Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi
|
|
- Minna Noora Palo
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 5
2 Seuraava etappi Datan keruu alkanut välinäyttönä palautetaan aineisto SPSS-tiedostona palaute tiedostosta
3 Viimeksi jäi faktorianalyysi vaivaamaan jos pudotetaan ei-kelpo muuttuja pois ja tehdään uusi faktorianalyysi, kuinka käy?
4 Rotated Factor Matrix a Rotated Factor Matrix a x390: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on tiedonhaku? x390_b: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on verkkolehtien lukeminen? x390_e: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on musiikin kuuntelu? x390_f: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on verkkopelaaminen? x390_g: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on tiedostojen imuroiminen? x390_h: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on sähköposti? x390_i: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on Web-surffailu? x390_j: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on keskustelu- ja uutisryhmät? x390_k: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on verkko-ostaminen? x390_l: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on laskujen maksaminen? x390_m: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on muiden raha-asioiden hoito? x390_n: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on treffipalvelut? x390_o: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on omien www-sivujen teko? x390_p: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on chat- ja irc-palvelut? x390_c: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on portaaleilla? x390_d: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on etäopiskelu? Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 10 iterations. Factor ,094,517,053,071,25,162,323,279,149,13,688 -,114,362 -,136,0,562,032,332 -,071,0,618,276,076,051,08,044,551 -,021,199,17,375,441,265,042 -,2,191,383,525 -,026 -,1,391,237,014,208,12 -,039,250,008,495,03,040,026,035,847,10,085,013,473,118,19,282,232,247,067,31,335 -,007,550 -,105,09,306,249,109,070,27 -,001,175,113,081,60 EI selkeyttänyt tulkintaa tällä kertaa! Factor x390: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on tiedonhaku? x390_d: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on etäopiskelu? x390_e: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on musiikin kuuntelu? x390_f: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on verkkopelaaminen? x390_g: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on tiedostojen imuroiminen? x390_h: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on sähköposti? x390_i: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on Web-surffailu? x390_j: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on keskustelu- ja uutisryhmät? x390_k: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on verkko-ostaminen? x390_l: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on laskujen maksaminen? x390_m: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on muiden raha-asioiden hoito? x390_n: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on treffipalvelut? x390_o: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on omien www-sivujen teko? x390_p: Kuinka merkitt. tekijä netin käytöss. tällä hetkellä on chat- ja irc-palvelut? Extraction Method: Maximum Likelihood. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 7 iterations.
5 Analyysimenetelmät ja muuttujien mitta-asteikko (vielä kertausta)
6 Luento 5 Kerätyn aineiston laadun arviointi - normaalijakaumatesti Kerätyn aineiston muokkaaminen (transformaatio) uudelleenluokittelu summamuuttujat, uudet muuttujat Menetelmien käyttö SPSS-ohjelmassa Vastauksia kysymyksiin/ongelmiin
7 Laadun arviointi ajetaan kaikista muuttujista jakaumat - minimi, maksimi, graafinen jakauma, keskiarvo, hajonta - Analyze Descriptive statistics Descriptives - miten EOS on tallennettu? (kalvo 21) kammataan läpi ja etsitään selviä mahdottomia arvoja tai todellisia mutta liian poikkeavia arvoja kun tällainen löytyy, se paikannetaan Data viewtilassa hakutoiminnolla
8 Aktivoi ensin se muuttuja jota tarkastat Haku-kuvake (kiikari) Kirjoita Find what kenttään löytämäsi mahdoton lukuarvo ja klikkaa Find next Näin löydät sen vastaajan jonka kohdalla ongelmallinen arvo on. Sinulla on muutama ratkaisuvaihtoehto: 1) selvität mikä on alkuperäinen oikea arvo (tarkista paperilomake) 2) poistat kyseisen arvon kokonaan koska et voi tietää mikä on oikea vastaus 3) korvaat arvon kyseisen muuttujan keskiarvolla (imputointi)
9 Jakauman normaalisuus Jos on epäselvyyttä jakauman normaalisuusehdon toteutumisesta, voi/pitää suorittaa testin: 1-sample Kolmogorov-Smirnov Two-Independent-Samples tests Analyze Nonparametric test 1-sample K-S / 2 independent samples
10 Esim. K-S-testistä Ikäjakaumat sukupuolen mukaan Tässä p-arvon pitää YLITTÄÄ.05 jotta 0-hypoteesi toteutuu (ei eroja) On siis huono, jos arvo jää alle.05. Johtopäätös on, että jakaumat eivät sovellu testeihin sellaisinaan. Niitä pitää muuntaa matemaattisen kaavan mukaan (muuttujamuunnoksista seuraavaksi).
