Tekijät vastaavat sisällöstä. Tampereella marraskuussa 2005 Juhani Heljo

6 4 Tiivistelmä Raportissa tarkastellaan sähkölämmitystä ja lämpöpumppuja sähkönkäyttäjinä ja päästöjen aiheuttajina Suomessa. Raportin yksi tärkeä tavoite on esittää näkökulma ja malli sähkönkäytön aiheuttamien CO 2 -ekv päästöjen arviointia varten. Aiemmin rikki- ja typpipäästöjen ja nyt ensisijassa kasvihuonekaasupäästöjen takia on monissa selvityksissä pyritty arvioimaan sähkölämmityksen vaikutuksia päästöihin. Yhtä oikeata tapaa tehdä arvioita ei kuitenkaan ole. Aiemmin tarkastelut ovat olleet pääasiassa marginaaliperusteisia tarkasteluja tai keskimääräistarkasteluja. Kumpikaan näistä ei kuitenkaan anna oikeaa kuvaa sähkölämmityksen vaikutuksista päästöihin pidemmällä aikajänteellä. Suomen sähköntuotannon erityispiirteenä on yhteistuotannon suuri osuus, millä on oleellinen vaikutus mm. sähkölämmityksen aiheuttamiin päästöihin. Marginaalitarkastelulla voidaan arvioida lyhyellä aikajänteellä tapahtuvia suhteellisen pieniä muutoksia kuten säästötoimien vaikutuksia päästöihin. Pidemmällä aikajänteellä, kuten esim. lämmitysjärjestelmän koko käyttöaikana se todennäköisesti yliarvioi lämmityssähkön käytön aiheuttamia päästömuutoksia. Keskimääräistarkastelulla voidaan tarkastella keskimääräisen sähkönkäytön vaikutuksia päästöihin. Se ei kuitenkaan anna oikeata arviota lämmityssähkön vaikutuksista, koska lämmityssähkön käyttö poikkeaa voimakkaasti muusta sähkönkäytöstä. Keskimääräisen päästökertoimen käyttö näyttäisi aliarvioivan lämmityssähkön päästövaikutusten määrää. Motiva Oy:n teettämässä vuoden 2004 ohjeessa sähkön keskimääräinen hiilidioksidipäästökerroin on 200 kg CO 2 /MWh. Aiemmin tehdyssä energiakatselmusten vaikutusarviointiohjeessa vuodelta 2003 marginaaliperusteinen kerroin on 700 kg CO 2 /MWh. Kaukolämmön keskimääräinen päästökerroin Motivan vuoden 2004 ohjeessa on kg CO 2 /MWh. Kasvihuonekaasukertoimet (CO 2 -ekv) ovat sähkön ja kaukolämmön osalta muutaman prosentin suurempia. Tässä raportissa on esitetty sähkönkäyttöprofiiliin (pysyvyyskäyrään) sekä sähköntuotantorakenteeseen perustuva tarkastelutapa, joka johtaa lopputulokseen, jossa lämmityssähkön päästökertoimen suuruusluokka on suurempi kuin kaukolämmöllä (n kgco2/mwh). Päästökerroin muodostuu eri sähkölämmitystavoissa hieman erilaiseksi. Jotta eri sähkölämmitystapojen vaikutuksia pystyisi arvioimaan, on eri lämmitystapojen sähkönkäyttöä tarkasteltu vuositasolla kuukausittain ja osittain tarkemminkin. Sähkönkäyttöä tarkasteltaessa on pyritty erottelemaan perustehoalueen sähkö, välitehoalueen sähkö ja huipputehoalueen sähkö. Näiden suhteet ovat eri lämmitystavoissa erilaiset. Näille eri osa-alueille on myös pyritty määrittämään omat päästökertoimet. Perussähkön osalta päästökertoimen suuruusluokka voi olla esim. n. 100, välisähkön osalta (riippuen yhteistuotannon polttoaineiden jakomenettelystä) ja huippusähkön osalta Tässä tarkastelumallissa perussähkön kertoimen suuruus voidaan määrittää esim. kesäajan sähköntuotannon päästöistä. Välisähkön kertoimeksi on valittu kaukolämmön yhteistuotannossa tuotetun sähkön päästökerroin ja huippusähkön kerroin on hiililauhdesähkön päästökerroin. Edellä mainitut kolme kulutusosuutta muodostuvat erilaisissa lämmitystavoissa erilaisiksi. Esimerkiksi täydelle teholle mitoitetussa maalämpöpumppulämmityksessä jää huippuosuus vähäisemmäksi kuin osateholle mitoitetussa maalämpöpumppulämmityksessä. Osateholämpöpumppulämmityksen päästökerroin on siten hieman suurempi kuin täysteholle mitoitetun järjestelmän päästökerroin. Menettelyllä on määritettävissä päästökertoimet erikseen eri sähkölämmitystavoille, erilaisille lämpöpumppulämmitystavoille ja erilaisille sähkönsäästötoimenpiteille. Näin saadaan yksi kriteeri, jolla voidaan laittaa erilaiset toimenpiteet CO 2 -päästöjen vähentämisessä tehokkuusjärjestykseen. Tar-

7 5 vetta olisi määrittää päästökerroin erikseen ainakin ns. taloussähkölle (kiinteistö- ja huoneistosähkö), tilojen lämmityssähkölle ja käyttöveden lämmitykselle, koska niitä tarkastellaan erikseen ja ne poikkeavat merkittävästi toisistaan päästöjen aiheuttajina. Rakennusten energiatehokkuusdirektiivin vaatimusten mukaan on laskettava erikseen myös valaistussähkö. Täten myös valaistussähkölle voitaisiin määrittää oma päästökerroin. Päästövähennyksen näkökulmasta pitäisi suosia täysteholle mitoitettuja lämpöpumppuratkaisuja. Ilmalämpöpumppu ei ole kovin tehokas päästöjen vähentäjä. Tehokkaimmat energiansäästötoimet päästöjen vähentämisen kannalta ovat mm. rakennuksen vaipan lämmöneristämiseen kohdistuvat toimet sähkölämmitystalossa ja näistä tehokkaimpana paremmat ikkunat. Lämpimän veden energiankulutuksen säästö esim. aurinkokeräimen avulla sähkölämmityksessä ei ole kovin tehokas päästöjen vähentäjä. Tehokas CO 2 -ekv päästöjen vähentäjä on myös takan käyttö pakkasilla sähkölämmitystalossa. Tehokkuudella tarkoitetaan tässä päästövähennystä energiansäästöyksikköä kohti (eli toimenpidekohtaista päästökerrointa). Tehokkaimmat päästöjen vähennystoimet vähentävät useimmiten myös tehokkaasti lämmitystehon tarvetta, mistä johtuen ne ovat usein myös taloudellisimpia toimia ja niitä siitäkin syystä kannattaa suosia. Ongelmana on kuitenkin, että päästömuutokset ja tehonkäyttömuutokset eivät useinkaan näy kuluttajien energialaskuissa ja siksi ohjaus tehokkaimpiin toimiin ei toimi käytännössä. Selvityksessä on päädytty tässä vaiheessa seuraaviin kasvihuonekaasupäästökertoimiin (kgco 2 /MWh) laskettuna rakennuksen bruttotasolla (rakennukseen hankittu energia): Puu Kevyt polttoöljy 267 Raskas polttoöljy Kaukolämpö, erillistuotanto ; keskimäärin 231 Kaukolämpö, yhteistuotanto 224 Kaukolämpö keskimäärin (yhteistuotantoa 73 %) Sähkö keskimäärin 204 Sähkön marginaalikulutus Sähkön perustehoalueen kulutus 112 Sähkön välitehoalueen kulutus 459 Sähkön huipputehoalueen kulutus Sähkölämmityksen lämmitysenergia (esimerkkiarvo) 400 Kertoimet pohjautuvat pitkälti Motiva Oy:n ohjeissa käyttämiin kertoimiin muiden kuin sähkön perus-, väli-, huippu- ja esimerkkiarvon osalta. Lämmön ja sähkön yhteistuotannon osalta on käytetty hyödynjakomenetelmää jaettaessa polttoaineet ja päästöt lämmölle ja sähkölle. Hyödynjakomenetelmässä yhdistetyn sähkön ja lämmön tuotannon polttoaineet ja päästöt jaetaan vaihtoehtoisten hankintamuotojen polttoainekulutusten suhteessa. Menettelyä ja tuloksia on kritisoitu mm. sen takia, että yhteispohjoismaisten sähkömarkkinoiden, päästökaupan tai sähkön viennin ja tuonnin vaikutuksia ei ole tarkasteltu. Näillä ei kuitenkaan ole katsottu olevan oleellista vaikutusta tällä hetkellä tarkasteluun. Kritiikkiä on kohdistunut myös siihen, voiko välitehoalueen päästökertoimen määrittää kaukolämmön yhteistuotannon sähkön päästökertoimen mukaan ja miten kyseinen päästökerroin pitäisi määrittää.

