ASTROBIOLOGIA Johdatus oppiaineeseen
|
|
- Riikka Hakola
- 10 vuotta sitten
- Katselukertoja:
Transkriptio
1 ASTROBIOLOGIA Johdatus oppiaineeseen Astrobiologian suuret kysymykset ovat 1900-luvulta lähtien olleet: Mitä elämä on? Miten elämä syntyi Maassa? ja Missä kaikissa muodoissa elämää voi esiintyä?. Synnyttääkö evoluutio aina samankaltaisia ratkaisuja? Mitkä muut alkuaineet paitsi hiili voivat synnyttää elollista elämää? Mikä on elollisen ja elottoman ero? Omasta aurinkokunnastamme elämän merkkejä on löytynyt Marsista, Europan ja Enkeladuksen pinnanalaisista meristä sekä Oortin pilven komeetoista. Aurinkokunnan ulkopuolella sadasta tutkitusta tähtijärjestelmästä on löytynyt komeettojen lisäksi viisi elollista maailmaa: Terranova (Alfa Centauri A I), Han Shan (Delta Pavonis), Kali-Yuga (Xi Ursae Majoris Ab), Poseidonia (DM IV) ja Aurore (Eta Boötis IIc). Kaksi viimeksimainittua ovat kuita. Sol (Aurinkokunta) MARS (Sol IV): Marsin viileissä valtamerissä elämän kehitys näyttää noudatelleen samoja suuntaviivoja kuin Maassa. Ilmakehän ohentuminen ja vulkaanisen toiminnan sammuminen johtivat kuitenkin planeetan varhaiseen kuivumiseen. Pohjoisen pallonpuoliskon valtameret (Marineris ja Borealis) vetäytyivät regoliitin alle. Eteläisen pallonpuoliskon Hellaksen sisäjärvi kuivui kokonaan, jättäen jälkeensä vain joukon fossiileja. Marsin horrostava bakteerikanta säilyi kuitenkin elinkelpoisena syvällä pinnan alla, tuottaen ilmakehään metaania joka havaittiin ensimmäisen kerran jo vuonna 2004, kauan ennen ensimmäistä miehitettyä Mars-lentoa. Areobiologit ovat luokitelleet useita satoja marsilaisperäisiä bakteereita, joista osa on yhteisiä Maan kanssa. Havainto johti panspermia-teorian vahvistumiseen astrobiologien keskuudessa. MARS Painovoima: 0,38g Halkaisija: 6 804,9 km Kiertoaika: 687 d Pyörähdysaika: 24,7 h Ilmakehä: 45% CO 2, 27% O 2, 21% N 2, 2% Ar Ihmisen toiminnan vuoksi Marsin elinolosuhteet ovat muuttuneet rajusti, ja se heijastuu niin planeetan kasvi- kuin eläinkantoihinkin. Marsin kiistanalainen maankaltaistamisohjelma (kts. YMIR) aiheutti Marsin alkuperäiselle ekosfäärille korvaamatonta tuhoa. Alkuperäinen bakteerikanta on säilynyt suht' ennallaan ainoastaan eteläisen pallonpuoliskon ikiroudassa. Nykyään Marsissa kasvaa vesialueiden läheisyydessä luonnonvaraisena planeetalle varta vasten geenimuunneltua floraa, kuten mustaa jäkälää, sieniä, sammalia ja alkeellisia suikerokasveja. Marsin kasvihuoneissa ja hydroponisilla farmeilla viljellään hauraampia lajikkeita, kuten vitaminoitua vehnää (triticum martiae), hedelmiä, vihanneksia ja bionisia lihatuotteita. Kts. Encyclopaedia Galactica, Mars.
2 EUROPA, ENKELADUS: Pienten kuiden jääkuorten alla elää valolta ikuisesti suojattuna tulivuorten lämmössä viruksia, bakteereita sekä alkeellisia kemosynteesiin kykeneviä biootteja. Bakteerien kehitys analoginen Marsin ja Maan kanssa -> koko Aurinkokunnan elämä peräisin samasta lähteestä? OORTIN PILVI: Ekstremofiilejä mikrobeja, viruksia ja itiöitä. Rigil Kentaurus Etäisyys Maasta: 4,36 valovuotta Nimet: Rigil Kentaurus, Nánmén'èr ( 南 門 二 ), Alfa Centauri AB Alfa Centauri on kolmoistähtijärjestelmä. Se koostuu kahdesta päätähdestä (A, B) ja niitä kiertävästä punaisesta kääpiöstä Proxima Centaurista. Alfa Centauri A, joka tunnetaan myös nimellä Toliman (hepr. täältä ikuisuuteen ) on hieman Aurinkoa isompi ja kirkkaampi, hyvin metallirikas G2 V-luokan tähti. Tähti on hitaasti pyörivä, eikä sillä ole auringonpilkkuja. Alfa Centauri B, Bungula, on K1 V-luokan keltaoranssi, hieman Aurinkoa pienempi ja himmeämpi tähti. Tähdet kiertävät toisiaan elliptisesti 79,9 vuoden jaksoissa keskietäisyyden ollessa 23,7 tähtitieteellistä yksikköä. TERRANOVA (Alfa Centauri A I): Terranova on Alfa Centauri A:n ensimmäinen planeetta. Se kiertää Tolimania elokehällä 1,25 AU:n etäisyydellä (kiertoaika 477 päivää). Läpimitta on km verrattuna Maan kilometriin. Planeetan massa on 0,82 Maata ja painovoima suuremman tiheyden vuoksi 1,1 g. Ilmanpaine on 0,92 ja happipaine 0,18, joten ilma on hieman ohuempaa. Terranovan