Internet ja tietoverkot. 6 Langattomat ja mobiilit tietoverkot. Oulun yliopisto Tietojenkäsittelytieteiden laitos Periodi / 2015

Koko: px
Aloita esitys sivulta:

Download "Internet ja tietoverkot. 6 Langattomat ja mobiilit tietoverkot. Oulun yliopisto Tietojenkäsittelytieteiden laitos Periodi 3 2014 / 2015"

Transkriptio

1 811338A 6 Oulun yliopisto Tietojenkäsittelytieteiden laitos 2014 / 2015

2 Luento pohjautuu kirjan James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach, 6th (International) ed., Pearson Education Limited, 2013, ISBN 10: , ISBN 13: kuudenteen lukuun. 2

3 Mitä käsitellään 1. Johdanto 2. Langatttomien linkkien ja verkkojen ominaispiirteitä 3. Wi-Fi: langattomat LAN verkot 4. Internet yhteys matkapuhelimella 5. Mobiilisuuden hallinta: periaatteet 6. Mobiili IP 7. Mobiilisuuden hallinta matkapuhelimissa 8. Langattomuuden ja mobiilisuuden vaikutus ylempien kerrosten protokolliin 3

4 Mitä käsitellään (2) 1. Johdanto 2. Langatttomien linkkien ja verkkojen ominaispiirteitä 2.1 CDMA 3. Wi-Fi: langattomat LAN verkot :n arkkitehtuuri :n MAC protokolla 3.3 IEEE :n kehys 3.4 Mobiilisuus samassa IP aliverkossa :n kehittyneet piirteet 3.6 Likiverkot: Bluetooth ja Zigbee 4

5 Mitä käsitellään (3) 4. Internet-yhteys matkapuhelimella 4.1 Matkapuhelinverkon arkkitehtuuri: yleiskuva 4.2 3G verkko: Internetin laajentaminen matkapuhelintilaajille 4.3 Kohti 4G verkkoa: LTE 5. Mobiilisuuden hallinta: periaatteet 5.1 Osoitteistus 5.2 Reititys mobiilisolmuun 6. Mobiili IP 7. Mobiilisuuden hallinta matkapuhelimissa 7.1 Puhelujen reitittäminen mobiilikäyttäjälle 7.2 Tukiaseman vaihto 8. Langattomuuden ja mobiilisuuden vaikutus ylempien kerrosten protokolliin 5

6 1. Johdanto viime vuosikymmen matkapuhelinten esiinmarssin aikaa; liittymiä 34 miljoonaa v miljardia v miljardia v tapahtuuko sama ilmiö langattomien verkkolaitteiden kohdalla? langattomat verkot ja mobiilipalvelut ovat tulleet jäädäkseen teemme eron langattomien linkkien ja niiden mahdollistaman mobiilisuuden välillä 6

7 Langattoman verkon elementit langattomat isäntäkoneet päätelaitteita, joilla sovellukset toimivat kannettavat, kämmenmikrot, tabletit, älypuhelimet, pöytäkoneet voivat olla liikkuvia (mobiileja) tai kiinteitä langattomat linkit isäntäkone yhdistyy tukiasemaan langattoman linkin välityksellä tukiasemat: vastaavat tiedonvälityksestä isäntäkoneiden ja laajemman verkon välillä infrastruktuuriverkot ad hoc -verkot verkkoinfrastruktuuri se laajempi verkko, johon langaton iverkko on yhteydessä 7

8 Kuva 1 Langattoman verkon elementit 8

9 Langattomien verkkojen luokitteleminen Ylimmällä tasolla kahden kriteerin mukaan tekeekö paketti langattomassa verkossa täsmälleen yhden langattoman hypyn ( hop ) vai useita langattomis hyppyjä onko verkko infrastruktuuriverkko (eli siinä on sisäistä rakennetta, esim. tukiasema) vai ei (sisäistä rakennetta ei ole, esim. ad hoc verkko) 1. yksi hyppy & infrastruktuuriverkko tavalliset langattomat kotiverkot 2. yksi hyppy & ei infrastruktuuria Bluetooth 3. useita hyppyjä & infrastruktuuriverkko sensoriverkot, mesh networks 9

10 Langattomien verkkojen luokitteleminen (2) 4. useita hyppyjä & ei infrastruktuuria mobiilit ad hoc verkot (mobile adhoc networks, MANET) ajoneuvoverkot (vehicular ad hoc networks, VANET) 10

11 Kuva 2 Langattomien verkkostandardien ominaisuuksia 11

12 2.1 CDMA 2. Langattomien linkkien ja verkkojen ominaisuuksia 12

13 Taustaa siirryttäessä tavallisesta langallisesta (Ethernet-) paikallisverkosta langattomaan (Ethernet-) paikallisverkkoon muutoksia ei juurikaan tapahdu verkkokerroksessa eikä sen yläpuolella erot pääasiassa verkkoyhteyskerrroksessa langallisten ja langattomien linkkien eroja vähenevä signaalinvoimakkuus elektromagneettinen säteily vaimenee kohdatessaan esteitä (esim. radiosignaali kohdatessaan seinän), jopa vapaassa tilassa signaali hajaantuu ja heikkenee eri lähetysten sekottuminen samalla taajuudella toimivat radioasemat häiritsevät toisiaan monipolkueteneminen (multipath propagation) tapahtuu, kun radioaalto kimpoaa esteisstä ja kulkee eripituisia polkuja pitkin kohteeseen 13

14 Taustaa (2) edellisen nojalla langattomissa verkoissa bittivirheet yleisempiä kuin langallisissa langattomissa käytetään vahvoja CRC virheentarkastuskoodeja luotettavia tiedonsiirtoprotokollia, kehysten uudelleenlähettämistä oletetaan, että isäntäkone toimii langattomassa verkossa ja vastaanottaa heikentynyttä signaalia, jossa on lisäksi taustakohinaa signaali kohinasuhde (signal-to-noise ratio) SNR mittaa vastaanotetun signaalin voimakkuutta suhteessa taustakohinaan desibeleinä: SNR = 20 log 10 [A signal / A noise ] missä A signal on signaali- ja A noise kohinaamplitudi 14

15 Taustaa (3) mitä suurempi SNR sitä helpompi on erottaa signaali taustakohinasta bittivirheaste (bit error rate) BER on karkeati ottaen todennäköisyys sille, että bitti muuttuu välityksessä eli että vastaanotettu bitti on virheellinen Kuva 3 esittää BER:n ja SNR:n suhdetta kolmessa modulaatiotekniikassa (BPSK, QUAM16, QUAM256), joilla eri välitysasteet, kanava on ideaalisoitu Kuva 3 kertoo seuraavaa kussakin modulaatiotekniikassa: mitä suurempi SNR, sitä matalampi BER kiinteällä SNR:n arvolla: mitä korkeampi on modulaatiotekniikan välitysaste, sitä korkeampi on sen BER modulaatiotekniikka voidaan valita dynaamisesti kanavan ominaisuuksien perusteella 15

16 Kuva 3 Bittivirheaste, välitysaste ja SNR 16

17 Taustaa (4) piilossa olevan pääteaseman ongelma ( hidden terminal problem ): asemat A ja C eivät kuule toisiaan, mutta niiden lähetykset sekottuvat B:ssä (Kuva 4) piilossa olevan pääteaseman ongelma voi johtua esim. esteestä (Kuva 4 a) tai signaalin vaimenemisesta (Kuva 4b) 17

18 Kuva 4 Piilossa olevan päätelaitteen ongelma: syynä a: este b: signaalin vaimeneminen 18

19 2.1 CDMA Code Division Multiple Access kolmentyyppisiä monipääsyprotokollia kanavanjako ; satunnaispääsy ; ja vuorotteluprotokollat. CDMA on kanavanjakoprotokolla käytetään langattomissa LAN teknologioissa ja matkapuhelimissa kullakin lähettäjällä oma koodi, jonka perusteella vastaanottaja kykenee erottelemaan lähetykset 19