8 6 Abstract The report deals with electric heating and heat pumps as electricity consuming devices and sources of emissions in Finland. One important goal of the report is to provide an approach and model for assessing CO 2 -eq. emissions. Earlier, sulphur and nitrogen emissions, and now primarily greenhouse gas emissions, are the reason for many surveys attempting to assess the impacts of electric heating on emissions. Yet, no single correct way of assessment exists. Earlier studies have been mainly margin- or averagebased. However, neither describe correctly the impacts of electric heating on emissions over the longer term. A special feature of Finnish electricity generation is the large share of combined heat and power production which affects essentially, for instance, the emissions from electric heating. Margin-based surveys can detect relatively small changes on emissions over the short term, such as the effects of conservation measures. Over the longer term, such as the service life of the heating system, they probably overestimate changes in emissions due to the use of heating electricity. Average-based surveys assess the impacts of average electricity consumption on emissions. However, they do not measure correctly the impacts of heating electricity since its consumption differs radically from other electricity consumption. Use of an average emission factor would seem to underestimate the emission impacts of heating electricity. The 2004 guideline prepared for Motiva Oy uses an average carbon dioxide emission factor of 200 kg CO 2 /MWh. The margin-based factor of an earlier impact assessment guideline for energy audits (2003) is 700 kg CO 2 /MWh. The average emission factor for district heat in Motiva's 2004 guideline is kg CO 2 /MWh. Greenhouse gas factors (CO 2 -eq.) for electricity and district heat are a few percent higher. This report presents an approach based on an electricity consumption profile and an electricity generation structure which leads to an end result where the emission factor for heating electricity is larger than that for district heat (about kg CO 2 /MWh). The emission factors of various electrical heating methods differ slightly. In order to be able to assess the impacts of different electric heating methods, their annual consumption has been monitored by month or an even shorter period. As concerns electricity consumption, an effort has been made to distinguish between basic, intermediate and peak power consumptions. Their shares in different heating methods vary. The aim has also been to determine individual emission factors for each. The emission factor for basic electricity may be about 100, for intermediate electricity (depending on fuel shares in combined heat and power production) and for peak electricity This way the magnitude of the basic electricity factor can be determined, for instance, on the basis of summertime production emissions. The factor selected for intermediate electricity is that of combined district heat production while the factor for peak electricity is that of conventional coal power plants. The method allows determining emission factors for different electric heating methods, different heat-pump heating methods and various electricity conservation measures. That provides a criterion for ranking various measures based on their effectiveness in reducing CO 2 -eq. emissions. From the viewpoint of emission reduction, heat-pump solutions dimensioned for the full required power should be favoured. The air-to-air heat pump is not very effective in reducing emissions. The most effective energy conserving measures related to emission reduction include measures that improve thermal insulation of the envelope, better windows topping the list. Conservation of the energy used to heat water, for example, by using a solar collector in the electric heating system is not very effective in reducing emissions. Using the fireplace during subzero weather in an electrically heated house reduces CO 2 -eq. emission effectively. Here, effectiveness refers to reduction of emissions per energy conservation unit (measure-specific emission factor).

9 7 The most effective emission reduction measures generally also cut the need of heating power which is why they are often also the most economical measures and should thus be favoured. The problem is, however, that changes in emissions and power consumption seldom affect consumers' energy bills, which is why they do not heed the advice to introduce more effective measures. The survey came up with the following preliminary greenhouse gas emission factors (kg CO 2 -eq. /MWh) for the entire building (energy supplied to building): Wood Light fuel oil 267 Heavy fuel oil District heat, separate prod ; average 231 District heat, combined production 224 District heat, average (73% combined prod.) Electricity on average 204 Marginal electricity consumption Basic electricity consumption 112 Intermediate electricity consumption 459 Peak electricity consumption Heating energy of electrical heating (example value) 400 The factors are largely based on those of the Motiva Oy guidelines except for the basic, intermediate, peak and example values for electricity. In the case of combined heat and power production, the benefit allocation method is applied where the fuels and emissions of production are allocated in proportion to fuel consumptions of alternate procurement methods. The method and yielded results have been criticised, for instance, because the effects of the joint Nordic electricity market, emissions trading, and export and import of electricity have not been considered. The reason is that they were not deemed to have a major effect on the results at this point. The greatest uncertainty lies in whether the intermediate consumption emission factor can be determined on the basis of the emission factor for the electricity generation component in combined heat and power plants of district heating and how to determine it.

10 8 Sisällysluettelo ESIPUHE...3 TIIVISTELMÄ...4 ABSTRACT...6 SISÄLLYSLUETTELO SÄHKÖN TUOTANTO JA LÄMMITYSSÄHKÖN KÄYTTÖ Sähkölämmityksen merkitys sähköntuotannossa Lämmityssähkön tuottaminen LÄMPÖPUMPPULÄMMITYS Maalämpöpumppu Poistoilmalämpöpumppu Ilmalämpöpumppu Split-lämpöpumppu LÄMPÖPUMPPUJEN ENERGIATALOUS Lämpöpumppulämmitys ja suoran sähkölämmityksen vertailu kuormitusmittausten pohjalta Lämpöpumppujen energiankulutus tyyppitalossa Tyyppitalon kuvaus Maalämpöpumppu Maalämpöpumppu, mitoitus 60% teholle Maalämpöpumppu, mitoitus 100 % teholle Poistoilmalämpöpumppu (PILP) Poistoilmanvaihto 0,2 1/h Poistoilmanvaihto 0,5 1/h Ilmalämpöpumppu Eri lämpöpumpputyyppien sähkönkulutusvertailu Pakkashuippujen vaikutus lämpöpumppulämmitteisten omakotitalojen sähkönkulutukseen RAKENNUSTEN LÄMMITYKSEN VAIKUTUKSET CO 2 PÄÄSTÖIHIN ENERGIANTUOTANTOTAVOITTAIN CO 2 päästöjen määrittäminen eri energiantuotantotavoissa Kuormitukseen perustuva sähkölämmityksen päästöjen määrittäminen Sähkönkulutus ja kulutuksen jakautuminen Oulun säätiedoilla PÄÄSTÖKERTOIMET ERI LÄMMITYSTAVOILLA HERKKYYSTARKASTELU JA KRITIIKKI...57 KIRJALLISUUS...60

11 9 1. Sähkön tuotanto ja lämmityssähkön käyttö 1.1. Sähkölämmityksen merkitys sähköntuotannossa Oheisissa kuvissa on pyritty hahmottamaan sähkölämmityksen osuutta ja merkitystä Suomen sähköntuotannossa. Usein kiistellään siitä, millä tuotantomuodoilla tuotettua sähköä sähkölämmittäjä käyttää. Tähän ei ole selkeätä vastausta, mutta oheisten kuvien perusteella voi päätellä, että löytyy hyvät perustelut ajatella lämmityssähkön tuotettavan pitkälti yhteistuotantolaitoksissa. Ydinvoiman voisi ajatella hoitavan pitkälti teollisuuden ja muunkin toiminnan tasaisena pysyvän sähköntarpeen. Vesivoima toimii pitkälti myös perusvoimana ja lisäksi säätövoimana hoitamassa esim. sähkönkäytön vuorokausivaihtelua. Lauhdevoimaa tarvitaan mm. tasaamaan tuontivaihteluita, hoitamaan sähkön huipputuotantoa kovilla pakkasilla ja lisäksi lauhdevoimalaitokset toimivat varavoimalaitoksina (kuvat 1.1 ja 1.2). Lauhdevoimalla tuotettua sähköä voidaan myös viedä esim. Pohjoismaihin vähäsateisina vuosina. Sähkön tuotanto Suomessa 2002 (Huipputeho lähes 12 GW) GWh/kk tammikuu helmikuu maaliskuu huhtikuu toukokuu kesäkuu heinäkuu elokuu syyskuu lokakuu marraskuu joulukuu Tuonti Lauhdutus Yhteistuotanto Vesi- ja tuulivoima Ydinvoima Kuva 1.1 Sähkön tuotanto Suomessa vuonna Tammikuussa sähkölämmitystalojen lämmityssähkön käyttö oli arviolta n GWh eli n. 18 % sähkönkulutuksesta. Sähkölämmitystalojen lisäksi sähkölisälämmittimillä lämmitetään muita taloja ja autoja merkittävissä määrin. Tuotannon huipputeho oli lähes 12 GW. Sähkölämmitystalojen sähkölämmityksen tehontarve oletetulla 30 asteen pakkasella olisi ollut lähes 4 GW. Sähkölämmityksen teho-osuus sähköntuotannossa on siten selvästi suurempi kuin energiaosuus. Kuvasta näkyy selvästi, miten ydin- ja vesivoima hoitavat perustehon. Yhteistuotantoa on sitä enemmän, mitä kylmempää on (ks. kuva 1.2). Lauhdevoima lisääntyy myös ilmojen kylmetessä. Lauhdevoiman käyttö vaihtelee kuitenkin paljon, koska sillä tasataan mm. vesivoiman ja tuonnin vaihteluja.