mesosfäärissä on tavattu suuri määrä erilaisia vapaita metalli-ioneja, joita ei muista puutarhamaailmoista tunneta. Planeetalla on kaksi hyvin pientä kuuta, Esa ja Europos, jotka ovat sen vangitsemia hiilipitoisia asteroideja. TERRANOVA Painovoima: 1,1g Halkaisija: km Kiertoaika: 477 d Pyörähdysaika: 20 h Terranovan ilmasto-olosuhteet ovat erikoiset. Sen toinen, oranssi aurinko kiertää taivaalla hidasta ympyrää niin, että puolet vuodesta se paistaa öisin ja puolet vuodesta päivisin. Harvinaisia kaksoisauringonlaskuja pidetään tunnetun avaruuden kauneimpina. Tähtien elliptinen kierto aiheuttaa Terranovalla tavallisten vuodenaikojen lisäksi ns. suuria vuodenaikoja 40 vuoden jaksoissa. Terranovan pinnasta 60% on nestemäisen veden peitossa. Hiilipohjainen elämä on ilmestynyt planeetalle samoihin aikoihin kuin Maahankin ilmeisesti komeettojen mukana. Terranovan evoluutiota on hidastanut planeetan pinnalle pääsevän ultraviolettisäteilyn vähäinen määrä. Sen kotoperäinen eliöstö on suurelta osin väritykseltään keltaista protokasvillisuutta, joka muistuttaa suuresti jurakauden saniaisia. Floran kellertävä väritys johtuu kaiken terranovalaisen elämän vasempaan kiertyneistä aminohapoista. Maaperäinen eliöstö levisi Terranovalle ensimmäisten luotainten ja tutkimusmatkojen ansiosta.
3 Planeetalle istutetut maallisen eloonjäämistaistelun karaisemat lajit ovat villiintyneet Terranovalla täysin syrjäyttäen alkuperäistä eliöstöä kaikkialla. Koska alkuperäinen eliöstö vierastaa aluetta, jolle Maan lajikkeet ovat levinneet, planeetansuojelusta on tullut yksi Terranovan polttavimmista poliittisista kysymyksistä. Planeetan asutusmahdollisuudet ja merkitys Maan uutena rajaseutuna niin väestöongelman ratkaisemisen kuin uusien luonnonvarojen hyväksikäytön kannalta tarkoittavat sitä, että Terranova tulee tulevaisuudessa ohittamaan Marsin ihmiskunnan tärkeimpänä jalansijana avaruudessa. Euroopan Unioni, Kiina, Yhdysvallat, Japani ja Brasilia ovat kaikki perustaneet omat siirtokuntansa planeetalle, jonka nopeasti kasvava asukasluku lähestyy (bioroidit mukaanluettuna) miljoonaa. Delta Pavonis Etäisyys Maasta: 19,9 valovuotta Delta Pavonis on G7 V-IV luokan vanha keltainen kääpiö, joka on muuttumassa punaiseksi jättiläiseksi. Se on hieman Aurinkoa kirkkaampi, mutta viileämpi tähti. Delta Pavonis aloittaa nk. Kiinan haaran, läheisten tähtien ketjujen muodostaman tähtienvälisen avaruuden alueen, joka on määritelty kuuluvaksi Kiinan kansantasavallan etupiirialueeseen. HAN SHAN (Delta Pavonis I): Delta Pavonis järjestelmä muodostuu kahdesta asteroidirenkaasta ja kahdesta niitä seuraavasta planeetasta. Ulommainen planeetta on 3,5 Jupiterin massainen kaasujättiläinen Yu Huangdí, sisempi Han Shan ( kylmä vuori ). Kansainvälinen tähtitieteellinen seura on antanut planeetalle myös nimen Hades, mutta kiinalainen nimitys on laajemmin tunnettu. Maailman läpimitta on vähän alle km ja sen pintapainovoima on 1,23 g. Planeetan ilmakehästä peräti 39 % on happea, joten pienikin kipinä tai liekki voi aiheuttaa valtavan tulipalon. Ihmisasutus on mahdollista ainoastaan yli metrin korkeudessa, jossa kaasukehän ohuus vaikeuttaa palamista. Han Shanin maaperä ja vesi on hyvin hapanta. Planeetta kiertää aurinkoaan elokehän rajamailla, joten se on suureksi osaksi jäässä. Han Shanin eliöstö on suureksi osaksi esibioottisella asteella. Mikrobien ja pieneliöiden lisäksi planeetalla on useita kookkaita yksisoluisia eliölajeja, jotka käyttäytyvät parvina kuin kokonaiset yksilöt. Sopeutuessaan karuun ympäristöönsä ne ovat saaneet joitain hyvin vaarallisia muotoja. Yksi esimerkki on nk. veitsikärpäset, tuulen mukana ajautuvat katkarapuja muistuttavat yksisoluiset olennot, jotka ovat kuin eläviä lasinsiruja. Wu-Beijing ja United Samsung ovat perustaneet planeetalle kaksi kaivossiirtokuntaa (Tientsin ja Guangzhou). Planeetalla asuu myös lähes 1000 Euroopan Unionin kansalaista Hermia-tukikohdassa. Radiomajakkatunnus NLYN 76 (Restricted world). Lähestyminen edellyttää voimassa olevaa Kiinan kansantasavallan viisumia ja tutkimuslupaa.