20 CDMA (2) oletetaan, että A lähettää databittijonon B:lle CDMA:ta käyttäen tällöin jokainen lähettäjän A databittijonon bitti koodataan ennen lähettämistä kertomalla se signaalilla (tai koodilla) joka vaihtuu huomattavasti nopeammin ( chipping rate lohkomisaste) kuin alkuperäinen databittijono oletetaan seuraavassa, että alkuperäiset databitit saapuvat CDMA koodaajaan nopeudella yksi bitti aikayksikössä; yhden databitin välittäminen vaatii yhden aikavälin (slot); ja yksi aikaväli jakaantuu M : ään miniaikaväliin (minislot) 20

21 CDMA (3) lähettäjän A CDMA-koodi on jono A CDMA =(c 1, c 2,..., c M ), missä kukin alkio c i on joko luku +1 tai -1 oletetaan, että lähetettävä bitti on d i ; tällöin joko +1 tai -1 CDMA:ssa bitti d i koodataan jonoksi A CDMA (d i )=(Z i,1, Z i,2,..., Z i,m ) missä Z i,m = d i c m kun m =1,2,...,M jono A CDMA (d i )=(Z i,1, Z i,2,..., Z i,m ) lähetetään B :lle 21

22 CDMA (4) vastaanottaja B saa alkuperäisen bitin arvon laskemalla Kuvassa 5 on M = 8 ja A:n CDMA koodi A CDMA =(1,1,1,-1,1,-1,-1,-1) 22

23 Kuva 5 Yksinkertainen CDMA esimerkki: lähettäjä koodaa, vastaanottaja dekoodaa 23

24 CDMA (5) oletetaan nyt, että N lähettäjää, kukin omalla koodillaan, lähettää databitin tietyssä aikavälissä; olkoon lähettäjän s koodattu jono (Z s i,1, Z s i,2,..., Z s i,m), missä s=1,2,...,n vastaanottajan ajatellaan saavan m. minislotissa luvun jos lähettäjien koodit on valittu huolellisesti, saa vastaanottaja palautettua lähettäjän A koodillaan A CDMA =(c 1, c 2,..., c M ) koodatun bitin käyttäen yhtälöä 24

25 Kuva 6 Kahden lähettäjän CDMA - esimerkki 25

26 3. Wi-Fi: langattomat LAN verkot :n arkkitehtuuri :n MAC protokolla 3.3 IEEE :n kehys 3.4 Mobiilisuus samassa IP aliverkossa :n kehittyneet piirteet 3.6 Likiverkot: Bluetooth ja Zigbee 26

27 3. WiFi: langattomat LAN-verkot langattomat paikallisverkot kehittyivät 1990 luvulla voittajateknologia IEEE langaton LAN eli WiFi b, taajuus Ghz, välitysaste 11 Mbps a, taajuus Ghz, välitysaste 54 Mbps (suosituin vuonna 2004) g, taajuus Ghz, välitysaste 54 Mbps jokaisessa kolmessa standardissa yhteinen pääsyprotokolla (Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA) sama kehysrakenne kyetään ulottuvuuden lisäämiseksi vähentämään välitysastetta on sekä infrastruktuuri että ad hoc moodi 27

28 Taulukko 1 Yhteenveto IEEE standardeista 28

29 :n arkkitehtuuri pääkomponentit yksi tai useampia peruspalvelusetti (pps, basic service set, BSS), joita yhdistää kytkin tai reititin peruspalvelusetti koostuu yhdestä tai useammasta langattomasta asemasta (wireless station, WS) ja yhdestä perusasemasta (base station) eli pääsypisteestä (access pont, AP) Kuvassa 7 kaksi perusalvelusettiä on kytketty reitittimeen tai kytkimeen, joka puolestaan on yhteydessä Internetiin jokaisella langattomalla asemalla on kuustavuinen MACosoite talletettuna aseman verkkokorttiin jokaisella pääsypisteellä on MAC-osoite langattomalle että rajapinnalleen 29

30 802.11:n arkkitehtuuri (2) pääsypisteellä ei sensijaan ole MAC-osoitetta sille langalliselle rajapinnalle, joka johtaa reitittimeen paikallisiverkot, jotka käyttävät pääsypistettä, implementoivat langatonta infrastruktuuriverkkoa Kuvassa 7 infrastruktuuri muodostuu tällöin yhdestä pääsypisteistä ja langallisesta linkeistä pääsypisteiden ja reitittimen (tai kytkimen) välillä IEEE asemat voivat muodostaa myös ad hoc verkon (Kuva 8), jolloin verkkorakenne muodostetaan lennosta mobiililaitteista, jotka havaitsevat toistensa läsnäolon ja joilla on tarve kommunikoida keskenään 30

31 Kuva 7 IEEE LAN - arkkitehtuuri 31

32 Kuva 8 IEEE LAN ad hoc verkko 32

33 Kanavat ja assosioituminen kun verkon ylläpito asentaa pääsypisteen, sille annetaan palvelusettitunnistin (Sevice Set Identifier, SSID) ja kanavanumero (esim b operoi taaajuualueella Ghz ja määrittää siinä yksitoista osittain päällekäistä kanavaa; kanavat 1, 6 ja 11 ovat pareittain täysin erilliset) Wi Fi viidakko (WiFi Jungle): sijainti, jossa langaton asema on useamman kuin yhden pääsypisteen signaalin kuuluvuusalueelle pääsypiste lähettää säännöllisin väliajoin viittakehyksiä (beacon frame), jotka sisältävät pääsypisteen SSID:n ja MAC osoitteen langaton asema skannaa kanavia voidakseen perustaa yhteyden, assosioitua, johonkin pääsypisteeseen 33

34 Kanavat ja assosioituminen (2) skannaaminen voi olla passiivista tai aktiivista passiivinen skannaus: asema etsii eri pääsypisteiden lähettämiä viittakehyksiä aktiivinen skannaus: asema itse lähettää (radiolähetyksenä) selvityskehyksen, joka saapuu kaikille pääsypisteille, jotka sijaitsevat aseman toimintasäteellä valittuaan sopivan AP:n, langaton asema lähettää tälle assosioitumispyynnön, johon AP vastaa assosioitumisvastauksella; sekä pyyntö että vastaus koostuvat yhdestä kehyksestä assosioiduttuaan pääsypisteeseen, langaton asema liittyy AP:n aliverkkoon ja saa (AP:n kautta ja tavallisesti DHCP-protollan välityksellä) itselleen IP-osoitteen langaton asema voi joutua autentikoimaan itsensä AP:lle 34

35 Kanavat ja assosioituminen (3) autentikointi voi tapahtua MAC-ositteen; tai käyttäjätunnuksen ja salasanan perusteella autentikoinnin yhteydessä AP tavallisesti kommunikoi autentikointiserverin kanssa välittäen langattoman aseman ja serverin välistä informaatiota autentikointiprotokollana on tavallisesti RADIUS tai DIAMETER, tällöin puhutaan RADIUS tai DIAMETER palvelimista yksi autentikointiserveri voi palvella useaa pääsypistettä: autentikointi- ja pääsypäätös keskitetään yhdelle palvelimelle ja AP:n kustannukset ja kompleksisuus pysyvät pieninä 35