12 10 Sähkön tuotanto Suomessa tuotantomuodoittain GWh Astepäiväluku (3*) Ydinvoima Vesi- ja tuulivoima Yhteistuotanto Lauhdutus Tuonti tammikuu helmikuu maaliskuu huhtikuu toukokuu kesäkuu heinäkuu elokuu syyskuu lokakuu marraskuu joulukuu Kuva 1.2 Lämmön ja sähkön yhteistuotannolla on merkittävä rooli Suomen sähköntuotannossa. Yhteistuotanto seuraa melko tarkasti lämmityksen tarvetta, koska sähköä ja lämpöä tuotetaan lähes vakiosuhteella. Poikkeuksen tekee kovemmat pakkaskaudet, jolloin yhteistuotanto on jo täysin käytössä ja lämmöntuotannossa otetaan huippulaitokset käyttöön. Tämä näkyy kun verrataan kuvassa astepäiväluvun kehitystä marras-joulukuussa yhteistuotantoon. Astepäiväluvun skaalaus on sovitettu kuvaan kertomalla astepäiväluku kolmella. Ilmastosopimuksen päästövähennystavoitteiden takia on tärkeätä pyrkiä arvioimaan, minkälaisia päästövaikutuksia erilaisilla toimenpiteillä aiheutetaan. Siksi on tärkeätä arvioida, mitä todellisuudessa tapahtuu kun esim. sähkölämmitys yleistyy tai sähkönkäyttöä lämmityksessä lisätään tai vähennetään. Lyhyellä tähtäimellä voi johtopäätöksiä tehdä melko pitkälle, mutta pidemmällä tähtäimellä energiatuotantorakenteen muuttuessa arvioiden tekeminen on hankalampaa. Usein tarkastelujen yhteydessä puhutaan marginaalisähköstä ja keskimääräisestä sähköstä. Rakennusten lämmityssähkö sisältää molempia. Lämmin käyttövesi aiheuttaa melko tasaisen kuormituksen ympäri vuoden. Tämän osuuden voi ajatella oleva lähellä sitä keskimääräistä sähköä. Ilmanvaihdon ja tilojen lämmitys riippuu ulkolämpötilasta ja suuren osan tähän tarvittavasta sähköstä voidaan ajatella tuotettavan suomessa yhteistuotannossa. Yli 5 asteen pakkasilla tarvitaan lisäksi mm. lauhdevoimalaitoksia tuottamaan tarvittavaa lisäsähköä. Kaukolämmön ja sähkönkäytön vaikutuksia päästöihin ei pysty yksikäsitteisesti määrittämään. Molemmille voidaan määrittää ns. peruskerroin ja ns. marginaalikerroin. Kaukolämmön osalta ei ole vielä eroteltu peruskerrointa ja marginaalikerrointa, koska ero on melko pieni. Sähkölämmityksen osalta voidaan keskimääräisenä kertoimena käyttää esim. kerrointa noin 200 kgco 2 -ekv/mwh ja marginaalikertoimena noin 700 kgco 2 -ekv/mwh. Suurimmat ongelmat päästökertoimia arvioitaessa tulevat siitä, että kaukolämmön ja sähkön yhteistuotannossa (CHP) ei ole saatu sovittua yhteisesti hyväksyttyä tapaa jakaa päästöjä sähkön ja lämmön osalle. Kaukolämmön käyttö vaikuttaa melko suoraan kaukolämmön (CHP) sähköntuotantoon ja esim. vähentynyt sähköntuotanto

13 11 kaukolämmön yhteydessä joudutaan korvaamaan muulla tuotannolla, joka voi usein olla hiililauhdetuotantoa. Tämän takia joissakin rajallisissa tapauksissa voi esimerikiksi kaukolämmön 100 yksikön säästö aiheuttaa energiantuotannossa polttoaineen bruttotasolla vain 50 yksikön säästön. Käytännössä säästö on suurempi. Todellisuutta on kuitenkin melko vaikea arvioida. Taloudellisena tavoitteena sähköhuollossa on mahdollisimman tasainen sähkönkäyttö. Lisääntyvä sähkölämmitys aiheuttaa kuitenkin jatkuvasti kasvavan huipputehon tarpeen kovilla pakkasilla. Yleistyvä lämpöpumppulämmitys ei välttämättä tuo tähän kovin paljon helpotusta, jos lämpöpumput on mitoitettu osateholle. Näyttää siltä, että lämpöpumput korvaavat ainakin lyhyellä tähtäimellä pitkälti esimerkiksi öljylämmitystä eikä sähkölämmitystä (Kuva 1.3). Lisäksi osateholle mitoitetut lämpöpumppulämmitykset terävöittävät sähkön tehontarvehuippua. 100 %-m Uusien omakotitalojen lämmönlähdevalinnat (pääasiallinen polttoaine) Maalämpö Sähkö Muu, ei lämmitystä Maalämpö Sähkö Kaukolämpö Öljy Kiinteä 20 0 Kaukolämpö Öljy Kiinteä Lähde: Tilastokeskus, Väestörekisterikeskus, ennuste: Heljo, Nippala Kuva 1.3 Kuvan perusteella näyttää siltä, että maalämpöpumput ovat korvanneet pääasiassa öljylämmitystä ja ehkä myös puulämmitystä. Pelkästään kuvan perusteella ei kuitenkaan voi tehdä kovin pitkälle meneviä johtopäätöksiä. Huolestuttavaa on, että kova pakkasjakso (esim. viikon kestävä -35 asteen pakkanen) voi aiheuttaa ongelmia sähköhuollossa tulevaisuudessa? Ongelmaa lisää se, että kovilla pakkasilla otetaan kaikissa rakennuksissa käyttöön sähköllä toimivia lisälämmittimiä. Kovan pakkasjakson aikana toistakymmentä vuotta sitten arvioitiin lisälämmittimien aiheuttaneen 600 MW lisätehon tarpeen. Tulevaisuudessa se on todennäköisesti vielä selvästi suurempi? Ilmaston lämpenemisen takia on jossain ehdotettu rakennusten mitoitustehon alentamista. Jos näin tehtäisiin,

14 12 niin esim. kaukolämmössä lisälämmittimien käyttö kovimmilla pakkasilla lisääntyisi. Sähkölämmityksen tehontarpeen suuruusluokka karkeiden laskelmien perusteella vuonna 2025 voi olla -35 asteen pakkasessa lähelle 6 GW. Lisälämmittimien kanssa tehontarve voi olla 7 GW. Se on huomattava tehontarve kun vertaa nykyiseen 12 GW toteutuneeseen huipputehoon sähköntuotannossa. Lämpöpumppujen määrä Suomessa on vielä melko vähäinen ja nykyisellä kasvuvauhdilla niiden osuus lämmityssähkön kuluttajina on vuonna 2025 arviolta alle 20 %. Osateholle mitoitetut lämpöpumput aiheuttavat terävän sähköntarvepiikin kovilla pakkasilla. Piikin suuruusluokka vuonna 2025 voisi tehdyillä oletuksilla olla n. 0,1 GW. Tämä riippuu paljon siitä, minkä tyyppisiä lämpöpumppuja valitaan. Lämpöpumput vähentävät sähkönkäyttöä tavalliseen sähkölämmitykseen verrattuna, mutta rakennuskantatasolla vaikutus riippuu oleellisesti siitä, mitä lämmitystapoja ne tulevat korvaamaan. Tällä hetkellä ne korvaavat uudistuotannossa usein öljylämmitystä, mutta tilanne muuttuu, jos öljylämmitys vähenee ja lämpöpumppujen suosio edelleen kasvaa. Arvailujen varassa on myös, minkä lämmitysjärjestelmän valitsevat ne, jotka tulevaisuudessa vaihtavat pois öljylämmityksestä. Vaihtoehtoina ovat mm. pellettilämmitys ja maalämpöpumppu. Kasvihuonekaasupäästöjen kannalta ei maalämpöpumppua kannattaisi suosia, jos vaihtoehtona todella olisi pellettilämmitys eikä sähkölämmitys. 1.2 Lämmityssähkön tuottaminen Sähköntuotannon eri tuotantomuotojen osallistumista lämmityssähkön tuottamiseen on arvioitu kolmella tavalla. Ensin on verrattu kuukausitason tarkastelua vuositason tarkasteluun. Seuraavaksi on verrattu lämmityssähkön käyttöä yhteistuotannon sähköntuotantoon kuukausitasolla. Viimeiseksi on vielä tarkasteltu sähkön eri tuotantomuotojen riippuvuutta lämmöntarveluvusta. Kuukausitason ja vuositason tarkastelulla ei tule kovin suurta eroa eri tuotantomuotojen osalta (kuva 1.4). Kuukausitasotarkastelu on tehty siten, että kuukausittaisia tuotantojakaumia on painotettu kuukausittaisilla lämmityssähkön käyttömäärillä. Kuukausitasotarkastelu antaa hieman tarkemman keskimääräisen arvion eri tuotantomuotojen käytöstä kuin vuositason tarkastelu. Kumpikaan tarkastelu ei kuitenkaan anna vastausta siihen, mihin tuotantomuotoihin sähkölämmitysmuutokset vaikuttavat tai millä tuotantomuodoilla voitaisiin ajatella lämmityssähkö tuotettavan.