4 Alula Australis Etäisyys maasta: 27,3 valovuotta Nimet: Alula Australis, ξ Ursae Majoris Alula Australis -järjestelmä muodostuu kahdesta toisiaan kiertävästä kaksoistähtiparista ja yhdestä ruskeasta kääpiöstä, joten se on itse asiassa viitoistähti. Järjestelmään kuuluu lisäksi yhdeksän planemoa, jotka vaihtelevat 0,9 Jupiterin massaisesta kaasuplaneetasta alle 5000 km halkaisijaltaan oleviin kivenmurikoihin. Aniharvalla Alula Australis -järjestelmän kappaleella on edes suhteellisen vakaa kiertorata. KALI-YUGA (Xi Ursae Majoris Ab Id): Ensimmäistä kaksoistähtiparia kiertää kaksirenkainen 0,9 jupiterin massainen (mutta sitä paljon suurempi) kaasujättiläinen Caelus, jonka kaasukehä sisältää runsaasti vesihöyryä. Caeluksella on 13 kuuta, joista kolme (Brontes, Steropes ja Arges) ovat Maan kokoisia. Brontes, lähin kuista, tunnetaan nykyään nimellä Kali- Yuga. Caeluksen rata nelostähtijärjestelmän sisällä vaihtelee vuoden jaksoissa. Muutokset ovat aiheuttaneet radikaaleja muutoksia Brontesin olosuhteille ja vauhdittaneet elämän evoluutiota. KALI-YUGA Painovoima: 0,87g Halkaisija: ,9 km Kiertoaika: 434,6 d Pyörähdysaika: 16 d Maailman runsashappisen kaasukehän ilmanpaine Ilmakehä: 69% N 2, 30% O 2, 1% H 2 O, on kolme kertaa Maan vastaava. Pintapainovoima 0,035% CO 2 on 0,87 g. Kali-Yugan ammonium- ja Ilmanpaine: 3 bar sulfidipitoinen alkumeri peittää sen pinta-alasta 68 prosenttia ja maa jakaantuu kahden suuren mantereen kesken. Merta on kutsuttu "orgaaniseksi sopaksi", sillä se sisältää lähes kaikkia elämän rakennusaineita ynnä metallisuoloja ja rikkiä. Tiheän ilmakehänsä ansiosta Kali-Yugalla ei ole napajäätiköitä. Sen trooppinen lämpötila jakaantuu suhteellisen tasaisesti koko planeetan alueelle. Caeluksen elliptinen rata ja kaksoistähtiparin valovoiman muutokset saavat aikaan suuria lämpötilanvaihteluja sen 434 päivää kestävän vuoden aikana. Hapen määrä ilmakehässä riittää spontaaniin syttymiseen Kali-Yugaa riivaavien suunnattomien ukkosmyrskyjen aikana. Hiilidioksidimäärät ovat kolmekymmentä kertaa Maata korkeammat. Kuun tavoin Kali-Yuga on vuorovesilukkiutunut emoplaneettansa kanssa 1:1 spinrataresonanssiin. Sen kiertoaika Caeluksen ympäri on 16 päivää, joten Kali-Yugalla on kahdeksan päivää tauotonta pimeyttä ja kahdeksan päivää tauotonta aurinkoa. Pitkät vuorokaudet synnyttävät erittäin voimakkaita, koko kuuta kiertäviä tuulia. Alula Australiksen kaksi muuta aurinkoa tanssivat taivaalla monimutkaista piirileikkiään, mutta kaikki valo siivilöityy tiheän kaasukerroksen läpi niin, että pinnalla vallitsee ikuinen sinivihreä hämärä. Kali-Yugan elämä on syntynyt sen protobioottisesta meressä, mutta levinnyt jo varhaisessa
5 vaiheessa asumaan sen ilmakehään. Voimakkaat tuulet ja ilmakehän tiheys auttavat suunnattomia eliöitä pysymään ilmassa koko elämänsä ajan. Kaikkein kiintoisimpien joukossa ovat "taivasvalaat", suunnattomat lentävät valaat jotka syövät ravinnokseen ilmakehässä suurina lauttoina kelluvaa aitotumallista "levää". Kali-Yuga on tunnettu myös harvinaislaatuisista pyörivistä eläimistään (pedalternorotandomovens centroculatus). Kts. Encyclopaedia Galactica: Kali-Yugan elämä. DM POSEIDONIA (DM IV): Kts. Johdatus solaristiikkaan Eta Boötis Etäisyys maasta: 31,9 valovuotta Karhunvartijan tähdistössä sijaitseva Eta Boötis on kaksoistähtijärjestelmä. Eta Boötis A, traditionaaliselta nimeltään Muphrid ( yksinäinen ) on kirkas, G0 luokan keltainen alijättiläinen. Pienempi tähti, 0.48 AURORE solin massainen punainen kääpiö Rubis, kiertää sitä Painovoima: 0,74g Halkaisija: 9450 km 1,425 au:n etäisyydellä, tehden yhden kierroksen aina Kiertoaika: 2537 d 495 päivän välein. Järjestelmä sisältää erittäin Pyörähdysaika: 61,3 d huomattavia määriä vetyä raskaampia alkuaineita. Eta Boon lähin tähti on punainen jättiläinen Arcturus, joka loistaa Auroren taivaalla monta kertaa Venusta kirkkaammin. Ranskalainen väyläluotainretkikunta löysi Auroren vuonna Ilmakehä: 78% N 2, 19,34% O 2, 1% Ar, 0,035% CO 2 AURORE (η Boötis IIc): Järjestelmää kiertää viisi kaasuplaneettaa: Hesperus (0,8 Jupiteria), Titonus (5,3 Jupiteria), Laodemon (1,6 Jupiteria), Theia (0,5 