36 Kuva 9 Passiivinen ja aktiivinen skannaus pääsypisteen löytämiseksi 36

37 :n MAC protokolla kun langaton asema on assosioitunut AP:hen, se alkaa lähettää kehyksiä AP:lle ja vastaanottaa niitä AP:ltä moni muukin asema haluaa tehdä samaa: tarvitaan monipääsyprotokolla koordinoimaan välitystä :n MAC protokolla on satunnaissaantityyppiä oleva CSMA / CA (Carrier Sense Multiple Access / Colision Avoidance) Ethernetissä MAC protokolla oli CSMA / CD CSMA / CA :ssa jokainen laite (langaton asema tai AP) havainnoi kanavaa ennen lähettämistä ja pidättäytyy lähettämisestä mikäli kanava on varattu 37

38 CSMA / CA :n ominaisuuksia CSMA / CA käyttää törmäyksen välttämistä; ja siirtoyhteyskerroksen kuittaus /uudelleenlähetys protokollaa (Automatic Repeat request Protocol, ARQ) CSMA / CA ei käytä törmäyksen havainnointia (collision detection, CD) koska törmäyksen havaitseminen edellyttää kykyä lähettää ja vastaanottaa yhtä aikaa; koska vastaanotettu signaali on yleensä heikko lähetettyyn verrattuna, on törmäyksen havaitsemiseen käytetty tekniikka kallista rakentaa vaikka verkkokortti kykenisikin lähettämään ja vastaanottamaan yhtä aikaa, jää jäljelle piilossa olevan päätelaiteen ongelma 38

39 CSMA / CA :n ominaisuuksia (2) kerran aloitettuaan asema lähettää kehyksen kokonaisuudessaan CSMA / CA käyttää linkkikerroksen kuittauksia kun vastaanottaja saa kehyksen, jonka CRC-koodi täsmää, se odottaa lyhyen SIFS ajan (Short Inter-frame Space) verran ja kuittaa sen jälkeen kehyksen mikäli lähettäjä ei saa kuittausta tietyn ajan kuluessa, se olettaa virheen tapahtuneen ja lähettää kehyksen uudelleen käyttäen CSMS / CA protokollaa kanavaan pääsemiseksi mikäli kuittausta ei saavu muutaman uudelleenlähetyskerran jälkeen, lähettäjä hylkää kehyksen 39

40 Kuva käyttää linkkikerroksen kuittauksia 40

41 CSMA / CA protokollan toiminta Oletetaan, että laitteella (langaton asema tai AP) on kehys lähetettävänä. Tällöin tapahtuu seuraavaa. 1. Jos laite huomaa, että kanava on vapaa, se odottaa lyhyen DIFS ajan (Distributed Inter-frame Space) verran ja lähettää kehyksen. 2. Jos laite huomaa, että kanava on varattu, se valitsee satunnaisen perääntymisarvon ja suorittaa paketille lähtölaskentaa tätä lukua vähentäen aina, kun kanava on vapaa; lähtölaskenta keskeytetään aina siksi aikaa, kun kanava on varattu. 3. Kun lähtölaskenta on lopussa (huomaa, että tällöin kanavan täytyy olla vapaa), laite lähettää koko paketin ja jää odottamaan kuittausta. 41

42 CSMA / CA protokollan toiminta (2) 4. Jos kuittaus saapuu, lähettävä laite tietää, että sen kehys on saapunut vastaanottajalle asianmukaisesti. Mikäli laitteella on vielä kehys lähetettävänä, se jatkaa askeleesta 2. Jos kuittausta ei tule tietyssä ajassa, lähettäjä menee kohdan 2 odotustilaan, satunnainen perääntymisarvo valitaan nyt suuremmalta väliltä. Muistetaan, että Ethernet CSMA / CD protokollassa asema alkaa lähettää heti, kun havaitsee, että kanava on vapaa CSMA / CA protokollassa asema pidättäytyy lähettämisestä tietyn ajan, vaikka kanava olisi vapaakin. Miksi? 42

43 CSMA / CA protokollan toiminta (3) Oletetaan, että kaksi kanavaa haluaa kumpikin lähettää kehyksen, mutta molemmat huomaavat, että kanava on varattu: joku kolmas asema lähettää. Ethernet CSMA / CD protokollassa molemmat asemat alkavat lähettää heti, kun kanava on vapaa. Tapahtuisi törmäys, joka ei aiheuttaisi vaikeuksia, koska molemmat asemat katkaisisivat kehyksensä lähettämisen heti, kun havaitsisivat törmäyksen CSMA / CA :ssa tilanne on toinen, koska se ei havaitse törmäyksiä eikä keskeytä lähettämistä; kehykset lähetetään kokonaaan ja menetetään törmäyksessä. 43

44 CSMA / CA protokollan toiminta (4) CSMA / CA yrittää välttää törmäyksiä kaikin keinoin. Jos kaksi laitetta on yhtä aikaa lähettämässä kehystä ja kanava on varattu, ne kumpikin odottavat satunnaisen perääntymisajan ja kanavan vapauduttua se laite, jolla on lyhyempi perääntymisaika, pääsee lähettämään kehyksensä kokonaisuudessaan ensin ja toinen odottaa kunnes kanava on vapaa Yhteentörmäys voi kuitenkin tapahtua, jos laitteet ovat piilossa toisiltaan laitteiden satunnaiset perääntymisajat ovat niin lähellä toisiaan, että toisen aseman lähetyssignaali ei ehdi toiselle asemalle ennekuin tämä alkaa lähettää 44

45 Apu piilossa oleviin päätelaitteisiin: RTS ja CTS :n MAC-protokollassa on näppärä menetelmä välttää piilossa olevan päätelaitteen ongelma Kuvassa 11 asemat H1 ja H2 ovat piilossa toisiltaan Tarkastellaan tilannetta, jossa tietyllä ajanhetkellä H1 alkaa lähettää kehystä ja puolivälissä H1:n lähetystä H2 haluaa lähettää oman kehyksensä AP:lle. Asema H2 ei kuule H1:n lähetystä ja, odotettuaan DIFS ajan verran, aloittaa oman lähetyksensä. Tapahtuu yhteentörmäys ja koko kanavan kapasiteetti memetetään H1:n ja H2:n lähetyksen ajaksi. Apu ongelmaan: RTS kontrollikehys (Request to Send, lähetyspyyntö) ja CTS kontrollikehys (Clear to Send, kanavan varaus, lupa lähettää) 45

46 Kuva 11 Esimerkki piilossa olevasta päätelaitteesta: H1 on piilossa H2:lta ja päinvastoin 46

47 RTS ja CTS kehysten käyttö 1. Ennen DATA-kehyksen lähettämistä H1 (Kuva 11) lähettää radiolähetyksenä lyhyen RTS-kehyksen; kaikki asemat H1:n toimintasäteellä kuulevat. 2. AP vastaa lyhyellä CTS-kehyksellä; kaikki asemat AP:n toimintasäteellä, myös H2, kuulevat. 3. Asema H2 pidättäytyy lähettämästä CTS-kehyksessä ilmoitetun ajan. RTS- ja CTS-kehysten käytön etuja: piilossa olevan aseman ongelma vältetään; RTS- ja CTS-kehykset ovat lyhyitä; niitä koskevat törmäykset vievät kanavakapasiteettia vain vähän 47

48 RTS ja CTS kehysten käyttö (2) RTS- ja CTS-kehykset lisäävät viiveitä ja kuluttavat jonkin verran kanavakapasiteettia. Tämän vuoksi RTS / CTS vaihtoa on lupa käyttää ja kanava varata vain jos datakehyksen koko ylittää tietyn kynnysarvon eli kehys on riittävän pitkä. Kynnysarvo voidaan asettaa pääsypiste tai jopa laitekohtaisesti. 48