15 13 Sähkölämmityksen käyttämät sähköntuotantomuodot v vuositasolla ja kuukausitasolla laskettuna kun oletetaan, että käyttö on tuotantomuotojen suhteessa Vuositason tarkastelu Kuukausitason tarkastelu 40 % 35 % 30 % 25 % 20 % 15 % 10 % 5 % 0 % Ydinvoima Vesi- ja tuulivoima Yhteistuotanto Lauhdutus Tuonti Kuva 1.4 Sähkölämmityksen oletetaan usein käyttävän sähköä samassa suhteessa kuin mitä sähköä tuotetaan. Oletusta käytetään, koska tarkempiakaan yleisesti hyväksyttyjä menettelyjä ei ole kehitetty. Kuvassa on verrattu vuositason jakaumaa ja kuukausittain laskettua jakaumaa. Suurta eroa ei näillä laskentatavoilla kuitenkaan synny. Kuukausitason laskenta on hieman oikeampi tarkastelutapa ja se painottaakin yhteistuotantoa enemmän kuin vuositason laskenta. Arviota sähkölämmityksestä vuonna 2002 on verrattu yhteistuotannon sähköntuotantoon. Koko yhteistuotantoa on käsitelty kuvassa 1.5 ja kaukolämmön yhteistuotantoa kuvassa 1.6. Kaukolämmön yhteistuotanto näyttää vielä riittävän kattamaan koko sähkölämmityksen sähköntarpeen. Teollisuuden yhteistuotanto, joka on kuvassa 1.5 mukana, tuottaa sähköä pitkälti teollisuuden omaan käyttöön, eikä siten oletettavasti riipu suoraan lämmitystarpeesta, muuten kuin teollisuusrakennusten lämmityksen osalta. Koska teollisuusrakennusten lämmitystä ei yleensä tarkastella rakennusten energiankäyttötarkasteluissa, on mielenkiintoisinta verrata rakennusten sähkölämmitystä kaukolämmön yhteistuotannon sähköntuotantoon. Kuvasta 1.6 voi päätellä, että Suomessa tällä hetkellä rakennusten sähkönkäyttö ja kaukolämmön yhteistuotannon sähköntuotanto ovat järkevässä suhteessa toisiinsa. Jos sähkölämmityksen määrä kasvaisi tulevaisuudessa voimakkaammin kuin kaukolämmön yhteistuotannon määrä, pitäisi lauhdetuotantoa tai muuta korvaavaa tuotantoa lisätä. Tässä esitetty tarkastelu ei tarkoita sitä, että yhteistuotannon sähkö jotenkin myytäisiin ja ohjattaisiin sähkölämmitykseen. Näinhän ei vapailla sähkömarkkinoilla tapahdu. Tarkastelu kuitenkin osoittaa, että Suomessa sähkön tuotantorakenne ja kulutusrakenne on suurelta osin sopusoinnussa keskenään ja se voi olla yksi syy edulliseen sähkön hintaan.

16 14 Yhteistuotannon sähköntuotanto ja arvio sähkölämmityksen sähkönkäytöstä v GWh/kk Yhteistuotanto Sähkölämmitys 2002 tammikuu helmikuu maaliskuu huhtikuu toukokuu kesäkuu heinäkuu elokuu syyskuu lokakuu marraskuu joulukuu Kuva 1.5 Kuvassa on verrattu sähkölämmityksen arvioitua sähkönkäyttöä yhteistuotannon sähköntuotantoon. Yksi ajatusmalli on, että yhteistuotanto tuottaa pitkälti sähkölämmityksen tarvitseman sähkön. Kuvassa 1.6 on esitetty vain kaukolämmön yhteistuotannon sähkö. Teollisuuden yhteistuotanto tuottaa sähköä ensisijaisesti teollisuuden omiin tarpeisiin. Kaukolämmön yhteistuotannon sähköntuotanto ja arvio sähkölämmityksen sähkönkäytöstä v GWh/kk KL:n yhteistuotanto Sähkölämmitys tammikuu helmikuu maaliskuu huhtikuu toukokuu elokuu syyskuu lokakuu marraskuu joulukuu Kuva 1.6 Kuvassa on verrattu sähkölämmityksen arvioitua sähkönkäyttöä kaukolämmön yhteistuotannon sähköntuotantoon. Yksi ajatusmalli on, että varsinkin kaukolämmön yhteistuotanto tuottaa pitkälti sähkölämmityksen tarvitseman sähkön. Jos sähkölämmitys kasvaisi voimakkaasti yhteistuotantoon verrattuna, aiheuttaisi se todennäköisesti esim. lauhdetuotannon lisäystä.

17 15 Sähkön eri tuotantotapojen riippuvuutta lämmöntarveluvusta (astepäiväluvusta) on tarkasteltu kuvissa 1.7 ja 1.8. Yhteistuotanto riippuu melko lineaarisesti lämmöntarveluvusta. Kovimmilla pakkasilla riippuvuutta ei ole, koska yhteistuotanto on kokonaan käytössä jo arviolta n. -5 asteen pakkasella. Pakkasrajaa ei ole tässä tutkimuksessa selvitetty tarkemmin. Ydinvoimakin riippuu hieman lämmöntarveluvusta, koska huoltoseisokit pyritään ajoittamaan kesäaikaan. Lauhdetuotanto näyttäisi myös riippuvan lämmöntarveluvusta, mutta ilmiö ei ole kovin selkeä, sillä lauhdetuotannolla hoidetaan pitkälti tuonnin vaihtelut. Sähkön tuonti on tarkasteluvuosina ollut talvella vähäisempää kuin kesällä. Tuontivaihtelut johtuvat mm. hintavaihteluista ja vesivoiman määrästä yhteispohjoismaisilla sähkömarkkinoilla. Sähkön tuotantotapojen riippuvuus astepäiväluvuista 2002 Tarkastelu on tehty kuukausitasolla Sähkön tuotanto GWh Astepäivä Kd Ydinvoima Vesi- ja tuulivoima Yhteistuotanto Lauhdutus Tuonti Lin. (Yhteistuotanto) Lin. (Ydinvoima) Lin. (Vesi- ja tuulivoima) Lin. (Lauhdutus) Lin. (Tuonti) Kuva 1.7 Kuvassa on tarkasteltu vuonna 2002 sähköntuotantomuotojen riippuvuutta astepäiväluvusta (lämmöntarveluvusta). Yhteistuotanto riippuu voimakkaasti astepäiväluvusta eli ulkolämpötilasta ja lämmitystarpeesta. Muut sähköntuotantotavat eivät riipu yhtä voimakkaasti astepäiväluvusta. Ydinvoiman tuotanto on käytännössä tasaista, mutta kesäaikaan ajoittuvat huoltoseisokit aiheuttavat kuvan lineaarisen regressiosuoran kaltevuuden. Joinakin vuosina on havaittavissa lauhdesähkön riippuvuutta astepäiväluvusta, mutta se ei ole säännönmukaista.

18 16 Sähkön tuotanto GWh Sähkön tuotantotapojen riippuvuus astepäiväluvuista 1995, 1996, 1997 sekä 1998 Tarkastelu on tehty kuukausitasolla Astepäiväluku Kd Ydinvoima Vesi- ja tuulivoima Yhteistuotanto Lauhdutus Tuonti Lin. (Ydinvoima) Lin. (Vesi- ja tuulivoima) Lin. (Yhteistuotanto) Lin. (Lauhdutus) Lin. (Tuonti) Kuva 1.8 Kuvassa on tarkasteltu sähköntuotantomuotojen riippuvuutta astepäiväluvusta (lämmöntarveluvusta) ajanjaksolla Sama ilmiö on näkyvissä kuin edellisessä kuvassakin. Kuvasta näkyy, että astepäiväluvun kohotessa yli 700 ei sähköntuotanto enää kasva, koska CHPlaitokset käyvät jo silloin täydellä teholla. Astepäiväluku 700 vastaa n. 4 asteen keskimääräistä pakkasta. Tarkastelu osoittaa, että ulkoilman kylmenemisen aiheuttama sähkönkulutuksen kasvu sähkölämmitystaloissa tuotetaan pitkälti kaukolämmön yhteistuotannossa. Uusien sähkölämmitystalojen aiheuttama sähkönkulutuksen lisäys kohdistuu kuitenkin lyhyellä tähtäimellä pitkälti lauhdetuotantoon ellei kaukolämmityksen suosio samalla kasva.

19 17 2. Lämpöpumppulämmitys Auringon lämpö on varastoitunut ympärillemme runsaasti mm. maahan, veteen ja ilmaan. Lämpöpumppu on laite, jolla tätä lämpöä saadaan siirrettyä lämmitettävään rakennukseen. Lämpöpumput hyödyntävät auringon lämmittämää ilmaa, vettä ja maata. Geotermistä lämpöä normaalit lämpöpumput eivät hyödynnä. Geotermisellä energialla on merkittävä asema toistaiseksi vain Islannissa. Poistoilmalämpöpumppu hyödyntää poistoilman lämpöä ja korvaa siten osittain ilmanvaihdon lämmöntalteenottolaitteen. Lämpöpumpun toiminta perustuu sopivan väliaineen eli kylmäaineen vuorottaiseen höyrystämiseen ja lauhduttamiseen. Höyrystimeen lämmönlähteestä otetulla lämmöllä höyrystetään kylmäaine, jolloin lämmönlähde jäähtyy. Höyry imetään kompressoriin ja puristetaan korkeampaan paineeseen. Puristuksessa höyry lämpiää. Paine ja lämpötila nousevat automaattisesti tasolle, jolla höyry pystyy lauhtumaan lauhduttimessa. /Aittomäki 1996/ Lämpöpumpun lämmönlähteinä voivat toimia - ulko- ja poistoilma - maaperä - auringon säteily - teollisuuden ja yhdyskuntien jätevedet - pohjavesi - pintavesi. Kompressori Höyrystin Lauhdutin Käyttövesi Lämmitys Vesivaraaja Lämmönottoputket Kuva 2.1. Lämpöpumppukoneiston toimintakaavio /Lämpöpumppu-opas/ Lämpöpumpun tuottaman lämmön hyödyntämisen edellytyksenä on riittävän korkea lämpötilataso. Tuotetun lämmön riittävyys riippuu sovelluskohteesta ja lämmitystavasta. Lämpöpumpun käyttö on sitä edullisempaa, mitä alempi lämmitysmuodon lämpötilataso on. Lämpöpumpulla tuotettua energiaa voidaan käyttää käyttöveden lämmittämiseen, patteri-