Jupiteria) ja Astreus (0,28 Jupiteria). Näistä suurin, Titonus, luokitellaan ruskeaksi kääpiöksi : tähtimäiseksi kappaleeksi, jolla ei ole tarpeeksi massaa vety-helium fuusioon, mutta joka toisaalta tuottaa vetovoimansa vuoksi enemmän lämpöä ja valoa kuin vastaanottaa. Titonuksella on 72 kuuta, joista neljä suurempaa (Memnon, Selene, Aurore ja Antilokus). Titonuksen säteilemä lämpö riittää luomaan Aurorelle elämälle suotuiset olosuhteet. Aurore poikkeaa kuitenkin huomattavasti Maasta. Titonuksen suunnattoman vetovoiman puristuksessa siitä on tullut litistyneen kananmunan muotoinen. Aurore on Kali-Yugan tavoin vuorovesilukkiutunut Titonuksen kanssa niin, että se kuu kääntää aina saman pallonpuoliskon emäplaneettaansa kohti. Auroren yönpuoli, La Glacière, elää ikuista pimeää jääkauttaan, jossa Muphridin laskettua lämpötila laskee hiilidioksidin jäätymispisteen alapuolelle. Päivänpuolella sijaitsee kuuma piste, jossa lämpötila pysyttelee veden kiehumispisteen yläpuolella. Sitä riepottelee ikuinen hurrikaani. Kahden ääripään välissä sijaitsee kapea lauhkea vyöhyke.
6 La Glacièren sulamisesta muodostunut Lieriömeri kattaa suurimman osan lauhkeasta vyöhykkeestä. Jäätiköstä sulavat vesimassat haihtuvat Titonuksen puolella ja palaavat rankkasateina ja myrskyinä takaisin kylmälle puolelle. Kuun ilmakehässä raivoavat tuulet aiheuttavat vakavia vaikeuksia kaikille lentolaitteille. Titonuksen vetovoiman synnyttämä vuorovesi-ilmiö on Aurorella 454 kertaa voimakkaampi kuin Maassa. Kanjoneissa ja solissa vuorovesi synnyttää satojen metrien pinnanvaihteluita. Viimeisen kahdenkymmenen vuoden aikana on selvinnyt, että Aurorella on sen ääriolosuhteista huolimatta kehittynyt kotoperäistä elämää. Hiilipohjainen eliöstö on kehittynyt alun perin Lieriömeressä ja siirtynyt vuorovesi-ilmiön vaikutuksesta kuivalle maalle. Alustavien tutkimusten mukaan Aurorella ei tunneta jakoa eläin- ja kasvikunnan välillä. Parhaiten tunnettu aurorelainen eliö on hattulatvaksi kutsuttu yleinen autrotrofi, fotosynteesillä ravintonsa hankkiva kasvin ja eläimen välimuoto. Se on kahdeksan metriä korkeaksi kasvava sienimäinen eliö, jonka varjomainen hetula kerää Muphridin ja Titonuksen energiaa tuottaakseen sokeria. Hattulatvoilla on viisi alkeellista sydäntä ja se kykenee hitaasti liikkumaan päästäkseen otollisempaan asemaan aurinkoihin nähden. Auroren varsinainen kasvillisuus käyttää sinivihreää klorofyllin vastinetta katalyyttinä fotosynteesissä, mutta enemmistö lajikkeista hankkii ilmeisesti lisäravinteita suoraan muista eliöistä lihansyöjinä tai mädännäiskasveina. Väritys vaihtelee sinisestä hiilenmustaan. Maaeläimiä ei ole voitu järjestelmällisesti luokitella. Pirennen-Bettencourtin retkikunnan mukaan ne näyttävät kehittyneen kaikki muutamasta äyriäisenkaltaisesta alkumuodosta. Monet Aurorelainen hattulatvatiheikkö eliöt erittävät voimakasta orgaanista happoa hajottaakseen ravintoa. Hapolta eliöitä suojaa niiden hiiliperäinen, orgaaniseksi muoviksi kutsuttu panssari. Sellaisenaan syötynä Auroren eliöt ovat joko ihmisille myrkyllisiä tai sitten ne läpäisevät ruoansulatusjärjestelmän sulamatta vatsassa. Tämä johtuu siitä, että Terranovan tapaan Auroren elämä perustuu oikeanpuoleisille eli dekstroaminohapoille, jotka ovat Maassa tavattavien levoaminohappojen peilikuvia. Aurorelaisen elämän yksi mielenkiintoisimpia piirteitä on sen eliöstössä yleisesti tavattu kyky havaita ja suojautua punaisen kääpiön aurinkopurkauksilta. Näkyvän valon sijaan paikalliset elämänmuodot ovat hyvin herkkiä sekä infrapuna- että ultraviolettisäteilylle. Aurore on kaukaisin ihmisen tutkima järjestelmä.
7
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
Planeetan määritelmä
Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan
Jupiter-järjestelmä ja Galileo-luotain II
Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.
Maan ja avaruuden välillä ei ole selkeää rajaa
Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta
Kosmos = maailmankaikkeus
Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA
Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,
Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.