11 Uudelleenluokittelu Miksi? - Tehdään vain perustellusti sillä samalla menetetään informaatiota. Halutaan tiivistää ja hävittää turhaa tietoa (liikaa yksityiskohtia) Jatkuva muuttuja luokitellaan graafista esitystä varten luokkia yhdistellään ristiintaulukointia varten (liian pienet frekvenssit) ei kuitenkaan liikaa! - joitakin luokkia ei voi yhdistää (esim. eronneet ja lesket )
12 Esimerkki: ikäjakauma Alkuperäinen jakauma aivan liian pikkutarkka, vaikea hahmottaa ja hankala raportoida sanallisesti tekstissä.
13 esimerkki jatkuu: uusitaan luokittelua muoto siistiytyy jo Jakauma normalisoituu ja on helposti ilmaistavissa sanallisesti ja nopeasti miellettävissä
14 Sama SPSS:ssä Transform - Recode - Into different variables Keskikenttään valitaan muutettava vanha muuttuja. Annetaan uudelle luokitellulle muuttujalle nimi ja kuvaus Klikataan Old and new values Vasemmalta valitaan vanhat arvot ja oikealle annetaan niitä vastaavat uudet arvot ja klikataan Add, jotta uudelleen luokittelu astuu voimaan. Taulukosta näet miten vanhoista tulee uusia. Klikataan Continue ja sen jälkeen päävalikossa vielä OK. Nyt kone muodosti uuden muuttujan matriisin viimeiseksi (oikea reuna)
15 uuden muuttujan arvojen nimeäminen Uuden muuttujan arvot kannattaa heti määritellä, jotta ne ovat ymmärrettävät esim. pylväsdiagrammeissa Tämä tehdään Variable View tilassa Huom! Voi käyttää myös: Transform Visual Bander
16 Matemaattinen muuttujamuunnos Summamuuttuja Halutaan kääntää muuttujien arvot samansuuntaisiksi (yleensä summamuuttujia varten) Ei-normaali jakauma halutaan normaaliksi Kysytty syntymävuosi, halutaan ikä Painoindeksi Ennen-jälkeen-arvo ryhmien välistä vertailua varten
17 Summamuuttuja Transform - Compute Target: annetaan summamuuttujalle nimi (ole systemaattinen) Numeric expression: Syötetään näppäimistöltä tai valikosta kaava ja halutut muuttujat. Tässä tehdään summamuuttuja Vastaajien kiinnostuksesta pelata rahapelejä eri päätelaitteiden kautta (3 eriä, kaikki asteikolla 1-4) Huom! Summamuuttujan sijaan saattaisi olla fiksua käyttää keskiarvoa näistä kolmesta muuttujasta. Tällöin asteikko pysyisi 1-4 välillä kun se summamuuttujassa on 3-12 Keskiarvo otetaan Function groupista: statistical ja alemmasta kentästä Mean. Sulkujen väliin halutut muuttujat pilkulla erotettuina
18 Milloin summamuuttuja? Muuttujien tulee ehdottomasti mitata samaa asiaa, muuten ei ole tulkinnallisesti tai teoreettisesti mielekäs - niiden välillä on korrelaatio - faktorianalyysin tuloksena voi rakentaa summamuuttujan
19 Muuttujien kääntäminen samansuuntaisiksi Halutaan kun on kysytty samaa asiaa käänteisin kysymyksin - esim. Kännykän käyttäminen on minusta helppoa ja Minun on vaikea oppia käyttämään kännykkää - Jos näihin vastaa asteikolla 4 = olen täysin samaa mieltä niitä ei ole mieltä laskea yhteen koska lukuarvo 8 ei kerro meille mitään. - Ratkaisu: käännetään jommat kummat toiseen suuntaan, esim. negatiiviset mielipiteet samansuuntaisiksi positiivisten kanssa Uusi arvo = 5 vanha arvo (jos asteikko oli 1-4) Tällöin 4 -> 1 3 -> 2 2 -> 3 1 -> 4 Tehdään SPSS:ssä samalla tavoin Transform Compute kuten edellä summamuuttujan kanssa