20 18 verkoston tai lattialämmitysverkoston kiertoveden lämmittämiseen, sisäilman lämmittämiseen tai tuloilman lämmittämiseen. Lämpöpumppujen lämpökerroin riippuu lämpöpumpputyypistä ja käyttöolosuhteista. Normaaleissa käyttöolosuhteissa lämpökerroin vaihtelee arvon 3 molemmin puoli Edullista on mahdollisimman korkea lämmönoton lämpötila ja matala käytön lämpötila. Lämpöpumpun kannalta parhaat lämmönjakotavat ovat siten lattialämmitys ja ilmalämmitys. /Lämpöpumppu-opas/ Taulukko 2.1. Eri lämmitysmuotojen lämpötilatasot. /Seppänen 2001/ Ilmalämmitys Lattialämmitys Patterilämmitys Kaukolämmitys C C C C Lämpöpumpun mitoitusperusteet Maalämpöpumppu voi toimia Suomen olosuhteissa päälämmitysmuotona. Poistoilmalämpöpumppu tarvitsee rinnakkaisen lämmitystavan lähinnä talvikauden lämmitystarpeisiin. Ilmalämpöpumpun (ilmailmalämpöpumppu) avulla voidaan säästää energiankulutuksessa lähinnä keväisin ja syksyisin. Ilmalämpöpumpun lisäksi rakennus tarvitsee toisen koko rakennuksen energian tarpeen kattavan lämmitystavan, koska alle -15 asteen pakkasella ilmalämpöpumppua ei kannata käyttää. Lämpöpumpun kustannustehokkuuden kannalta on otettava huomioon että lämpöpumppu on hankintakustannuksiltaan kallis investointi ja energiakustannuksiltaan halpa lämmitysratkaisu. Lämpöpumpun mitoitus kattamaan koko energian tarpeen ei ole yksityistaloudellisesti perusteltua. /Aittomäki 1995/. Sähköntuotannon ja päästöjen kannalta se voisi kuitenkin olla perusteltua. Lämpöpumppu on perinteisesti mitoitettu kattamaan rakennuksen vuotuinen energiatarve. Huippulämmitystehoa tarvitaan kuitenkin ainoastaan lyhyinä ajanjaksoina talvikuukausina, jolloin lämpöpumpuilla on ylikapasiteettia suurimman osan vuotta. Koska lämpöpumppu on hankintakustannuksiltaan kallis ja energiakustannuksiltaan halpa lämmitysratkaisu, ei sitä kannata mitoittaa suurimmalle lämmöntarpeelle. Lyhytaikainen huipputehontarve voidaan kattaa esim. varaajassa sijaitsevilla sähkövastuksilla. Haittapuolena on liitäntätehon kasvu. /Aittomäki 1995/ VTT:n tekemässä tutkimuksessa 1995 on selvitetty lämpöpumpun ja sähkövastusten optimaalista rinnakkaismitoitusta vuotuisten kokonaiskustannusten minimoimiseksi. Tutkimusten pohjalta on todettavissa, että n. 50 % vuotuisesta huipputehontarpeesta on optimimitoitus lämpöpumpulle. Tällä mitoituksella pystytään kattamaan n. 90 % pientalon lämmitysenergian tarpeesta. /Aittomäki 1995/ Sähköntuotannon kannalta osateholämpöpumppu ei kuitenkaan ole niin hyvä ratkaisu kuin yksityistaloudellisesti, koska se aiheuttaa lyhytaikaisen sähköntarpeen kasvun juuri pahimpaan huipputehoaikaan (kuva 2.2).

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 3.6.217 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 1 2 3 4 5 6 7 8

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 25.9.217 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 17 2 17

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 31.1.2 1 () Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 12.12.2 1 () Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11 12

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 18.2.219 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 1 17 2 17 3 17 4 17 5 17 6 17 7 17

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source GWh / kk GWh / month Sähköntuotannon polttoaineet ja CO2-päästöt 24.4.219 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 5 4 3 2 1 1 17 2 17 3 17 4 17 5 17 6 17 7 17 8

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 18.9.218 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 7 16 8 16 9 16 1 16 11 16 12 16 1 17

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO 2 päästöt 23.1.218 1 () Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh / month 5 4 3 2 1 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Energia Asteikot ja energia -Miten pakkasesta saa energiaa? Celsius-asteikko on valittu ihmisen mittapuun mukaan, ei lämpöenergian. Atomien liike pysähtyy vasta absoluuttisen

Lisätiedot

Suomen lämpöpumppuyhdistys. SULPU ry.

Suomen lämpöpumppuyhdistys. SULPU ry. . Petri Koivula toiminnanjohtaja DI 1 Palkittua työtä Suomen hyväksi Ministeri Mauri Pekkarinen luovutti SULPUlle Vuoden 2009 energia teko- palkinnon SULPUlle. Palkinnon vastaanottivat SULPUn hallituksen

Lisätiedot

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

Sähköntuotanto energialähteittäin Power generation by energy source

Sähköntuotanto energialähteittäin Power generation by energy source Sähköntuotannon polttoaineet ja CO2-päästöt 2.1.216 1 (17) Sähköntuotanto energialähteittäin Power generation by energy source 8 7 6 GWh / kk GWh/ Month 5 4 3 2 1 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5

Lisätiedot

Rakennuskannan energiatehokkuuden kehittyminen

Rakennuskannan energiatehokkuuden kehittyminen ASIANTUNTIJASEMINAARI: ENERGIATEHOKKUUS JA ENERGIAN SÄÄSTÖ PITKÄN AIKAVÄLIN ILMASTO- JA ENERGIASTRATEGIAN POLITIIKKASKENAARIOSSA Rakennuskannan energiatehokkuuden kehittyminen 19.12.27 Juhani Heljo Tampereen

Lisätiedot

Lämpöpumpun toiminta. Toiminnan periaate

Lämpöpumpun toiminta. Toiminnan periaate Lämpöpumpun toiminta Lämpöpumppu eroaa monissa suhteissa perinteisestä öljylämmityksestä sekä suorasta sähkölämmityksestä. Kuten öljylämmitys, lämpöpumppulämmitys on keskuslämmitys, toisin sanoen lämpö

Lisätiedot

YLEISTIETOA LÄMPÖPUMPUISTA

YLEISTIETOA LÄMPÖPUMPUISTA YLEISTIETOA LÄMPÖPUMPUISTA Eksergia.fi Olennainen tieto energiatehokkaasta rakentamisesta Päivitetty 12.1.2015 SISÄLTÖ Yleistä lämpöpumpuista Lämpöpumppujen toimintaperiaate Lämpökerroin ja vuosilämpökerroin

Lisätiedot

Lämpöpumpputekniikkaa Tallinna 18.2. 2010

Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Ari Aula Chiller Oy Lämpöpumpun rakenne ja toimintaperiaate Komponentit Hyötysuhde Kytkentöjä Lämpöpumppujärjestelmän suunnittelu Integroidut lämpöpumppujärjestelmät

Lisätiedot

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K30031.02-Q210-001D 27.9.2010

Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä. Loppuraportti 60K30031.02-Q210-001D 27.9.2010 Öljyalan Palvelukeskus Oy Laskelma lämmityksen päästöistä Loppuraportti 60K30031.02-Q210-001D 27.9.2010 Tausta Tämän selvityksen laskelmilla oli tavoitteena arvioida viimeisimpiä energian kulutustietoja

Lisätiedot

0 ENERGIA MAHDOLLISTA TÄNÄPÄIVÄNÄ EIKÄ VASTA VUONNA 2020 ALLAN MUSTONEN INSINÖÖRITOIMISTO MUSTONEN OY

0 ENERGIA MAHDOLLISTA TÄNÄPÄIVÄNÄ EIKÄ VASTA VUONNA 2020 ALLAN MUSTONEN INSINÖÖRITOIMISTO MUSTONEN OY 0 ENERGIA MAHDOLLISTA TÄNÄPÄIVÄNÄ EIKÄ VASTA VUONNA 2020 ALLAN MUSTONEN INSINÖÖRITOIMISTO MUSTONEN OY MIKÄ ON NOLLA-ENERGIA Energialähteen perusteella (Net zero source energy use) Rakennus tuottaa vuodessa

Lisätiedot

Asuinkerrostalojen energiaremontointi ja kustannusoptimaaliset päästövähennykset Janne Hirvonen Juha Jokisalo, Juhani Heljo, Risto Kosonen

Asuinkerrostalojen energiaremontointi ja kustannusoptimaaliset päästövähennykset Janne Hirvonen Juha Jokisalo, Juhani Heljo, Risto Kosonen Asuinkerrostalojen energiaremontointi ja kustannusoptimaaliset päästövähennykset Janne Hirvonen Juha Jokisalo, Juhani Heljo, Risto Kosonen Kohti kunnianhimoisempaa korjausrakentamista 9.4.2019 Taustaa

Lisätiedot

Sisällysluettelo: 1. Kiinteistön lämmitysjärjestelmän valinta. Simpeleen Lämpö Oy. Kaukolämpö lämmitysvaihtoehtona Simpeleellä.