LUMATE-tiedekerhokerta, suunnitelma AIHE: AURINKOKUNTA Huom! Valmistele maitopurkit valmiiksi. Varmista, että sinulla on riittävästi soraa jupiteria varten. 1. Alkupohdintaa Aloitetaan kyselemällä, mitä
Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle
Solun toiminta II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle 1. Avainsanat 2. Fotosynteesi eli yhteyttäminen 3. Viherhiukkanen eli kloroplasti 4. Fotosynteesin reaktiot 5. Mitä kasvit
AKAAN AURINKOKUNTAMALLI
AKAAN AURINKOKUNTAMALLI Millainen on avaruus ympärillämme? Kuinka kaukana Aurinko on meistä? Minkä kokoisia planeetat ovat? Tämä Aurinkokunnan pienoismalli on rakennettu vastaamaan näihin ja moneen muuhun
spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero
Messier 51 Whirpool- eli pyörregalaksiksi kutsuttu spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero 51. Pyörregalaksi
SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen
SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin
AURINKOKUNNAN RAKENNE
AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa
TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014
TURUN YLIOPISTO GEOLOGIAN PÄÄSYKOE 27.5.2014 1. Laattatektoniikka (10 p.) Mitä tarkoittavat kolmiot ja pisteet alla olevassa kuvassa? Millä tavalla Islanti, Chile, Japani ja Itä-Afrikka eroavat laattatektonisesti
Planetologia: Tietoa Aurinkokunnasta
Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen
ETA BOÖTIS Aurore Aurelia
Eta Bootis A (Muphrid) Eta Bootis B (Rubis) BINARY STAR DATA ETA BOÖTIS Aurore Aurelia Position: Primary (A) Companion: CCDM 13547+1824 B Name: Eta Bootis (Muphrid, Name: Rubis (ال رامح مف رد ar-rāmiħ,
Supernova. Joona ja Camilla
Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa
Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009
Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon
ASTROFYSIIKAN TEHTÄVIÄ VI
ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan
Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,
Kosmologia ja alkuaineiden synty. Tapio Hansson
Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian
Syntyikö maa luomalla vai räjähtämällä?
Syntyikö maa luomalla vai räjähtämällä? Tätä kirjoittaessani nousi mieleeni eräs tuntemani insinööri T. Palosaari. Hän oli aikansa lahjakkuus. Hän oli todellinen nörtti. Hän teki heti tietokoneiden tultua
ETÄISYYS TÄHDESTÄ PYÖRÄHDYSAIKA JA KIERTOAIKA
Planeetan fyysisiä ominaisuuksia sekä kiertoradan ominaisuuksia tutkitaan piirrosten, tiedonhaun ja simulaatioiden avulla. Seuratkaa ohjeita tarkasti, pohtikaa ja vastatkaa kysymyksiin. Yhdistäkää lopuksi
Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami
1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien
Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä
Vettä suodattuu maakerrosten läpi pohjavedeksi. Pysy asemalla: Pohjois-Eurooppa Kasvin soluhengityksessä vapautuu vesihöyryä. Sadevettä valuu pintavaluntana vesistöön. Pysy asemalla: Pohjois-Eurooppa Joki
1 Laske ympyrän kehän pituus, kun
Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin
Aurinko. Tähtitieteen peruskurssi
Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S
Sisällys. Vesi... 9. Avaruus... 65. Voima... 87. Ilma... 45. Oppilaalle... 4 1. Fysiikkaa ja kemiaa oppimaan... 5
Sisällys Oppilaalle............................... 4 1. Fysiikkaa ja kemiaa oppimaan........ 5 Vesi................................... 9 2. Vesi on ikuinen kiertolainen........... 10 3. Miten saamme puhdasta
Miten kasvit saavat vetensä?
Miten kasvit saavat vetensä? 1. Haihtumisimulla: osmoosilla juureen ilmaraoista haihtuu vettä ulos vesi nousee koheesiovoiman ansiosta ketjuna ylös. Lehtien ilmaraot säätelevät haihtuvan veden määrää.
Tähtitieteen historiaa
Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä
NELJÄ ELEMENTTIÄ TEHTÄVÄMATERIAALI
NELJÄ ELEMENTTIÄ TEHTÄVÄMATERIAALI Tämä tehtävämateriaali on suunniteltu alakouluryhmien omatoimisen museokäynnin tueksi. Materiaaliin voi tutustua jo ennen museokäyntiä ja tehtävät voi tehdä joko museokäynnin
Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2
Luku 3 Ilmakehä suojaa ja suodattaa Sisällys Ilmakehä eli atmosfääri Ilmakehän kerrokset Ilmakehä kaasukoostumuksen mukaan Ilmakehä lämpötilan mukaan Säteilytase ja säteilyn absorboituminen Kasvihuoneilmiö
AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!
TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä
Miten kasvit saavat vetensä?
Miten kasvit saavat vetensä? 1. Haihtumisimulla: osmoosilla juureen ilmaraoista haihtuu vettä ulos vesi nousee koheesiovoiman ansiosta ketjuna ylös. Lehtien ilmaraot säätelevät haihtuvan veden määrää.
Mikä määrää maapallon sääilmiöt ja ilmaston?
Mikä määrää maapallon sääilmiöt ja ilmaston? Ilmakehä Aurinko lämmittää epätasaisesti maapalloa, joka pyörii kallellaan. Ilmakehä ja sen ominaisuudet vaikuttavat siihen, miten paljon lämpöä poistuu avaruuteen.
Tähtitaivaan alkeet Juha Ojanperä Harjavalta
Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt
Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.
Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi
Mikkelin lukio. Marsissako metaania? Elisa Himanen, Vilma Laitinen, Aatu Ukkonen, Pietari Miettinen, Vesa Sivula Pariisi
Mikkelin lukio Marsissako metaania? Elisa Himanen, Vilma Laitinen, Aatu Ukkonen, Pietari Miettinen, Vesa Sivula Pariisi 7-11.10.2013 Summary in English Methane in Mars? According to the latest researches
Meteoritutkimuksen historia ja nykyhetki. Esitelmä Cygnuksella 2012 Meteorijaosto Markku Nissinen
Meteoritutkimuksen historia ja nykyhetki Esitelmä Cygnuksella 2012 Meteorijaosto Markku Nissinen Esitelmän runko Muinaiset uskomukset Kreikkalaisten selitysmalli Leonidien meteorimyrsky Havainnot meteoriparvista
DEE Tuulivoiman perusteet
DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET
SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT
TIEDOKSI! Kaikkiin kysymyksiin ei välttämättä näyttelyssä löydy suoraa vastausta infokylteistä. Osa
Helpompi OPETTAJALLE Meret ja muut vesistöt ovat täynnä toinen toistaan ihmeellisempiä ja mahtavampia eläimiä. Näiden tehtävien avulla pääset tutustumaan näihin otuksiin paremmin. TIEDOKSI! Kaikkiin kysymyksiin
Pienkappaleita läheltä ja kaukaa
Pienkappaleita läheltä ja kaukaa Karri Muinonen 1,2 1 Fysiikan laitos, Helsingin yliopisto 2 Geodeettinen laitos Planetaarinen geofysiikka, luento 7. 2. 2011 Johdantoa Tänään 7. 2. 2011 tunnetaan 7675
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html
http://www.space.com/23595-ancient-mars-oceans-nasa-video.html Mars-planeetan olosuhteiden kehitys Heikki Sipilä 17.02.2015 /LFS Mitä mallit kertovat asiasta Mitä voimme päätellä havainnoista Mikä mahtaa
Etäisyyden yksiköt tähtitieteessä:
Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin
Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009
Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.
yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk
I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima
SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET
SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.
Ekosysteemiekologia tutkii aineen ja energian liikettä ekosysteemeissä. Häiriö näissä liikkeissä (jotakin on jossakin liikaa tai liian vähän)
Ekosysteemiekologia tutkii aineen ja energian liikettä ekosysteemeissä. Häiriö näissä liikkeissä (jotakin on jossakin liikaa tai liian vähän) ekologinen ympäristöongelma. Esim. Kiinteää hiiltä (C) siirtyy
Eliökunnan kehitys. BI1 Eliömaailma Leena Kangas-Järviluoma
Eliökunnan kehitys BI1 Eliömaailma Leena Kangas-Järviluoma elämän historia on jaoteltu kausiin: elämän esiaika elämän vanha aika elämän keskiaika elämän uusi aika maailmankausien rajoilla on selkeitä muutoksia
Jupiterin kuut (1/2)
Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen
Hiiltä varastoituu ekosysteemeihin
Hiiltä varastoituu ekosysteemeihin BIOS 3 jakso 3 Hiili esiintyy ilmakehässä epäorgaanisena hiilidioksidina ja eliöissä orgaanisena hiiliyhdisteinä. Hiili siirtyy ilmakehästä eliöihin ja eliöistä ilmakehään:
Plankton ANNIINA, VEETI, JAAKKO, IIDA
Plankton ANNIINA, VEETI, JAAKKO, IIDA Plankton -plankton ryhmät ovat kasvi ja eläinplankton. -planktonleviä ovat muun muassa piilevät ja viherlevät. -planktoneliöt keijuvat vedessä. Keijumista helpottaa
Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi
Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Asko Palviainen Matemaattis-luonnontieteellinen tiedekunta Ajanlasku Kuukalenteri vuodessa 12 kuu-kuukautta ei noudata vuodenaikoja nykyisistä kalentereista
VALINTOJA KUUMENTAVIA SKENAARIOITA & VIILENTÄVIÄ. Näyttely ilmastonmuutoksesta. Kuumentavia skenaarioita & Viilentäviä valintoja, juliste 1.
KUUMENTAVIA SKENAARIOITA & VIILENTÄVIÄ VALINTOJA Näyttely ilmastonmuutoksesta Kuumentavia skenaarioita & Viilentäviä valintoja, juliste 1. Tee Muutos -ilmastokampanja 2006. MITEN IHMINEN OSAA MUUTTAA ILMASTOA?
7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä
7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,
4. Yksilöiden sopeutuminen ympäristöön
4. Yksilöiden sopeutuminen ympäristöön Sisällys 1. Avainsanat 2. Sopeutuminen 3. Ympäristön resurssit 4. Abioottiset tekijät 1/2 5. Abioottiset tekijät 2/2 6. Optimi- ja sietoalue 7. Yhteyttäminen 8. Kasvien
Ulottuva Aurinko Auringon hallitsema avaruus
Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä
IPCC 5. ilmastonmuutoksen tieteellinen tausta
IPCC 5. arviointiraportti osaraportti 1: ilmastonmuutoksen tieteellinen tausta Sisällysluettelo 1. Havaitut muutokset Muutokset ilmakehässä Säteilypakote Muutokset merissä Muutokset lumi- ja jääpeitteessä
Lappeenrannan Teekkarilaulajat ry:n lyhyt historia
Lappeenrannan Teekkarilaulajat ry:n lyhyt historia Tähdet syntyvät kutistumalla kylmistä kaasupilvistä oman painovoimansa ansioista. Lopulta syntyvä tähti asettuu vakaaseen tilaan, niin sanottuun pääsarjavaiheeseen.