49 Kuva 12 Törmäyksien välttäminen RTS ja CTS kehyksiä käyttäen 49

50 protokollan käyttö pisteestä pisteeseen linkkinä kun kahdella solmulla on suunta-antennit, ne voivat tähdätä antenninsa kohden toisiaan ja ajaa protokollaa periaatteessa yli pisteestä pisteeseen linkin tällöin luodaan langaton pisteestä pisteeseen yhteys, jossa solmujen etäisyys voi olla kymmeniä kilometrejä yhdistämällä langattomia pisteestä pisteeseen yhteyksiä monihyppyrakenteiksi, saadaan aikaan tehokkaita langattomia tiedonsiirtoverkkoja, joilla on pitkä toimintasäde 50

51 3.3 IEEE :n kehys :n kehyksessä samankaltaisuuksia Ethernetkehyksen kanssa useat kentät liittyvät langattomuuteen kehyksen ydin on kuorma (payload) sisältö tavallisesti IP datagrammi tai ARP paketti koko enintään tavua, tavallisesti yläraja on tavua kehys sisältää syklisen redundanssitarkistuksen (CRC), jotta vastaanottaja kykenee bittivirheiden tarkastukseen bittivirheet ovat langattomissa paikallisverkoissa yleisempiä kuin langallisissa, joten CRC-koodin rooli on tärkeä 51

52 Kuva 13 IEEE kehysrakenne Kehys (kenttien koot tavuina) Frame control Duration Address 1 Address 2 Address 3 Seq. control Address 4 Payload CRC Frame control kenttä (alikenttien koot bitteinä) Protocol version Type Subtype To AP From AP More frag Retry Power mgt More data WEP Rsvd 52

53 IEEE kehyksen osoitekentät kehys sisältää neljä osoitekenttää, kussakin kuusitavuinen MAC osoite kolmea kentistä tarvitaan tavanomaiseen verkkotoimintaan (esim. siirtämään datagrammi langattomalta asemalta pääsypisteen kautta reitinrajapinnalle) neljäs on käytössä ad hoc verkoissa osoite 2 (Address 2) on sen aseman MAC osoite, joka välittää kehystä langattoman aseman tapauksessa langattoman aseman MAC osoite pääsypisteen tapauksessa pääsypisteen MAC osoite 53

54 IEEE kehyksen osoitekentät (2) osoite 1 (Address 1) on sen langattoman aseman MAC osoite, joka on kehyksen vastaanottaja jos langaton asema välittää kehystä, osoite 1 on pääsypisteen MAC - osoite jos pääsypiste välittää kehystä, osoite 1 on vastaanottavan langattoman aseman MAC osoite osoite 3 sisältää peruspalvelusetin (BSS) reititinrajapinnan MAC osoitteen 54

55 Kuvan 14 selitys Kuvasssa 14 on kaksi pääsypistettä, joissa molemmissa useita langattomia päätelaitteita molemmista pääsypisteistä on suora yhteys reitittimeen, joka puolestaan yhdistyy Internetiin AP on siirtoyhteyskerroksen laite, joka ei ymmärrä IPprotokollaa tarkastellaan tilannetta, jossa reititin välittää datagrammin asemalle H1 reititin ei tiedä, että sen ja H1:n välillä on pääsypiste, koska pääsypisteellä ei ole MAC-osoitetta reitittimeen johtavalla linkkirajapinnallaan 55

56 Kuvan 14 selitys (2) reitittimen näkökulmasta näkökulmasta H1 on vain isäntäkone aliverkossa, johon reititn on yhteydessä reititin tuntee H1:n IP-osoitteen (joka löytyy datagrammin kohdeosoitekentästä) ja käyttää ARP-protokollaa määrittääkseen H1:n MAC-osoitteen reititin kapseloi datagrammin Ethernet-kehykseen, jonka kohdeosoitekenttään tulee H1:n MAC-osoite ja lähdeosoitekenttään R1:n MAC-osoite kun Ethernet-kehys tulee pääsypisteeseen, se muutetaan kehykseksi ennenkuin pääsypiste toimittaa kehyksen langattomaan kanavaan; kehyksen osoite 1 kenttään tulee tällöin H1:n MAC-osoite, osoite 2 kenttään pääsypisteen langattoman rajapinnan MAC-osoite ja osoite 3 kenttään reitittimen sen langallisen rajapinnan MAC-osoite, joka vie BBS 1:een 56

57 Kuva 14 Osoitekenttien käyttö kehyksissä: kehysten lähettäminen H1:n ja R1:n välillä 57

58 Kuvan 14 selitys (3) mitä tapahtuu, kun H1 vastaa siirtämällä edellisen datagrammin lähettäjälle osoitetun IP-paketin reitittimelle R1? H1 sulkee IP-paketin kehykseen ja täyttää osoitekentät: osoite 1 kenttään tulee AP:n langattoman rajapinnan MAC-osoite, osoite 2 kenttään H1:n MAC-osoite ja osoite 3 kenttään reitittimen MAC-osoite kun kehys tulee pääsypisteeseen, se muutetaan Ethernetkehykseksi, jossa kohdeosoitekentässä on R1:n MAC-osoite ja lähdeosoitekentässä H1:n MAC-osoite 58

59 IEEE kehyksen muut kentät kun asema standardissa asianmukaisesti vastaanottaa kehyksen, se toimittaa kuittauksen lähettäjälle vastaanottaja erottaa uudelleenlähetykset uusista kehyksisitä järjestysnumeroiden (sequence number) avulla standardissa lähettävä asema varaa kanavan tietyksi ajaksi; kesto (duration) kertoo tämän ajan kehyskontrollikenttä (frame control field) sisältää useita alikenttiä tyyppi (type) ja alityyppi (subtype) kertovat paketin tyypistä kenelle (to) ja keneltä (from) määrittävät osoitekenttien tulkinnan WEP ilmaisee onko salaus käytössä 59

60 3.4 Mobiilisuus samassa IP aliverkossa organisaatiot käyttävät saman IP-aliverkon yhteydessä monesti useaa peruspalvelusettiä miten langattomat asemat siirtyvät pp-setistä toiseen TCP istuntojen katkeamatta? mobiilisuus voidaan ratkaista suhteellisen yksinkertaisesti silloin, kun pps:t sijitsevat samassa IP-aliverkossa Kuvassa 15 on kaksi toisiinsa yhteydessä olevaa peruspalvelusettiä ja isäntäkone H1, joka siirtyy BSS 1:stä ppsettiin BSS 2 koska pp-settejä yhdistävä laite on kytkin (eikä reititin), kaikki kuvan laitteet kuuluvat samaan IP-aliverkkoon 60

61 Mobiilisuus samassa IP aliverkossa (2) siispä kun H1 siirtyy BSS 1:stä BSS 2.een, se voi pitää IP-osoitteensa ja TCP-yhteytensä kun H1 siirtyy BSS 1:stä pp-settiin BSS 2, tapahtuu seuraavaa; asema H1 havaitsee AP 1:n signaalin heikkenevän ja alkaa skannata vahvempaa signaalia; vastaanottaa AP 2:n lähettämiä viittakehyksiä, joiden SSID on tavallisesti sama kuin AP 1:n lähettämissä viittakehyksissä irtaantuu AP 1:stä ja assosioituu pääsypisteeseen AP 2; käynnissä olevat TCP-yhteydet eivät keskeydy siirtymäongelma (handoff problem) H1:n ja pääsypisteiden näkökulmasta ratkaistu 61

62 Mobiilisuus samassa IP aliverkossa (3) miten kytkin saa tietää H1:n siirtymisestä? muistetaan, että kytkimet ovat itseoppivia ja rakentavat automaattisesti omat kytkintaulunsa kytkimiä ei ole suunnitetutukemaan vahvaa mobiilisuutta ja TCP-yhteyksien säilyttämistä kytkimen eteenpäinohjaustaulu yhdistää alunperin H1:n MAC-osoitteen AP 1:n MAC-osoitteeseen kytkin pystyy päivittämään taulunsa, jos pääsypiste AP 2 (heti H1:n assosioitumisen jälkeen) lähettää kytkimelle Ethernet radiolähetyskehyksen, jonka lähdeosoitekentässä on H1:n MAC osoite 62