20 Ei-normaali jakauma normaaliksi tehdään matemaattinen muunnos, uusi muuttuja ln(x) 1 x X jokin näistä Jos mikään ei toimi, ei voida jatkaa parametrisella testillä -> pitää siirtyä nonparametriisiin testeihin (ei käydä tarkemmin tällä kurssilla) Transform Compute Ln = luonnollinen logaritmi, Sqrt=neliöjuuri
21 Uusi muuttuja = kaava(vanha muuttuja) Vuodesta ikä Transform-Compute Ikä = vuosi nyt syntymävuosi Painoindeksi Indeksi = paino (kg) / (pituus * pituus) (m)
22 Ennen-jälkeen-arvo vertailua varten Esim. internet-koulutuksen vaikutus sukupuolten kokemaan käytön miellyttävyyteen - Mitataan koettu miellyttävyys ennen koulutusta ja sen jälkeen (2 muuttujaa) - Tehdään uusi muuttuja: Kurssin tulos = koettu miellyttävyys kurssin jälkeen koettu miellyttävyys ennen kurssia (oletus: näin saadaan plusmerkkisiä arvoja) - Suoritetaan t-testi uudelle muuttujalle sukupuolen suhteen
23 Huomioita suunnitelmistanne! monivaihtoehtoiset muuttujat Jos vastaaja saa rastittaa monta vastausta samaan kysymykseen - esim. valitse kolme sinulle tärkeää ominaisuutta - tällöin vastauksia ei voi käsitellä numeroarvoina eikä tehdä laskutoimituksia! - jokaista vastausta tulee käsitellä omana muuttujanaan
24 EOS:n huomioiminen jos EOS:lle annettu tallennettaessa jokin asteikon ulkopuolinen erillinen numeraalinen arvo, pitää tarkistaa ettei sitä lasketa esim. keskiarvoihin! (luku 9 vaikuttaa erittäin haitallisesti jos asteikko on muuten 1-4) Variable view: asetetaan Missing valueskohtaan haluttu EOS arvo puuttuvaksi ( discrete missing values )
25 Kysymyksiä? Ongelmia? voidaan käydä uudestaan läpi haluamianne vaiheita/menetelmiä Huom! Kun alatte analysoida omaa aineistoanne, annan tarvittaessa ohjausta
TUTKIMUSOPAS. SPSS-opas
TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien
LisätiedotOHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset
LisätiedotHARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET
HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET OHJELMAN KÄYNNISTÄMINEN Käynnistääksesi ohjelman valitse All Programs > > IBM SPSS Statistics 2x, tai käynnistä ohjelma työpöydän kuvakkeesta.
LisätiedotALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6
Sisällysluettelo ALKUSANAT 4 ALKUSANAT E-KIRJA VERSIOON 5 SISÄLLYSLUETTELO 6 1 PERUSASIOITA JA AINEISTON SYÖTTÖ 8 11 PERUSNÄKYMÄ 8 12 AINEISTON SYÖTTÖ VERSIOSSA 9 8 Muuttujan määrittely versiossa 9 11
LisätiedotTilastolliset ohjelmistot 805340A. Pinja Pikkuhookana
Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen
Lisätiedot4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla
4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.
LisätiedotOHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen
Lisätiedot4 Riippuvuus 1. Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta
4 Riippuvuus 1 Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta x 2 = sisaruksien luku- Tarkastellaan äidin ja lapsen pituuden välistä riippuvuutta havaintomatriisilla, joka on
LisätiedotKvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi
LisätiedotSPSS ohje. Metropolia Business School/ Pepe Vilpas
1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio
Lisätiedot2. Aineiston kuvailua
2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien
LisätiedotSummamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1
Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1 Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta I Summamuuttujien muodostus Olemassa olevista muuttujista voidaan laskea
LisätiedotIBM SPSS Statistics 21 (= SPSS 21)
Tarja Heikkilä IBM SPSS Statistics 21 (= SPSS 21) SPSS = Statistical Package for Social Sciences Ohjelman käynnistys Aloitusikkuna Päävalikot Työkalut Muuttujat (Variables) Tapaukset (Cases) Tyhjä datataulukko
LisätiedotSPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö
SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin
LisätiedotSPSS OPAS. Metropolia Liiketalous
1 Metropolia Liiketalous SPSS OPAS Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio 8 8.Korrelaatio
LisätiedotMTTTP5, luento Luottamusväli, määritelmä
23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A
Lisätiedot54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):
Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei
LisätiedotSPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
LisätiedotTeema 3: Tilastollisia kuvia ja tunnuslukuja
Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin
LisätiedotTilastomenetelmien lopputyö
Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien
LisätiedotMuuttujien määrittely
Tarja Heikkilä Muuttujien määrittely Määrittele muuttujat SPSS-ohjelmaan lomakkeen kysymyksistä. Harjoitusta varten lomakkeeseen on muokattu kysymyksiä kahdesta opiskelijoiden tekemästä Joupiskan rinneravintolaa
LisätiedotSPSS-ohjeita. Metropolia Pertti Vilpas
1 Metropolia Pertti Vilpas SPSS-ohjeita Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio
LisätiedotMONIMUUTTUJAMENETELMISTÄ RAKENNEYHTÄLÖMALLINNUKSEEN MUUTTUJIEN NORMAALISUUS. Statistics
MONIMUUTTUJAMENETELMISTÄ RAKENNEYHTÄLÖMALLINNUKSEEN 28.4.2016 MANNE KALLIO 2016 MUUTTUJIEN NORMAALISUUS : Frequencies Statistics Output: Skewness ja kurtosis -1 1 < 2 X std.error Skewnessin ja kurtosiksen
LisätiedotRISTIINTAULUKOINTI JA Χ 2 -TESTI
RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN
LisätiedotSPSS* - tilastoanalyyttinen ohjelma, vrs 9.0
SPSS* - tilastoanalyyttinen ohjelma, vrs 9.0 = monipuolinen ohjelma, jolla voi tilastollisesti analysoida tieteellistä aineistoa ja se tuottaa myös graafisia tulosteita. SPSS:n oma avustus (help) SPSS:ssä
Lisätiedot(Jos et ollut mukana viime viikolla, niin kopioi myös SPSS-havaintoaineistotiedostot Yritys2 ja neljän kunnan tiedot.)
Tilastollinen tietojenkäsittely / SPSS Harjoitus 2 Kopioi (ÄLÄ SIIS AVAA TIEDOSTOJA VIELÄ!) U-palvelimen hakemiston STAT2100 SPSS kansiosta Aineistoja harjoituksiin 2 tiedosto loputkunnat (SPSS-havaintoaineisto)
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotIhminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 6
Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 6 Käytännön asioita seminaariin liittyen Vastaanotto 2.2. -16.3. To 13.00-13.45 huone TF 112 Sähköposti: ihtesem@cs.tut.fi
LisätiedotJY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT
JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos
LisätiedotData-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]
Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen
Lisätiedot1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi
Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,
LisätiedotHarjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
Lisätiedotpisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
LisätiedotPäänäkymä Opiskelijan ohjeet Kurssin suorittaminen Opettajan ohjeet kurssin teko
Simppelit ohjeet Sisällys Päänäkymä... 1 Valikko... 1 Opiskelijan ohjeet Kurssin suorittaminen... 2 Kurssin haku... 2 Kurssin suorittaminen... 2 Opettajan ohjeet kurssin teko... 3 Kirjautuminen... 3 Kurssin
LisätiedotSPSS* - tilastoanalyyttinen ohjelma
SPSS* - tilastoanalyyttinen ohjelma = monipuolinen ohjelma, jolla voi tilastollisesti analysoida tieteellistä aineistoa ja se tuottaa myös graafisia tulosteita. Käytettävissä mikroverkossa, versio 10.0,
LisätiedotSisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
Lisätiedot... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)
LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa
LisätiedotYLEISKUVA - Kysymykset
INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla
LisätiedotEsim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
LisätiedotATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1
ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää
LisätiedotOpinnäytetyön ja harjoitustöiden tekijöille
SPSS-OPAS Opinnäytetyön ja harjoitustöiden tekijöille Petri Kainulainen 15.5.2008 Iisalmen tulosalue Opas SISÄLTÖ 1 YLEISTÄ... 3 2 AINEISTON TALLENNUS... 3 3 MUUTTUJIEN MITTA-ASTEIKOT... 7 4 MUUTTUJIEN
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
LisätiedotGraph. COMPUTE x=rv.normal(0,0.04). COMPUTE y=rv.normal(0,0.04). execute.