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen
Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi
Ilmastonmuutokset skenaariot
Ilmastonmuutokset skenaariot Mistä meneillään oleva lämpeneminen johtuu? Maapallon keskilämpötila on kohonnut ihmiskunnan ilmakehään päästäneiden kasvihuonekaasujen johdosta Kasvihuoneilmiö on elämän kannalta
IPCC 5. ARVIOINTIRAPORTTI OSARAPORTTI 1 ILMASTONMUUTOKSEN TIETEELLINEN TAUSTA
IPCC 5. ARVIOINTIRAPORTTI OSARAPORTTI 1 ILMASTONMUUTOKSEN TIETEELLINEN TAUSTA SISÄLLYSLUETTELO 1. HAVAITUT MUUTOKSET MUUTOKSET ILMAKEHÄSSÄ SÄTEILYPAKOTE MUUTOKSET MERISSÄ MUUTOKSET LUMI- JA JÄÄPEITTEESSÄ
RAP O R[ 1 I. FlU S T A} A}.TI{ 1 ]' IiASVIILISUI}DESTA
RAP O R[ 1 I FlU S T A} A}.TI{ 1 ]' IiASVIILISUI}DESTA Selvitys teollisuusvesien vaikutuksista Mustalammen kasvillisuuteen. Havaintoalueena on Mustalampien alue, joka luonnonsuhteiltaan on yhtäläinen.
Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/
Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja
KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.
KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan
Cygnus tapahtuma Vihdin Enä-Sepän leirikeskuksessa
Cygnus 2013 -tapahtuma Vihdin Enä-Sepän leirikeskuksessa 24. 28.7.2013 Pikkuplaneetat ja tähdenpeitot -jaosto Esitys perjantaina 25.7.2013 Esityksen diat on muutettu 13.8.2013 tekstitiedostoksi. Siihen
Raamatullinen geologia
Raamatullinen geologia Miten maa sai muodon? Onko maa litteä? Raamatun mukaan maa oli alussa ilman muotoa (Englanninkielisessä käännöksessä), kunnes Jumala erotti maan vesistä. Kuivaa aluetta hän kutsui
Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML
Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat
1. Vuotomaa (massaliikunto)
1. Vuotomaa (massaliikunto) Vuotomaa on yksi massaliikuntojen monista muodoista Tässä ilmiössä (usein vettynyt) maa aines valuu rinnetta alaspa in niin hitaasti, etta sen voi huomata vain rinteen pinnan
Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin. Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos
Humuksen vaikutukset järvien hiilenkiertoon ja ravintoverkostoihin Paula Kankaala FT, dos. Itä Suomen yliopisto Biologian laitos Hiilenkierto järvessä Valuma alueelta peräisin oleva orgaaninen aine (humus)
ja ilmakehän alkuaineista, jotka ravitsevat kaikki eliöitä ja uusiutuvat jatkuvassa aineiden kiertokulussa.
1 7 8 9 10 11 1 1 1 1 1 17 18 19 0 1 7 8 9 0 1 7 8 9 0 1 7 8 9 0 1 7 8 9 Maan ulkopuolista elämää etsitään läheltä ja kaukaa. Aurinkokunnassa on viisi paikkaa, joissa teoriassa voisi olla elämän edellytykset.
Albedot ja magnitudit
Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen
1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.
1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on
Maatalous-metsätieteellinen tiedekunta Metsien ekologia ja käyttö
Helsingin yliopisto, 0.5.01 Tehtävä 1: Pisteet /5 pistettä B-OSA, 0 p. Vastaa johdonmukaisesti kokonaisilla lauseilla. Älä ylitä annettua vastaustilaa! 1. Kuvaa sienten tehtävät metsäekosysteemissä (5
TÄHDET JA AVARUUS 8/2009
Tällä pla Taiteilijan näkemys korundisateesta. Näkymä on CoRoT-7b-planeetan yöpuolen reuna-alueelta, jossa pinta saattaa olla osin sulaa laavaa, osin hieman kiinteämpää kiveä. 14 neetalla sataa kiviä Syyskuussa
Ajan osasia, päivien palasia
Ajan osasia, päivien palasia Ajan mittaamiseen tarvitaan liikettä. Elleivät taivaankappaleet olisi määrätyssä liikkeessä keskenään, ajan mittausta ei välttämättä olisi syntynyt. Säännöllinen, yhtäjaksoinen
Maaperäeläinten monimuotoisuus ja niiden merkitys pelloilla
Maaperäeläinten monimuotoisuus ja niiden merkitys pelloilla Jari Haimi Bio- ja ympäristötieteiden laitos Jyväskylän yliopisto VILKKU Plus hanke 20.11.2018 Maaperän monimuotoisuus 2 Maaperä on moniulotteinen
Avainsanat. populaatio yksilöiden levintätyypit ikärakenne sukupuolijakauma populaation kasvumallit ympäristön vastus elinkiertostrategiat
Avainsanat populaatio yksilöiden levintätyypit ikärakenne sukupuolijakauma populaation kasvumallit ympäristön vastus elinkiertostrategiat Populaatio Populaatiolla tarkoitetaan tietyllä alueella tiettynä
Mitä ilmastolle on tapahtumassa Suomessa ja globaalisti
Mitä ilmastolle on tapahtumassa Suomessa ja globaalisti Ilmastonmuutosviestintää Suuri osa tämän esityksen materiaaleista löytyy Ilmasto-opas.fi sivustolta: https://ilmasto-opas.fi/fi/ Mäkelä et al. (2016):
Uusinta tietoa ilmastonmuutoksesta: luonnontieteelliset asiat
Uusinta tietoa ilmastonmuutoksesta: luonnontieteelliset asiat Jouni Räisänen Helsingin yliopiston fysiikan laitos 3.2.2010 Lähteitä Allison et al. (2009) The Copenhagen Diagnosis (http://www.copenhagendiagnosis.org/)
Kesäyön kuunpimennys
Kesäyön kuunpimennys 27-28.7.2018 by Matti Helin - Monday, July 02, 2018 https://www.ursa.fi/blogi/zeniitti/2018/07/02/kuunpimennys-27-28-7-2018/ Matti Helin: Kesäyön kuunpimennys 27-28.7.2018 -Vuosisadan
Planetaariset sumut Ransun kuvaus- ja oppimisprojekti
Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Sisältö Miksi juuri planetaariset sumut Planetaarisen sumun syntymä Planetaariset kuvauskohteena Kalusto Suotimet Valotusajat Kartat HASH planetary
1: Mikä alla kuvatuista puista tämä on?