63 Kuva 15 Mobiilisuus samassa aliverkossa 63

64 :n kehittyneet piirteet protokolassa on kaksi kehittynyttä piirrettä, joita ei ole täysin spesifioitu standardissa piirteiden käyttöönotto tapahtuu standardin määrittämillä mekanismeilla; eri toimijat voivat implementoida piirteet omia (yksityisiä) lähetymistapoja käyttäen kehittyneet piirteet ovat 1. Lähetysasteen sopeuttaminen implemntaatiossa voidaan fyysisen kerroksen modulaatiotekniikka (ja kehysten lähetysaste) valita kanavan ominaisuuksien perusteella. 2. Virrankulutuksen hallinta solmut kykenevät minimoimaan sen ajan, jolloin niiden havainnointi-, välitys- ja vastaanottotoiminnot ovat päällä 64

65 3.6 Likiverkot: Bluetooth ja Zigbee likiverkko - Personal Area Network (PAN) IEEE WiFi standardi on tarkoitettu kommunikointiin, jossa laitteiden välimatka on enintään 100 metriä IEEE 802 protokollat Bluetooth (IEEE ) ja Zigbee (IEEE ) on tarkoitettu lyhyen välimatkan kommunikointiin WiMAX (IEEE d, IEEE e) on protokolla pitkien etäisyyksien yli tapahtuvaan kommunikointiin 65

66 Bluetooth lyhyt etäisyys, alhainen virrankukutus, vähäiset kustannukset tarkoitettu kaapelikorviketeknologiaksi muistikirjamikroille, oheislaitteille sekä matka- ja älypuhelimille Bluetooth: langaton likiverkko perustuu vanhaan Bluetooth-speksiin ja operoi 2.4 GHz:n radiokaistalla TDM-kanavointia soveltaen: kukin aikaväli (time slot) on 625 mikrosekuntia jokaisella aikavälillä välitys tapahtuu yhdellä 79:stä eri taajuudella olevasta kanavasta kanava vaihtuu aikavälistä toiseen pseudosatunnaisesti etukäteen määrätyllä tavalla 66

67 Bluetooth (2) edellä kuvattu kanavahyppely tunnetaan taajuushyppelyhajaspektrinä eli FHSS tekniikkana (frequency-hopping spread spectrum) FHSS levittää lähetykset eri taajuuksille ajasta riippuen ja sillä päästään 4 Mbps välitysasteeseen verkot ovat ad hoc tietoverkkoja, jossa solmujen on järjestäydyttävä keskenään solmut organisoituvat pikoverkoksi, jossa voi olla max kahdeksan aktiivista laitetta yksi laite toimii isäntänä, muut ovat orjia isäntälaite hallitsee: sen kello määrää pikonetin 67

68 Bluetooth (3) isäntä voi välittää jokaisessa parittomassa aikavälissä orja saa lähettää dataa vain isännälle ja vain jos isäntä e on kommunikoinut sen kanssa edellisessä aikavälissä orjien lisäksi pikoverkossa voi olla korkeintaa 255 pysäköityä laitetta pysäköity laite saa kommunikoida vasta siotten, kun isäntä on muutettanut sen statuksen pysäköidystä aktiiviseksi 68

69 Kuva 16 Bluetooth - pikoverkko 69

70 Zigbee tarkoitettu Bluetoothia vähäisemmällä virrankulutuksella, välitysasteella ja toimintapasiteetilla toimiville laitteille käyttö: kotilämpömittarit, valosensorit, turvalaitteet ja virtakytkimet määrittää kanavan välitysasteiksi 10, 40, 100 ja 250 Kbps kanavataajuudesta riippuen Zigbee - verkko on kahdelaisia solmuja vähäisen toiminnon laite: toimii orjana täyden toiminnon laite: toimii isäntänä isännät voivat toimia yhdessä ja välittää kehyksiä toisilleen 70

71 Zigbee (2) Zigbeessä on samoja mekanismeja kuin muissa siirtoyhteyskerroksen protokollissa viittakehykset linkkikerroksen kuittaukset kanavanhavainnointia suorittavat satunnaispääsyprotokollat kiinteä ja taattu aikaväliallokointi oletetaan, että yksi Zigbee-verkossa yksi täyden toiminnon laite kontrolloi useaa vähäisen toiminnon laitetta Zigbee-verkko jakaa ajan peräkkäisiin superkehyksiin (Kuva 17), joista kukin alkaa viittakehyksellä 71

72 Zigbee (3) viittakehys jakaa superkehyksen aktiiviperiodiin (active period; solmut voivat siirtää tietoa) ja passiiviperiodiin (inactive period; kaikki solmut nukkuvat ja säästävät energiaa) aktiiviperiodi koostuu 16 aikavälistä osaa aikaväleistä laitteet voivat käyttää CSMA / CA tapaan satunnaissaantia soveltaen jotkut aikavälit täyden toiminnon laite allokoi tietyille verkon laitteille, joille tällöin on taattu pääsy kanavaan 72

73 Kuva 17 Zigbee superkehyksen rakenne 73

74 4. Internet-yhteys matkapuhelimella 4.1 Matkapuhelinverkon arkkitehtuuri: yleiskuva 4.2 3G verkko: Internetin laajentaminen matkapuhelintilaajille 4.3 Kohti 4G verkkoa: LTE 74

75 4. Internet-yhteys matkapuhelimella useimpien Wi Fi verkkojen toimintasäde on metriä mitä tehdään, kun Internet yhteyttä tarvitaan eikä langatonta verkkoa ole saatavilla? luonnollinen strategia: laajennetaan olemassaolevien matkapuhelinverkkojen käyttöä koskemaan Internetiä langaton Internet yhteys ja saumaton liikkuvuus voidaan säilyttää ja taata matkustettaessa esim. bussilla tai junalla useat matkapuhelinyhtiöt tarjoavat pääsyä Internetiin satojen kbps välitysasteella kohtuullisin kustannuksin 75

76 4.1 Matkapuhelinverkon arkkitehtuuri: yleiskuva käytämme GSM-standardin (Global System for Mobile Communications, alkup. nimi Groupe Spécial Mobile) terminologiaa matkapuhelintekniikan kehittäminen aloitettiin luvulla Euroopassa kehitys johti GSM-standardiin 1992 tällä hetkellä 80 % maailman matkapuhelimsta käytetään GSM-tekniikkaa 76

77 Matkapuhelinstandardit ja -teknologiat matkapuhelinteknologiat jaetaan useaan sukupolveen 1. sukupolvi: analoginen radioähetys, äänikommunikointi ARP (Autoradiopuhelin,1970 luku, Suomi) NMT (Nordic Mobile Telephone, 1970 luku, Pohjoismaat) AMPS (Advanced Mobile Phone, 1970 luku, USA) N-AMPS (Narrowband Advanced Mobile Phone Service, 1980 luku, USA) TACS (Total Access Communication System, 1980 luku, Eurooppa) 2. sukupolvi: digitaalinen lähetys, äänikommuikointi GSM (Global System for Mobile communications, 1990 luku, Eurooppa) 77

78 Matkapuhelinstandardit ja teknologiat (2) 2. sukupolvi (jatkuu... ) IS 136 TDMA (Interim Standard 136 Time Division Multiple Access, 1990 luku, USA) IS 95 CDMA (Interim Standard 95 Code Division Multiple Access, 1990 luku, USA, Etelä Korea) D AMPS (Digital Advanced Mobile Phone, 1990 luku, USA) PDC (Personal Digital Cellular, 1990 luku, Japani) 2.5. sukupolvi: digitaalinen lähetys, äänikommunikointi, datanvälitys GPRS (General Packet Radio Service, gsm- verkossa toimiva pakettikytkentäinen tiedonsiirtopalvelu, 1990 luku, Eurooppa) 78