COMPUTE x=rv.ormal(0,0.04). COMPUTE y=rv.ormal(0,0.04). execute. compute hplib_man_r = hplib_man + x. compute arvokons_man_r = arvokons_man + y. GRAPH /SCATTERPLOT(BIVAR)=hplib_man_r WITH arvokons_man_r
LisätiedotTehtävä 9. (pienryhmissä)
Tehtävä 9. (pienryhmissä) Murtonen Lehtinen Olkinuora 191 Yliopisto-opiskelijoiden näkemykset tutkimustaitojen tarpeellisuudesta työelämässä ja näiden näkemysten yhteys tutkimusmenetelmien oppimisessa
LisätiedotMetsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
LisätiedotOngelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
LisätiedotHarjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä..
Harjoituksessa tarkastellaan miten vapaa-ajan liikunta on yhteydessä.. TEHTÄVÄ 1 Taulukko 1 Kuvailevat tunnusluvut pääkaupunkiseudun terveystutkimuksesta vuonna 2007 (n=941) Keskiarvo (keskihajonta) Ikä
LisätiedotSoveltuvan menetelmän valinta. Kvantitatiiviset menetelmät. Faktorianalyysi. Faktorianalyysi. Faktorianalyysin perusidea.
Kvantitatiiviset menetelmät Soveltuvan menetelmän valinta SELITETTÄVÄ MUUTTUJA Pienryhmäkokoontumisissa tarvitaan EK0- aineiston haastattelulomake. Sen voi tulostaa verkosta. Linkki löytyy kurssin kotisivulta:
Lisätiedot, Määrälliset tutkimusmenetelmät 2 4 op
6206209, Määrälliset tutkimusmenetelmät 2 4 op Jyrki Reunamo, Helsingin yliopisto, Opettajankoulutuslaitos 19.2.2015 1 Varianssianalyysi (Pallant 2007, Tähtinen & Isoaho 2001) Verrataan ryhmien keskiarvoja.
LisätiedotJYVÄSKYLÄ LICENTIATE THESES IN COMPUTING 12. Ari Kuusio. Tietokannan hallintajärjestelmäportfolion hallinta suurissa asiakasorganisaatioissa
JYVÄSKYLÄ LICENTIATE THESES IN COMPUTING 12 Ari Kuusio Tietokannan hallintajärjestelmäportfolion hallinta suurissa asiakasorganisaatioissa UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ LICENTIATE THESES IN COMPUTING
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
LisätiedotValitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto
Versio k15 Näin laadit ilmastodiagrammin Libre Officen taulukkolaskentaohjelmalla. Ohje on laadittu käyttäen Libre Officen versiota 4.2.2.1. Voit ladata ohjelmiston omalle koneellesi osoitteesta fi.libreoffice.org.
LisätiedotMONISTE 2 Kirjoittanut Elina Katainen
MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi
LisätiedotAineistokoko ja voima-analyysi
TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla
LisätiedotKvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
LisätiedotKAHDEN RYHMÄN VERTAILU
10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti
LisätiedotTekstieditorin käyttö ja kuvien käsittely
Tekstieditorin käyttö ja kuvien käsittely Teksti- ja kuvaeditori Useassa Kotisivukoneen työkalussa on käytössä monipuolinen tekstieditori, johon voidaan tekstin lisäksi liittää myös kuvia, linkkejä ja
LisätiedotMTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotKandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
LisätiedotP5: Kohti Tutkivaa Työtapaa Kesä Aritmeettinen keskiarvo Ka KA. Painopiste Usein teoreettinen tunnusluku Vähintään välimatka-asteikko.