Sisällysluettelo: 1. Kiinteistön lämmitysjärjestelmän valinta. Simpeleen Lämpö Oy. Kaukolämpö lämmitysvaihtoehtona Simpeleellä. 1 Sisällysluettelo: 1. Kiinteistön lämmitysjärjestelmän valinta... 1 2. Simpeleen lämpö Oy lämmön toimitus ja tuotanto... 2 3. Kaukolämmön hinta Simpeleellä, perusmaksu ja kulutusmaksu,... sekä vertailu

Lisätiedot

www.scanoffice.fi Teollisuusrakennus Salon Meriniityn teollisuusalueella, (Teollisuuskatu, Örninkatu 15)

www.scanoffice.fi Teollisuusrakennus Salon Meriniityn teollisuusalueella, (Teollisuuskatu, Örninkatu 15) Teollisuusrakennus Salon Meriniityn teollisuusalueella, (Teollisuuskatu, Örninkatu 15) - Rakennus on kytketty kaukolämpöverkkoon - Lämmitettävän tilan pinta-ala on n. 2000 m 2 ja tilavuus n. 10 000 m 3

Lisätiedot

Lämpöpumput ja aurinko energianlähteinä Energiaehtoo

Lämpöpumput ja aurinko energianlähteinä Energiaehtoo Lämpöpumput ja aurinko energianlähteinä Energiaehtoo 5.10.2016 Keski-Suomen Energiatoimisto www.kesto.fi/energianeuvonta energianeuvonta@kesto.fi 1 Energianeuvonta Keski-Suomessa Energianeuvontaa tarjotaan

Lisätiedot

Uudet energiatehokkuusmääräykset, E- luku

Uudet energiatehokkuusmääräykset, E- luku Tietoa uusiutuvasta energiasta lämmitysmuodon vaihtajille ja uudisrakentajille 31.1.2013/ Dunkel Harry, Savonia AMK Uudet energiatehokkuusmääräykset, E- luku TAUSTAA Euroopan unionin ilmasto- ja energiapolitiikan

Lisätiedot

Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä. Samuli Rinne

Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä. Samuli Rinne Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä Samuli Rinne Jätettä on materiaali, joka on joko - väärässä paikassa -väärään aikaan tai - väärää laatua. Ylijäämäenergiaa on energia,

Lisätiedot

Energiakaivot. Tärkeä osa lämpöpumppualan liiketoimintaa. SULPU - Lämpöpumppu seminaari Tomi Mäkiaho

Energiakaivot. Tärkeä osa lämpöpumppualan liiketoimintaa. SULPU - Lämpöpumppu seminaari Tomi Mäkiaho Energiakaivot Tärkeä osa lämpöpumppualan liiketoimintaa SULPU - Lämpöpumppu 2018 -seminaari 2018-11-27 Tomi Mäkiaho 1 R O T O T E C - Y O U R E N E R G Y. B E S T E N E R G Y. AGENDA Rototec yrityksenä

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (E-luku) Lämmitetty nettoala 8,8 m² Lämmitysjärjestelmän kuvaus Poistoilmalämpöpumppu,

Lisätiedot

Esimerkki poistoilmaja. ilmavesilämpöpumpun D5:n mukaisesta laskennasta

Esimerkki poistoilmaja. ilmavesilämpöpumpun D5:n mukaisesta laskennasta Esimerkki poistoilmaja ilmavesilämpöpumpun D5:n mukaisesta laskennasta 4.11.2016 YMPÄRISTÖMINISTERIÖ Sisällysluettelo 1 Johdanto... 3 2 Poistoilma- ja ilmavesilämpöpumpun D5 laskenta... 4 2.1 Yleistä...

Lisätiedot

Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla. Mikko Pieskä, Merinova

Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla. Mikko Pieskä, Merinova Lämpöpumppuratkaisuja TALOTEKNIIKKASEMINAARI VASEK ja Kestävä rakentaminen ja energiatehokkuus Vaasan seudulla Mikko Pieskä, Merinova Yleisesti lämpöpumpuista sisältö Lämpöpumppujen nykytilanne Lämpöpumppujen

Lisätiedot

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin

Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin Scanvarm SCS-sarjan lämpöpumppumallisto ratkaisu pieniin ja suuriin kiinteistöihin 05/2013 SCS10-15 SCS21-31 SCS40-120 SCS10-31 Scanvarm SCS-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin.

Lisätiedot

LÄMPÖPUMPUT. Lämpöpumpputyyppejä. Tiesitkö! Maalämpöpumput. Ilma-vesilämpöpumput Poistoilmalämpöpumput. Ilmalämpöpumput MIKSI TARVITAAN LÄMPÖPUMPPUJA

LÄMPÖPUMPUT. Lämpöpumpputyyppejä. Tiesitkö! Maalämpöpumput. Ilma-vesilämpöpumput Poistoilmalämpöpumput. Ilmalämpöpumput MIKSI TARVITAAN LÄMPÖPUMPPUJA Tiesitkö! 1.2.2013 Energiakorjaus Tekninen kortti kortti 16 LÄMPÖPUMPUT pientalot Lämpöpumpputyyppejä Maalämpöpumput. Ilma-vesilämpöpumput Poistoilmalämpöpumput Nykyään suosittu ilmalämpöpumppu on järkevä

Lisätiedot

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy

Rakennusmääräykset. Mikko Roininen Uponor Suomi Oy Talotekniikka ja uudet Rakennusmääräykset Mikko Roininen Uponor Suomi Oy Sisäilmastonhallinta MUKAVUUS ILMANVAIHTO ERISTÄVYYS TIIVEYS LÄMMITYS ENERGIA VIILENNYS KÄYTTÖVESI April 2009 Uponor 2 ULKOISET

Lisätiedot

Iltapäivän teeman rajaus

Iltapäivän teeman rajaus 28.8.2019 klo 12-16 Iltapäivän teemat Iltapäivän teeman rajaus Vähähiilinen lämmitys Energiatehokkuus Energiatehokkuuden parannukset (ehdotukset) Energiatehokkuudeltaan heikoimmat rakennukset Korjatut

Lisätiedot

Aurinko- ja poistoilmalämmitysjärjestelmä. GES-verkostotilaisuus Lappeenrannassa Ville Terävä, Kymi-Solar Oy. OptiSun

Aurinko- ja poistoilmalämmitysjärjestelmä. GES-verkostotilaisuus Lappeenrannassa Ville Terävä, Kymi-Solar Oy. OptiSun Aurinko- ja poistoilmalämmitysjärjestelmä GES-verkostotilaisuus Lappeenrannassa 11.5.2017 Ville Terävä, Kymi-Solar Oy OptiSun 1 Kymi-Solar Oy Kymi-Solar Oy on kansainvälisille markkinoille tähtäävä startup-yritys.

Lisätiedot

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille

Lämmityskustannusten SÄÄSTÖOPAS. asuntoyhtiöille Lämmityskustannusten SÄÄSTÖOPAS asuntoyhtiöille Lämpöä sisään, lämpöä ulos Lämmön lähteet Lämpöhäviö 10-15% Aurinkoa 3-7% Asuminen 3-6% Lattiat 15-20% Seinät 25-35% Ilmanvaihto 15-20% Talotekniikka LÄMPÖÄ

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (E-luku) Lämmitetty nettoala 7,9 m² Lämmitysjärjestelmän kuvaus Poistoilmalämpöpumppu,

Lisätiedot

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy

Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012. Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Aurinkolämpö Kerros- ja rivitaloihin 15.2.2012 Anssi Laine Tuotepäällikkö Riihimäen Metallikaluste Oy Riihimäen Metallikaluste Oy Perustettu 1988 Suomalainen omistus 35 Henkilöä Liikevaihto 5,7M v.2011/10kk

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 08 m² Lämmitysjärjestelmän kuvaus Kaukolämpö Ilmanvaihtojärjestelmän

Lisätiedot

T-MALLISTO. ratkaisu T 0

T-MALLISTO. ratkaisu T 0 T-MALLISTO ratkaisu T 0 120 Maalämpö säästää rahaa ja luontoa! Sähkölämmitykseen verrattuna maksat vain joka neljännestä vuodesta. Lämmittämisen energiatarve Ilmanvaihdon 15 % jälkilämmitys Lämpimän käyttöveden

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään DI, TkT Sisältö Puulla lämmittäminen Suomessa Tulisijatyypit Tulisijan ja rakennuksessa Lämmön talteenottopiiput Veden lämmittäminen varaavalla

Lisätiedot

Vuoden 2012 uudet energiamääräykset LUONNOKSET 28.9.2010 ASTA 2010 30.9.2010. Juhani Heljo Tampereen teknillinen yliopisto 1.10.