79 Matkapuhelinstandardit ja teknologiat (3) 2.5. sukupolvi (jatkuu... ) EDGE (Enhanced Data Rates for Global Evolution, 2000 luku, USA) CDMA 2000 Phase 1 (Code Division Multiple Access 2000 Phase 1, 2000 luku, USA) 3. sukupolvi digitaalinen lähetys, multimedia UMTS (Universal Mobile Telecommunication Service, 2000 luku, Eurooppa), WCDMA (Wideband Code Division Multiple Access, 2000 luku, Eurooppa), UMTS:n radiorajapinta CDMA 2000 (Code Division Multiple Access, 2000 luku, USA), jenkkivariaatio WCDMA-tekniikasta 79

80 Matkapuhelinverkkoarkkitehtuuri, 2G: ääniyhteydet puhelinverkkoon termi cellular (phone) viittaa siihen, että tietty maantieteellinen alue on jaettu peitealueisiin eli soluihin (cell) kukin solu (Kuvassa 18 kuusikulmio) sisältää tukiaseman (base tranceiver station, BTS), joka lähettää ja vastaanottaa signaaleja vaikutuspiiriinsä kuuluvilta mobiilitilaajilta (mobile subscriber) tukiaseman toimintasäde (solun koko) riippuu (1) tukiaseman ja mobiililaitteen lähetystehosta (2) rakennusten ja luonnon muodostamista esteistä (3) tukiaseman antennin pituudesta kukin tukiasema liittyy laajempaan verkkoon (esim. PSTN tai Internet) lankaliittymää käytttäen tukiasemavalvonnan (base station controller, BSC) ja mobiilikytkentäkeskusten (mobile switching center, MSC), kautta 80

81 Matkapuhelinverkkoarkkitehtuuri, 2G: ääniyhteydet puhelinverkkoon (2) tukiasema välittää useita puheluja yhtäaikaa; kukin puhelu käyttää tiettyä osaa operaattorille allokoidusta radiospektristä (-taajuudesta) kaksi tapaa jakaa radiotaajuus taajuusjaksoisen kanavoinnin (Frequency Division Multiplexing, FDM) ja aikajaksoisen kanavoinnin (Time Division Multiplexing, TDM) avulla; kanava ositetaan taajuuden perusteella alikanaviin ja sen jälkeen aika jaetaan kehyksiin ja väleihin (slot) CDMA (Code Division Multiple Access), jossa kaikki käyttävät samaa radiotaajuutta ja vastaanottaja erottaa oikean lähetyksen useasta samanaikaisesta käytetyn koodin perusteella; etu: taajuutta ei tarvitse erikseen allokoida, taajuuden uusiokäyttö on mahdollista 81

82 Tukiasemavalvonnan ja mobiilikytkentäkeskuksen tehtävät tukiasemavalvonta (base station controller, BSC) palvelee kymmeniä tukiasemia allokoi tukiasemalle mobiilikasemien radiokanavat etsii solun, jossa mobiiliasaema on toiminnassa tukiasemavalvonta yhdessä piirissään olevien tukiasemien (ja mobiiliasemien) kanssa muodostaa tukiasemajärjestelmän (Base Station System, BSS) mobiilikytkentäkeskus (mobile switching center, MSC) käyttäjien (mobiiliasemien) autorisointi ja seuranta puhelinyhteyksien perustaminen ja purku siirtymien (mobiiliasema vaihtaa tukiasemaa, handoff) hoitaminen 82

83 Kuva 18 GSM 2G matkapuhelinverkon arkkitehtuuri 83

84 4.2 3G verkko: Internetin laajentaminen matkapuhelintilaajille matkapuhelimen käyttäjät haluavat myös muita kuin äänipalvelun, esim. , web, kartta- ja varauspalvelut (ns. paikasta riippumattomat palvelut), multimedia vaatimus: matkapuhelin pystyy ajamaan täyttä TCP / IP protokollapinoa ja kytkeytyy Internetiin matkapuhelinverkon kautta mobiilidataverkojen (cellular data networks) tekniikat villi joukko standardeja, joten eri sukupolvien tekniikkojen vaatimuksia ei ole virallis-tettu eri standardien ominaisuuksien vertailu vaikeaa keskitymme UMTS 3G standardiin (Universal Mobile Telecommunicatios Service) 84

85 3G ydinverkko (3G Core Network) yhdistää radiopääsyverkot Internettiin toimii yhdessä perinteisen GSM-verkon kanssa mobiilikytkentäkeskusten (Mobile Switching Center, MSC) kautta jättää olemassaolevan äänensiirtoon keskittyvän GSMverkon koskemattomaksi ja lisää mobiilidatatoiminnallisuutta perinteisen GSM-verkon rinnalle 3G ydinverkossa on kahdenlaisia solmuja: SGSNsolmuja (Serving GPRS Support Nodes) ja GGSN-solmuja (Gateway GPRS Support Nodes) GPRS Generalized Packet Radio Service (kehittynyt versio) 85

86 SGSN- ja GGSN-solmujen tehtävät SGSN-solmu välittää datagrammeja mobiilisolmuihin ja mobiilisolmuista radiopääsyverkossa on yhteistoiminnassa alueen GSM-verkon mobiilikytkentäkeskuksen kanssa ja suorittaa käyttäjäautorisointia sekä siirtymäkontrollia, ylläpitä tietoa mobiilisolmuista, ohjaa datagrammeja eteenpäin radiopääsyverkossa johon on kytkeytynyt GGSN-solmu toimii yhdyskäytävänä yhdistäen useita SGSN-solmuja Internetiin on viimeinen osa 3G-infrastruktuuria datagrammille, joka on matkalla mobiilisolmusta Internetiin on Internetiin päin kuten mikä tahansa yhdyskäytäväreititin ja kätkee 3G-solmut ulkopuoliselta maailmalta 86

87 3G radiopääsyverkko: langaton reuna-alue 3G Radio Access Network ensimmäinen verkko, johon 3G-käyttäjä on yhteydessä radioverkkovalvonta (Radio network Controller, RNC) kontrolloi useita tukiasemia ja on yhteydessä sekä GSMverkon mobiilikytkentäkeskukseen että Internetiin SGSNsolmun kautta 87

88 Kuva 19 3G järjestelmäarkkitehtuuri 88

89 4.3 Kohti 4G verkkoa: LTE 4G Long-Term Evolution (LTE) standardissa kaksi uutta innovaatiota EPC-verkko (Evolved Packet Core) Yksinkertaistettu IP-ydinverkko, joka yhdistää piirikytkentäisen GSM-verkon ja pakettikyt-kentäisen mobiilidataverkon ja kuljettaa sekä ääntä että dataa IP-paketeissa. Kontrolloi resursseja korkeatasoisten palvelujen takaamiseksi. Tekee selvän eron verkkokontrollitason ja käyttäjä-datatason toisistaan. LTE-radiopääsyverkko (LTE Radio Access Network) Soveltaa kanavajaossa taajuusjaksoisen (FDM) ja aikajaksoisen kanavoinnin (TDM) kombinaatiota OFDM (Orthogonal Frequency Division Multiplexing), kts. Kuva 20. Käyttää sofistikoituja MIMO-antenneja (Multiple Input Multible Output) LTE:n välitysaste: 100 Mbps alavirta, 50 Mbps ylävirta 89

90 Kuva 20 Kaksikymmentä 0.5 ms:n slotia järjestettynä 10 ms kehyksiksi kullakin frekvenssillä. Kahdeksan slotin varaus näkyy varjostettuna 90

91 5. Mobiilisuuden hallinta: periaatteet 5.1. Osoitteistus 5.2 Reititys mobiilisolmuun 91