Aritmeettinen keskiarvo Ka KA Painopiste Usein teoreettinen tunnusluku Vähintään välimatka-asteikko x N i 1 N x i x s SD ha HA Kh KH Vaihtelu keskiarvon ympärillä Käytetään empiirisessä tutkimuksessa Vähintään
LisätiedotTämä on PicoLog Windows ohjelman suomenkielinen pikaohje.
Tämä on PicoLog Windows ohjelman suomenkielinen pikaohje. Asennus: HUOM. Tarkemmat ohjeet ADC-16 englanninkielisessä User Manual issa. Oletetaan että muuntimen kaikki johdot on kytketty anturiin, käyttöjännite
LisätiedotT Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
LisätiedotSuvi Junes/Pauliina Munter Tietohallinto / Opetusteknologiapalvelut 2014
Tiedostojen lisääminen alueelle Vaihtoehto1: Jos käytät Firefox-selainta voit vain raahata tiedoston alueelle. Laita Moodle-alueellasi muokkaustila päälle (Muokkaustila päälle -painike). Avaa koneesi Tiedostot-ikkuna
Lisätiedot1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
LisätiedotKESKUSTANUORTEN NETTISIVUT- OHJEITA PIIRIYLLÄPITÄJÄLLE 1. KIRJAUTUMINEN
KESKUSTANUORTEN NETTISIVUT- OHJEITA PIIRIYLLÄPITÄJÄLLE 1. KIRJAUTUMINEN -Mene osoitteeseen keskustanuoret.fi/user - Kirjoita saamasi käyttäjätunnus ja salasana - Klikkaa yllä olevaa piirisi logoa niin
LisätiedotMat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,
LisätiedotDBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi
DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin
Lisätiedot3M Online Center sivuston käyttöopas
3M Online Center sivuston käyttöopas 1 3M 2015. All Rights Reserved. 3M Online Center -sivuston käyttöopas Tuotteiden tilaaminen...3 1. Tilaa nyt...4 2. Pikatilaus...5 3. Lataa tilaustiedosto...6 4. Ostoslistat
LisätiedotLiian taipuisa muovi
Muoviteollisuuden laboratoriossa on huomattu, että tuotannosta tullut muovi on liian taipuisaa. Tämän vuoksi laadunvalvontalaboratorio tutkii IR:n avulla eteenin pitoisuuden muovissa. TAUSTAA Polypropeeni
LisätiedotSEM1, työpaja 2 (12.10.2011)
SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):
LisätiedotTavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.
Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,
Lisätiedotr = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
LisätiedotTentti erilaiset kysymystyypit
Tentti erilaiset kysymystyypit Monivalinta Monivalintatehtävässä opiskelija valitsee vastauksen valmiiden vastausvaihtoehtojen joukosta. Tehtävään voi olla yksi tai useampi oikea vastaus. Varmista, että
LisätiedotFoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön
LisätiedotI Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli
I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli Group Statistics Luk1 Kirj1 Kielt1 Khuol1 Kirjall1 Ilmharj1 äyt1 Viest1 Sanaluokat1 Luk2 Kirj2
LisätiedotOtannasta ja mittaamisesta
Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,
LisätiedotMittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.
1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin
Lisätiedot031021P Tilastomatematiikka (5 op) kertausta 2. vk:een
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11
LisätiedotLisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
LisätiedotYlläpitoalue - Etusivu
Crasmanager 5.2 Ylläpitoalue - Etusivu Sivut osiossa sisällön selaus ja perussivujen ylläpito. Tietokannat osiossa tietokantojen ylläpito. Tiedostot osiossa kuvien ja liitetiedostojen hallinta. Työkalut
Lisätiedot/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin
30.11.2017/1 MTTTP5, luento 30.11.2017 Kertausta H 0 : µ = µ 0 Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin = / ~ 0,1. Kaava 5.1 30.11.2017/2 Esim. Tutkija
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
Lisätiedot1 (5) VUOKRALISENSSIN KÄYTTÖÖNOTTO JA PILVIPISTEET AUTODESK ACCOUNTISSA. Milloin vuokra-aika alkaa?