Vuoden 2012 uudet energiamääräykset LUONNOKSET 28.9.2010 ASTA 2010 30.9.2010. Juhani Heljo Tampereen teknillinen yliopisto 1.10. Vuoden 2012 uudet energiamääräykset LUONNOKSET 28.9.2010 1 ASTA 2010 30.9.2010 Juhani Heljo Tampereen teknillinen yliopisto Huomautukset 2 Esityksen valmisteluun on ollut lyhyt aika Joissain kohdissa voi

Lisätiedot

Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120

Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120 Lämpöässä T-mallisto ratkaisu pieniin ja suuriin kiinteistöihin T 10-15 T 21-31 T 40-120 T 10-31 Lämpöässä T-mallisto on joustava ratkaisu erityyppisiin maaenergiajärjestelmiin. Tyypillisiä T 10-31 -mallien

Lisätiedot

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA TOTEUTUSKUVAUS EEMONTTI - REMONTISTA Kohdekiinteistö 3: 2000-luvun omakotitalo Kiinteistön lähtötilanne ennen remonttia EEMontti kohdekiinteistö 3 on vuonna 2006 rakennettu kaksikerroksinen omakotitalokiinteistö,

Lisätiedot

Miten valitsen kohteeseeni sopivan lämpöpumpun Seminaari Sami Seuna, Motiva Oy. 25/10/2017 Näkökulmia lämpöpumpun elinkaarilaskentaan 1

Miten valitsen kohteeseeni sopivan lämpöpumpun Seminaari Sami Seuna, Motiva Oy. 25/10/2017 Näkökulmia lämpöpumpun elinkaarilaskentaan 1 Miten valitsen kohteeseeni sopivan lämpöpumpun Seminaari 25.10.2017 Sami Seuna, Motiva Oy 25/10/2017 Näkökulmia lämpöpumpun elinkaarilaskentaan 1 Maalämpö- ja ilma-vesilämpöpumpuille soveltuvat kohteet

Lisätiedot

LÄMMITÄ, MUTTA ÄLÄ ILMASTOA. TUNNETKO KAUKOLÄMMÖN EDUT?

LÄMMITÄ, MUTTA ÄLÄ ILMASTOA. TUNNETKO KAUKOLÄMMÖN EDUT? LÄMMITÄ, MUTTA ÄLÄ ILMASTOA. TUNNETKO KAUKOLÄMMÖN EDUT? HYVÄN OLON ENERGIAA Kaukolämmitys merkitsee asumismukavuutta ja hyvinvointia. Se on turvallinen, toimitusvarma ja helppokäyttöinen. Kaukolämmön asiakkaana

Lisätiedot

Maatilojen asuinrakennusten energiankulutuksen arviointi

Maatilojen asuinrakennusten energiankulutuksen arviointi Maatilojen asuinrakennusten energiankulutuksen arviointi Tässä esitetään yksinkertainen menetelmä maatilojen asuinrakennusten energiankulutuksen arviointiin. Vaikka asuinrakennuksia ei ole syytä ohittaa

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 947 m² Lämmitysjärjestelmän kuvaus Kaukolämpö / Kaukolämpö

Lisätiedot

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi

Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula. ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi Mikä ihmeen E-luku? Energianeuvoja Heikki Rantula ENEMMÄN ENERGIASTA I Kuluttajien energianeuvonta I eneuvonta.fi Kymenlaakson energianeuvonta 2012- Energianeuvoja Heikki Rantula 020 615 7449 heikki.rantula@kouvola.fi

Lisätiedot

Ratkaisu suuriin kiinteistöihin. Lämpöässä T/P T/P 60-120

Ratkaisu suuriin kiinteistöihin. Lämpöässä T/P T/P 60-120 Ratkaisu suuriin kiinteistöihin Lämpöässä T/P T/P 60-120 T/P 60-120 Ratkaisu kahdella erillisvaraajalla T/P 60-120 -mallisto on suunniteltu suuremmille kohteille kuten maatiloille, tehtaille, päiväkodeille,

Lisätiedot

Energia. Energiatehokkuus. Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija

Energia. Energiatehokkuus. Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija Energia Energiatehokkuus Megawatti vai Negawatti: Amory Lovins Rocky Mountain- instituutti, ympäristöystävällisyyden asiantuntija Sähkön säästäminen keskimäärin kahdeksan kertaa edullisempaa kuin sen tuottaminen

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 564 m² Lämmitysjärjestelmän kuvaus Vesikiertoiset radiaattorit 60/0 C Ilmanvaihtojärjestelmän

Lisätiedot

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy Jämsän energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Jämsän energiatase 2010 Öljy 398 GWh Turve 522 GWh Teollisuus 4200 GWh Sähkö 70 % Prosessilämpö 30 % Puupolttoaineet 1215 GWh Vesivoima

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 89 m² Lämmitysjärjestelmän kuvaus Kaukolämpö / Kaukolämpö Ilmanvaihtojärjestelmän

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö

Vesikiertoinen lattialämmitys / maalämpöpumppu Koneellinen tulo- ja poistoilmanvaihto, lämmöntalteenotto. Laskettu ostoenergia. kwhe/(m² vuosi) Sähkö YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala, m² 8.0 Lämmitysjärjestelmän kuvaus Ilmanvaihtojärjestelmän kuvaus Vesikiertoinen

Lisätiedot

Talotekniikan järjestelmiä. RAK-C3004 Rakentamisen tekniikat 08.10.2015 Jouko Pakanen

Talotekniikan järjestelmiä. RAK-C3004 Rakentamisen tekniikat 08.10.2015 Jouko Pakanen Talotekniikan järjestelmiä RAK-C3004 Rakentamisen tekniikat 0 Jouko Pakanen Pientalon energiajärjestelmiä Oilon Home http://oilon.com/media/taloanimaatio.html Sähköinen lattialämmitys (1) Suoraa sähköistä

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 690 m² Lämmitysjärjestelmän kuvaus Öljykattila/vesiradiaattori Ilmanvaihtojärjestelmän

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala.7 m² Lämmitysjärjestelmän kuvaus vesikiertoinen patterilämmitys, kaukolämpö Ilmanvaihtojärjestelmän

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 590 m² Lämmitysjärjestelmän kuvaus Kaukolämpö / kaukolämpö

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 4 m² Lämmitysjärjestelmän kuvaus Öljy, välivaraaja, radiaattorit.

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 600 m² Lämmitysjärjestelmän kuvaus Kaukolämpö / kaukolämpö

Lisätiedot

Äänekosken energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Äänekosken energiatase Keski-Suomen Energiatoimisto/ Benet Oy Äänekosken energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Äänekosken energiatase 2010 Öljy 530 GWh Turve 145 GWh Teollisuus 4040 GWh Sähkö 20 % Prosessilämpö 80 % 2 Mustalipeä 2500 GWh Kiinteät

Lisätiedot

Vuoden 2012 energiamääräysten mukainen perinnetalo. Arkkitehtitoimisto A-konsultit Oy

Vuoden 2012 energiamääräysten mukainen perinnetalo. Arkkitehtitoimisto A-konsultit Oy Vuoden 2012 energiamääräysten mukainen perinnetalo Equa Simulation Finland Oy TkL Mika Vuolle 25.5.2011 2 Sisällysluettelo 1 Keskeiset lähtötiedot ja tulokset... 3 1.1 Määräystenmukaisuuden osoittaminen

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 89. m² Lämmitysjärjestelmän kuvaus Maalämpöpumppu NIBE F454 / Maalämpöpumppu NIBE

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 58 m² Lämmitysjärjestelmän kuvaus Kaukolämö ja vesikiertoinen lattialämmitys. Ilmanvaihtojärjestelmän

Lisätiedot

24.5.2012 Gasum Petri Nikkanen 1

24.5.2012 Gasum Petri Nikkanen 1 24.5.2012 Gasum Petri Nikkanen 1 UUSIA OHJEITA, OPPAITA JA STANDARDEJA KAASULÄMMITYS JA UUSIUTUVA ENERGIA JOKO KAASULÄMPÖPUMPPU TULEE? 24.5.2012 Gasum Petri Nikkanen 2 Ajankohtaista: Ympäristöministeriö:

Lisätiedot

Rakennusten energiatehokkuus. Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy

Rakennusten energiatehokkuus. Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy Rakennusten energiatehokkuus Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy 6.6.2011 2 Mitä on rakennusten energiatehokkuus Mitä saadaan (= hyvä talo) Energiatehokkuus = ----------------------------------------------

Lisätiedot

Lämmityskustannus vuodessa

Lämmityskustannus vuodessa Tutkimusvertailu maalämmön ja ilma/vesilämpöpumpun säästöistä Lämmityskustannukset keskiverto omakotitalossa Lämpöässä maalämpöpumppu säästää yli vuodessa verrattuna sähkö tai öljylämmitykseen keskiverto

Lisätiedot

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS

KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS KAUKOLÄMMITYSJÄRJESTELMIEN KEVENTÄMISMAHDOLLISUUDET MATALAN ENERGIAN KULUTUKSEN ALUEILLA TUTKIMUS ESITTELY JA ALUSTAVIA TULOKSIA 16ENN0271-W0001 Harri Muukkonen TAUSTAA Uusiutuvan energian hyödyntämiseen

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 958. m² Lämmitysjärjestelmän kuvaus Kaukolämpö.Vesikiertoiset lämmityspatterit. Ilmanvaihtojärjestelmän