92 5. Mobiilisuuden hallinta: periaatteet tark. seur. langattomien linkkien mahdollistamaa liikkuvuutta eli mobiilisuutta mobiili solmu: verkon solmu, jonka sijainti verkkoon nähden muutttuu ajan mukanan tulevaisuussa kasvava osa Internetin päätelaitteista on liikkuvia mobiilisuuden dimensioita verkkokerrosnäkökulma: kuinka liikkuva on käyttäjä kuinka tärkeä on mobiilin laitteen osoite: riippuu sovellukseta millaista liikkuvuutta tukevaa langallista infrastruktuuria on saatavilla: ad-hoc verkot ilman langallista infrastruktuuria Seuraavassa tarkastellaan tilannetta, jossa verkon solmu (päätelaite) haluaa säilyttää osoitteensa ja yhteyden liikkuessaan verkosta toiseen. 92

93 Kuva 21 Mobiilisuuden asteita; näkökulma verkkokerroksesta 93

94 Mobiilisuuden hallinta mobiilisolmun pysyvä sijaintipaikka: kotiverkko (home network) kotiverkon järjestelmä, joka ylläpitää solmun liikkuvuutta on kotiagentti (home agent) verkko, jossa mobiilisolmu väliaikaisesti sijaitsee, on vierasverkko (foreign network) vierasverkon järjestelmä, joka ylläpitää mobiilisolmun liikkuvuutta on vierasagentti (foreign agent) yhteyskumppani (correspondent) on osapuoli, joka haluaa kommunikoida mobiilisolmun kanssa 94

95 Kuva 22 Mobiiliverkon alkuelementit 95

96 5.1 Osoitteistus jotta mobiilisuus olisi sovellukselle näkymätöntä, on tärkeää, että siirtyessään verkosta toiseen, mobiilisolmu säilyttää IP-osoitteensa muuttumattomana mobiilisolmun ollessa vierasverkossa, kaikki solmulle lähetetyt paketit tulee ohjata vierasverkkoon miten ohjaus tapahtuu 1. vaihtoehto: vierasverkko voi ilmoittaa kaikille muille verkoille, että mobiilisolmu on sillä hetkellä vierasverkossa; heikkous: skaalautuvuuden puute, mobiilisuuden hallinta siirtyisi reitittimille 2. vaihtoehto: siirretään liikkuvuuteen liittyvät toiminnot verkon ytimestä sen reunalle: mobiilisolmun kotiagentti jäljittää mobiilisolmun sijainnin verkossa tarkastellaan seuraavassa vierasagenttia yksityiskohtaisemmin 96

97 Osoitteistus (2) yksinkertainen ratkaisu (Kuva 22): vierasagentit sijoitetaan vierasverkon reunareitittimiin vierasagentti luo mobiilisolmulle COA-osoitteen (Care-Of- Address) vierasverkkoon; COA-osoitteen verkko-osa on tällöin vierasverkon IP-osoite mobiilisolmulla kaksi osoitetta: pysyvä osoite (Kuva 22:n esim ) ja vierasosoite (Kuva 22:n esim ) eli COA-osoite vierasagentti ilmoittaa mobiilisolmun kotiverkolle mobiilisolmun sijainnin ja COA-osoitteen; koti ja vierasagentin väliseen kommunikointiin tarvitaan uusi protokolla COA-osoitetta käytetään reitittämään datagrammit uudelleen mobiilisolmulle vierasagentin kautta 97

98 5.2 Reititys mobiilisolmuun kysymys: kuinka datagrammit varustetaan osoittella ja ohjataan mobiilisolmuun? koska reitittimet eivät tunne kotiagentin sijaintia, tarvitaan lisämekanismeja kaksi lähestymistapaa: hyödynnetään COA-osoitetta ja lähetetään paketit joko epäsuoraa reititystä; tai suoraa reititystä käyttäen 98

99 Epäsuora reititys yhteyskumppanilta tulevat viestit kotiagentin kautta datagrammit kapseloidaan (varustetaan uudella IPosoitteella); sovellus ei välttämättä tietoinen mobiilisuudesta vierasagentti purkaa kapseloinnin neljä uutta protokollaa mobiilisolmu - vierasagentti: rekisteröinti ja sen purku vierasagentti - kotiagentti: rekisteröinti ja sen purku kotiagentti: datagrammien kapselointi vierasagentti: datagrammien kapseloinnin purku 99

100 Kuva 23 Epäsuora reititys mobiiliin solmuun 100

101 Kuva 24 Kapselointi ja sen purku 101

102 Suora reititys epäsuora reititys kärsii ns. kolmioreititysongelmasta, se on tehoton suorassa reitityksessä uusi toimija: yhteys(kumppani)- agentti (correspondent agent), joka saa tietoonsa mobiilisolmun COA-osoitteen (Kuva 11, askeleet 1 ja 2) tunneloi datagrammit suoraan COA-osoitteeseen (Kuva 11, askeleet 3 ja 4) uusia protokollia yhteysagentti - kotiagentti: mobiilikäyttäjän paikantamisprotokolla protokolla datan reititystä varten, kun mobiilikäyttäjä vaihtaa vierasverkkoa ilmoitetaan yhteysagentille COA:n mutoksesta; tai reititetään data alkuperäisen vierasverkon (ankkuri)vierasagentin kautta 102

103 Kuva 25 Suora reititys mobiilille käyttäjälle 103

104 Kuva 26 Mobiili siirtyminen verkosta toiseen suoraa reititystä käyttäen 104

105 6. Mobiili IP RFC 3344 (IPv4) joustava, tukee useita käyttömoodeja toiminta vierasagentin kanssa tai ilman sitä agenteilla ja mobiilisolmuilla monta tapaa löytää toisensa yhden tai useamman COA-osoitteen käyttö monta tapaa kapseloida tieto mobiili IP:n kolme pääosaa agentin löytäminen miten koti- ja vierasagentti tiedottavat palveluistaan mobiilisolmulle miten mobiilisolmu pyytää palveluja koti-/vierasagentilta rekisteröityminen kotiagentin kanssa miten mobiilisolmu ja/tai vierasagentti rekisteröivät COA:t mobiilisomun kotiagentin kanssa ja miten rekisteröinti puretaan 105

106 Mobiili IP - protokolla (2) mobiili IP:n kolme pääosaa (jatkuu) epäsuora reititys miten kotiagentti ohjaa datagrammit mobiilisolmuun, miten virheenkorjaus suoritetaan, miten kapselointi toteutetaan (RFC 2003, RFC 2004) tietoturva osa mobiili IP -standardia; esim. mobiilisolmun autentikointi on tarpeen, jotta hyökkääjä ei kykene rekisteröimään väärennettyä COA-osoitetta kotiagentille kun mobiili IP-solmu saapuu uuteen verkkoon (tai palaa kotiverkkoon), sen täytyy oppia tuntemaan vierasagentti (tai kotiagentti): kyseessä on agentin löytäminen agentin löytäminen: joko mobiiliagentti-ilmoitusta (agentti suorittaa) tai mobiiliagenttipyyntöä (mobiilisolmu suorittaa) käyttäen 106

107 Kuva 27 ICMP:n reitittimen hakuviesti, jossa laajennusosa mobiiliagentti-ilmoitusta varten 107

108 Kuva 28 Agentti ilmoitus ja mobiili IP rekisteröinti 108

109 7. Mobiilisuuden hallinta matkapuhelinverkoissa matkapuhelinverkot soveltavat epäsuoraa reititystä; soittajan puhelu reititetään aluksi käyttäjän kotiverkkoon ja vasta sieltä verkkoon, jossa käytttäjä paraikaa vierailee terminologiaa Public Land Mobile Network (PLMN) matkapuhelinverkko Home PLMN home system home network käyttäjän kotiverkko Visited PLMN visited system visited network vierasverkko: verkko, jossa käyttäjä vierailee (roam = vierailla, kuljeskella, harhailla) Home Location Register (HLR) kotiverkon tietokanta, joka sisältää kukin tilaajan (pysyvän) matkapuhelinnumeron ja tilaajaprofiilin; sisältää myös tietoa tilaajan tämänhetkisestä vierasverkosta 109