1 (5) VUOKRALISENSSIN KÄYTTÖÖNOTTO JA PILVIPISTEET AUTODESK ACCOUNTISSA Milloin vuokra-aika alkaa? Vuokra-aika alkaa sinä päivänä, kun saat Autodeskilta tilausvahvistuksen sähköpostilla. Mitä tarkoittaa
LisätiedotLuentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato
Tehtävä 1 Osana laajempaa tutkimusprojektia mitattiin kävelynopeutta yli 80-vuotiaita tutkittavia. Osalla tutkittavista oli lääkärintarkastuksen yhteydessä annettu kielto osallistua fyysistä rasitusta
LisätiedotToimittajaportaalin rekisteröityminen Toimittajaportaalin sisäänkirjautuminen Laskun luonti Liitteen lisääminen laskulle Asiakkaiden hallinta Uuden
1 Toimittajaportaalin rekisteröityminen Toimittajaportaalin sisäänkirjautuminen Laskun luonti Liitteen lisääminen laskulle Asiakkaiden hallinta Uuden asiakkaan lisääminen Laskujen haku Salasanan vaihto
LisätiedotMatematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
LisätiedotEllei tutkijalla ole käsitystä mittauksensa validiteetista ja reliabiliteetista, ei johtopäätöksillä
Lauri Tarkkonen: Validiteetti ja reliabiliteetti 1 Ellei tutkijalla ole käsitystä mittauksensa validiteetista ja reliabiliteetista, ei johtopäätöksillä ole pohjaa. Rakennevaliditeetin estimoiminen 1. Mitattavan
LisätiedotAki Taanila VARIANSSIANALYYSI
Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen
LisätiedotAJANVARAUKSEN TEKEMINEN (YLEISEEN RESURSSIIN)
OHJE 1(10) AJANVARAUKSEN TEKEMINEN (YLEISEEN RESURSSIIN) Tavastiassa on muutama yleinen resurssi, joiden varauksen voi tehdä GroupWisen kalenteriin. Merkinnän tekeminen ei edellytä oman kalenterin käyttämistä.
LisätiedotMoodle-oppimisympäristö
k5kcaptivate Moodle-oppimisympäristö Opiskelijan opas Sisältö 1. Mikä on Moodle? 2. Mistä löydän Moodlen? 3. Kuinka muokkaan käyttäjätietojani? 4. Kuinka ilmoittaudun kurssille? 5. Kuinka käytän Moodlen
LisätiedotMäärällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
Lisätiedotvoidaan hylätä, pienempi vai suurempi kuin 1 %?
[TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine
LisätiedotAloita uusi kartoitus -painikkeesta käynnistyy uuden kartoituksen tekeminen
it-arvi Ohjeet sovelluksen käyttöön KÄYNNISTYS: - Sovellus käynnistetään tuplanapauttamalla kuvaketta Esteettomyysarviointi.exe. ETUSIVU: Aloita uusi kartoitus -painikkeesta käynnistyy uuden kartoituksen
LisätiedotMTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotII Tilastollisen aineiston ja analyysin edellytysten tarkistaminen
II Tilastollisen aineiston ja analyysin edellytysten tarkistaminen - Tietojen syöttö - Karma&Komulainen aineisto (tutustuminen) - Muuttujien jakauman tarkistus - Puuttuva tieto ja sen käsittely - Muunnokset,
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
LisätiedotAC-huoneen ulkonäkö ja käyttö poikkeaa ipadissa oleellisesti tietokoneen AC-huoneesta.
KIPAn opintoihin osallistuminen ipadilla AC-YHTEYDEN KÄYTTÖ AC edellyttää erillisen ohjelman asentamista ipadille. Ohjelman saa ilmaiseksi esim. itunesista. Ohjelman pääsee hakemaan joko etsimällä sen
LisätiedotFENG OFFICE -PROJEKTINHALLINTATYÖKALU
1(5) FENG OFFICE -PROJEKTINHALLINTATYÖKALU Verkkoprojektissa tarkoituksenmukaisen projektinhallintatyökalun käyttö vähentää viestintään kuluvaa työaikaa merkittävästi, kun projektin osapuolilla on reaaliaikainen
Lisätiedot