Lisätiedot

Sähkölämmityksen toteutus. SÄHKÖLÄMMITYSFOORUMI RY ( www.lamminkoti.fi)

Sähkölämmityksen toteutus. SÄHKÖLÄMMITYSFOORUMI RY ( www.lamminkoti.fi) Sähkölämmityksen toteutus 1.7.2012 jälkeen SÄHKÖLÄMMITYSFOORUMI RY ( www.lamminkoti.fi) Mihin rakennuksiin sovelletaan Normaalit asuinrakennukset Vuokra-tai vastaavaan käyttöön tarkoitetut vapaa-ajan rakennukset

Lisätiedot

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Lämpöilta taloyhtiöille Tarmo 30.9. 2013 Wivi Lönn Sali Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Juhani Heljo Tampereen teknillinen yliopisto Talon koon (energiankulutuksen määrän)

Lisätiedot

ENERGIAN VARASTOINTI JA UUDET ENERGIANLÄHTEET. Lämpöpumput 1.10.2010

ENERGIAN VARASTOINTI JA UUDET ENERGIANLÄHTEET. Lämpöpumput 1.10.2010 ENERGIAN VARASTOINTI JA UUDET ENERGIANLÄHTEET Lämpöpumput 1.10.2010 Lämpöpumpun toiminta ja pääkomponentit Lämpöpumppu ottaa lämpöä alemmasta lämpötilatasosta ja siirtää sitä korkeampaan lämpötilatasoon.

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 79 m² Lämmitysjärjestelmän kuvaus Kaukolämpö Ilmanvaihtojärjestelmän

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Kaukolämpökytkennät Jorma Heikkinen Sisältö Uusiutuvan energian kytkennät Tarkasteltu pientalon aurinkolämpökytkentä

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 86 m² Lämmitysjärjestelmän kuvaus Kaukolämpö / Kaukolämpö Ilmanvaihtojärjestelmän

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 58 m² Lämmitysjärjestelmän kuvaus Vesiradiaattorit (eristetyt jakojohdot) Ilmanvaihtojärjestelmän

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala m² Lämmitysjärjestelmän kuvaus Öljylämmitys, vesikiertoiset

Lisätiedot

Lämpöpumput taloyhtiöissä

Lämpöpumput taloyhtiöissä Lämpöpumput taloyhtiöissä Käsiteltävät aiheet: Lämpöpumppujen toimintaperiaate Maalämpöjärjestelmät Poistoilmalämpöpumput Vesi-ilmalämpöpumput Juho Rinta-Rahko Lämpöpumppujärjestelmien määrät Käyttöön

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 46,5 m² Lämmitysjärjestelmän kuvaus Öljylämmitys, varalla sähkökattila,

Lisätiedot

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014

Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Tulevaisuuden kaukolämpöasuinalueen energiaratkaisut (TUKALEN) Loppuseminaari 16.10.2014 Elinkaariarvio pientalojen kaukolämpöratkaisuille Sirje Vares Sisältö Elinkaariarvio ja hiilijalanjälki Rakennuksen

Lisätiedot

ENETE ENETE. MATTI LEHTONEN Aalto yliopisto, Sähkötekniikan laitos ST poolin tutkimusseminaari 7.10.2010

ENETE ENETE. MATTI LEHTONEN Aalto yliopisto, Sähkötekniikan laitos ST poolin tutkimusseminaari 7.10.2010 MATTI LEHTONEN Aalto yliopisto, Sähkötekniikan laitos ST poolin tutkimusseminaari 7.10.2010 Taustaa EU:n energiapaketti 1/2007: Kasvihuonepäästöjä vähennettävä, uusiutuvan energian käyttöä lisättävä, ja

Lisätiedot

Hallituksen linjausten vaikutuksia sähkömarkkinoihin

Hallituksen linjausten vaikutuksia sähkömarkkinoihin Hallituksen linjausten vaikutuksia sähkömarkkinoihin Jukka Leskelä Energiateollisuus Energia- ja ilmastostrategian valmisteluun liittyvä asiantuntijatilaisuus 27.1.2016 Hiilen käyttö sähköntuotantoon on

Lisätiedot

LUONNOS ENERGIATODISTUS. kwh E /(m 2 vuosi) energiatehokkuuden vertailuluku eli E-luku

LUONNOS ENERGIATODISTUS. kwh E /(m 2 vuosi) energiatehokkuuden vertailuluku eli E-luku LUONNOS 6.9.07 ENERGIATODISTUS Rakennuksen nimi ja osoite: Rakennustunnus: Rakennuksen valmistumisvuosi: Rakennuksen käyttötarkoitusluokka: Todistustunnus: Energiatehokkuusluokka A B C D E F G Rakennuksen

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskettu kokonaisenergiankulutus ja ostoenergiankulutus Lämmitetty nettoala 8 m² Lämmitysjärjestelmän kuvaus Vesikiertoinen radiaattorilämmitys, kaukolämpö /

Lisätiedot

ENERGIANKULUTUKSELTAAN HIILIDIOKSIPÄÄSTÖTÖN RAKENNUS LÄMPÖPUMPPU ON KANNATTAVA VAIHTOEHTO SEN TOTEUTTAMISEEN Jussi Hirvonen

ENERGIANKULUTUKSELTAAN HIILIDIOKSIPÄÄSTÖTÖN RAKENNUS LÄMPÖPUMPPU ON KANNATTAVA VAIHTOEHTO SEN TOTEUTTAMISEEN Jussi Hirvonen ENERGIANKULUTUKSELTAAN HIILIDIOKSIPÄÄSTÖTÖN RAKENNUS LÄMPÖPUMPPU ON KANNATTAVA VAIHTOEHTO SEN TOTEUTTAMISEEN Jussi Hirvonen Poimintoja lämpöpumppu-uutisista INEX logistiikkakeskus, Sipoo, maalämmölle (100

Lisätiedot

Hybridilämmitys kiinteistökohteissa

Hybridilämmitys kiinteistökohteissa Hybridilämmitys kiinteistökohteissa Scanoffice Oy 25 m, v. 2016 35 henkilöä perustettu 1984 toimitilat Espoossa Mitsubishi Electricin virallinen maahantuoja Scanofficen menestystekijät: tuotteet Testaus

Lisätiedot

Kaukolämmön tuotanto Suomessa ja Saarijärvellä

Kaukolämmön tuotanto Suomessa ja Saarijärvellä Kaukolämmön tuotanto Suomessa ja Saarijärvellä 1 Lämmityksen markkinaosuudet Asuin- ja palvelurakennukset Lämpöpumppu: sisältää myös lämpöpumppujen käyttämän sähkön Sähkö: sisältää myös sähkökiukaat ja

Lisätiedot

Hybridilämmitys kiinteistökohteissa

Hybridilämmitys kiinteistökohteissa Hybridilämmitys kiinteistökohteissa 31 m, v. 2016 40 henkilöä perustettu 1984 toimitilat Espoossa Tuotteina mm. Mitsubishi Electric, Gree ja Alpha Innotec Scanofficen menestystekijät: toimivat tuotteet

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 06 m² Lämmitysjärjestelmän kuvaus Kaukolämpö, vesikiertoinen

Lisätiedot

Vuoden 2012 energiamääräysten mukainen perinnetalo. Avanto arkkitehdit

Vuoden 2012 energiamääräysten mukainen perinnetalo. Avanto arkkitehdit Vuoden 2012 energiamääräysten mukainen perinnetalo Equa Simulation Finland Oy TkL Mika Vuolle 23.5.2011 2 Sisällysluettelo 1 Keskeiset lähtötiedot ja tulokset... 3 1.1 Määräystenmukaisuuden osoittaminen

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 08 m² Lämmitysjärjestelmän kuvaus Kaukolämpö, vesikiertoinen

Lisätiedot

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009

Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Rakennuksien lämmitysjärjestelmät Kontiolahti 9.5.2009 Simo Paukkunen Pohjois-Karjalan ammattikorkeakoulu liikelaitos Biotalouden keskus simo.paukkunen@pkamk.fi, 050 9131786 Lämmitysvalinnan lähtökohtia

Lisätiedot

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 2 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 Yhtiössä otettiin käyttöön lämmön talteenottojärjestelmä (LTO) vuoden 2013 aikana. LTO-järjestelmää

Lisätiedot

Lämpöpumput. Jussi Hirvonen, toiminnanjohtaja. Suomen Lämpöpumppuyhdistys SULPU ry, www.sulpu.fi

Lämpöpumput. Jussi Hirvonen, toiminnanjohtaja. Suomen Lämpöpumppuyhdistys SULPU ry, www.sulpu.fi Lämpöpumput Jussi Hirvonen, toiminnanjohtaja Suomen Lämpöpumppuyhdistys SULPU ry, www.sulpu.fi Mikä ala kyseessä? Kansalaiset sijoittivat 400M /vuosi Sijoitetun pääoman tuotto > 10 % Kauppatase + 100-200

Lisätiedot

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA

YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA YHTEENVETO RAKENNUKSEN ENERGIATEHOKKUUDESTA Laskennallinen ostoenergiankulutus ja energiatehokkuuden vertailuluku (Eluku) Lämmitetty nettoala 8090 m² Lämmitysjärjestelmän kuvaus Kaukolämpö / Kaukolämpö

Lisätiedot