LUONTOPOLKU, CYGNUS 2008 1: Mikä alla kuvatuista puista tämä on? a) harmaaleppä b) tervaleppä c) haapa (http://www.tampere.fi/ytoteto/yva/ymparistoverkko/bl_etusivu.html) 2: Kukissa pörrää monenlaisia
TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ
TAIVAANMEKANIIKKA IHMISEN PERSPEKTIIVISTÄ ARKIPÄIVÄISTEN ASIOIDEN TÄHTITIETEELLISET AIHEUTTAJAT, FT Metsähovin Radio-observatorio, Aalto-yliopisto KOPERNIKUKSESTA KEPLERIIN JA NEWTONIIN Nikolaus Kopernikus
Mustien aukkojen astrofysiikka
Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin
Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!
Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi
Luku 8. Ilmastonmuutos ja ENSO. Manner 2
Luku 8 Ilmastonmuutos ja ENSO Manner 2 Sisällys ENSO NAO Manner 2 ENSO El Niño ja La Niña (ENSO) ovat normaalista säätilanteesta poikkeavia ilmastohäiriöitä. Ilmiöt aiheutuvat syvänveden hitaista virtauksista
Hydrologia. Säteilyn jako aallonpituuden avulla
Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna
Käsivarren Pättikän lammen pohjamudasta paljastunut Kirvespuu (näyte PAT4973) sijaitsee nykyisen metsänrajan tuntumassa. Kuvassa näkyvä rungon
Käsivarren Pättikän lammen pohjamudasta paljastunut Kirvespuu (näyte PAT4973) sijaitsee nykyisen metsänrajan tuntumassa. Kuvassa näkyvä rungon tyvipätkä on osa pitemmästä noin 15 metrisestä aihkimännystä,
Atomien rakenteesta. Tapio Hansson
Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos
Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.
IHMISKUNTA MUUTTAA ILMASTOA
IHMISKUNTA MUUTTAA ILMASTOA Kimmo Ruosteenoja Ilmatieteen laitos, Ilmastotutkimusryhmä KASVIHUONEILMIÖ ILMASTONMUUTOSTEN TUTKIMINEN MALLIEN AVUL- LA TULEVAISUUDEN ILMASTO ILMASTONMUUTOSTEN VAIKUTUKSIA
Summary in English. Curiosity s goals
SAM 6. 11.10.2014 Summary in English Curiosity is the latest rover sent to Mars. It was launched on November 26, 2011 and it reached Mars on August 6, 2012. Curiosity s main goal is to explore and assess
Mitä jos ilmastonmuutosta ei torjuta tiukoin toimin?
Mitä jos ilmastonmuutosta ei torjuta tiukoin toimin? Ilmastonmuutos on jo pahentanut vesipulaa ja nälkää sekä lisännyt trooppisia tauteja. Maailman terveysjärjestön mukaan 150 000 ihmistä vuodessa kuolee
Mikä on elollista ja mikä on elotonta? Elollinen tietenkin elää ja eloton ei elä. Pitäisikö tätä miettiä tarkemmin?
ELÄKÖÖN ELÄMÄ Elollinen ja eloton Mikä on elollista ja mikä on elotonta? Elollinen tietenkin elää ja eloton ei elä. Pitäisikö tätä miettiä tarkemmin? Luonto Maapallolla jaetaan elolliseen ja elottomaan
Kaikki eläimet täyttävät alla olevat seitsemän elämälle välttämätöntä ehtoa: 2. Hengittäminen Voi ottaa sisään ja poistaa kehostaan kaasuja
Ravintoketjut Elämän ehdot Kaikki eläimet täyttävät alla olevat seitsemän elämälle välttämätöntä ehtoa: 1. Liikkuminen Pystyy liikuttelemaan kehoaan 2. Hengittäminen Voi ottaa sisään ja poistaa kehostaan
Ohjeita opetukseen ja odotettavissa olevat tulokset
Ohjeita opetukseen ja odotettavissa olevat tulokset Ensimmäinen sivu on työskentelyyn orientoiva johdatteluvaihe, jossa annetaan jotain tietoja ongelmista, joita happamat sateet aiheuttavat. Lisäksi esitetään