110 Liikkuvuuden hallinta matkapuhelinverkoissa (2) Terminologiaa (jatkuu...) Gateway Mobile services Switching Center (GMSC) home MSC kotivaihde vaihde, johon soittaja ensin ottaa yhteyttä, kun haluaa puhua asiakkaan kanssa Visitor Location Register (VLR) vierasverkon tietokanta, joka sisältää jokaisen vierasverkossa sillä hetkellä toimivan käyttäjän tiedot; VLR päivittyy sitä mukaa, kun verkossa vierailijat sinne tulevat tai sieltä poistuvat Mobile Station Roaming Number (MSRN) roaming number vaellusnumero väliaikainen numero, jonka kävijä saa vierasverkolta; numero, johon kotivaihde reitittää kävijälle tulevat puhelut Mobile Switching Center mobiilivaihde Base Station (BS) tukiasema 110

111 Kuva 29 Puhelun välittäminen mobiilille käyttäjälle: epäsuora reititys 111

112 Kuva 30 Skenaario siirrosta, kun kyseessä yhteinen mobiilivaihde 112

113 Kuva 31 Tukiasemien välisen siirron vaiheet, kun kyseessä yhteinen mobiilivaihde 113

114 Kuva 32 Uudelleenreititys ankkurivaihteen kautta 114

115 Taulukko 2 Mobiili IP ja GSM: elementtien vastaavuus 115

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki

Tietoliikenteen perusteet. Langaton linkki Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei:6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2007/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Lnagattoman

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5)

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2008/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Langattoman

Lisätiedot

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia

Langaton linkki. Langaton verkko. Tietoliikenteen perusteet. Sisältö. Linkkikerros. Langattoman verkon komponentit. Langattoman linkin ominaisuuksia Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 Langattoman verkon komponentit Tukiasema LAN-yhteys

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5)

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5) Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2009/ Liisa Marttinen 1 Sisältö Langattoman linkin ominaisuudet Langattoman

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2011 1

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2011 1 Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2011 1 Sisältö Langattoman linkin ominaisuudet Langattoman lähiverkon arkkitehtuuri

Lisätiedot

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5) Tietoliikenteen perusteet /2010 1

Tietoliikenteen perusteet. Langaton linkki. Kurose, Ross: Ch 6.1, 6.2, 6.3. (ei: 6.2.1, ja 6.3.5) Tietoliikenteen perusteet /2010 1 Tietoliikenteen perusteet Langaton linkki Kurose, Ross: Ch 6.1, 6.2, 6.3 (ei: 6.2.1, 6.3.4 ja 6.3.5) Tietoliikenteen perusteet /2010 1 Sisältö Langattoman linkin ominaisuudet Langattoman lähiverkon arkkitehtuuri

Lisätiedot

Tietoliikenteen perusteet

Tietoliikenteen perusteet Tietoliikenteen perusteet Luento 10: langaton linkki Syksy 2017, Timo Karvi Kurose&Ross: Ch5.7 ja 6.1-6.3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen perusteet,

Lisätiedot

Liikkuvien isäntäkoneiden reititys

Liikkuvien isäntäkoneiden reititys Mobile IP IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi osoite tässä

Lisätiedot

IP-reititys IP-osoitteen perusteella. koneelle uusi osoite tässä verkossa?

IP-reititys IP-osoitteen perusteella. koneelle uusi osoite tässä verkossa? Mobile IP IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi osoite tässä

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio. Annukka Kiiski

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio. Annukka Kiiski S-38.1105 Tietoliikennetekniikan perusteet Piirikytkentäinen evoluutio Annukka Kiiski Verkon topologia Kuvaa verkon rakenteen Fyysinen vs looginen topologia Tähti asema keskitin Perustopologioita Kahdenvälinen

Lisätiedot

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A te on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

Lisätiedot

Kuva maailmasta Pakettiverkot (Luento 1)

Kuva maailmasta Pakettiverkot (Luento 1) M.Sc.(Tech.) Marko Luoma (1/20) M.Sc.(Tech.) Marko Luoma (2/20) Kuva maailmasta Pakettiverkot (Luento 1) WAN Marko Luoma TKK Teletekniikan laboratorio LAN M.Sc.(Tech.) Marko Luoma (3/20) M.Sc.(Tech.) Marko

Lisätiedot

Liikkuvien isäntäkoneiden reititys

Liikkuvien isäntäkoneiden reititys 5. Mobile IP (RFC 3220) IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi

Lisätiedot

5. Mobile IP (RFC 3220)

5. Mobile IP (RFC 3220) 5. Mobile IP (RFC 3220) IP-reititys IP-osoitteen perusteella koneen osoite riippuu verkosta, jossa kone sijaitsee kun kone siirtyy toiseen verkkoon tilapäisesti, osoite ei ole enää voimassa koneelle uusi

Lisätiedot

Langattomat verkot ja liikkuvuus

Langattomat verkot ja liikkuvuus Langattomat verkot ja liikkuvuus CSE-C2400 Tietokoneverkot 15.03.2016 Sanna Suoranta ja Matti Siekkinen Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A

Lisätiedot

Tietoliikenteen perusteet

Tietoliikenteen perusteet Tietoliikenteen perusteet Luento 10: Kaikki yhteen ja langaton linkki Syksy 2015, Timo Karvi Kurose&Ross: Ch5.7 ja 6.1-6.3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen

Lisätiedot

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö

» multiaccess channel» random access channel LAN (Ethernet) langaton. ongelma: käyttövuoron jakelu Yhteiskäyttöisen kanavan käyttö 4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 29.9.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö

Lisätiedot

4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton

4. MAC-alikerros. yleislähetys (broadcast) ongelma: käyttövuoron jakelu. » multiaccess channel» random access channel LAN (Ethernet) langaton 4. MAC-alikerros yleislähetys (broadcast)» multiaccess channel» random access channel LAN (Ethernet) langaton ongelma: käyttövuoron jakelu 29.9.2000 1 Mitä käsitellään? Yhteiskäyttöisen kanavan käyttö

Lisätiedot

Luennon sisältö. Protokolla eli yhteyskäytäntö (1) Verkon topologia

Luennon sisältö. Protokolla eli yhteyskäytäntö (1) Verkon topologia Luennon sisältö S-38.1105 Tietoliikennetekniikan perusteet Piirikytkentäinen evoluutio Annukka Kiiski annukka.kiiski@tkk.fi Verkon topologia eli rakenne Protokolla eli yhteyskäytäntö Protokollapino Yhteystyypit

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio

S-38.1105 Tietoliikennetekniikan perusteet. Piirikytkentäinen evoluutio S-38.1105 Tietoliikennetekniikan perusteet Piirikytkentäinen evoluutio Annukka Kiiski annukka.kiiski@tkk.fi Luennon sisältö Verkon topologia eli rakenne Protokolla eli yhteyskäytäntö Protokollapino Yhteystyypit

Lisätiedot

Luento 10: Kaikki yhteen ja langaton linkki

Luento 10: Kaikki yhteen ja langaton linkki Luento 10: Kaikki yhteen ja langaton linkki To 28.11.2013 Tiina Niklander Kurose&Ross Ch5.7 ja 6.1-6.3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen perusteet, Tiina

Lisätiedot

ITKP104 Tietoverkot - Teoria 3

ITKP104 Tietoverkot - Teoria 3 ITKP104 Tietoverkot - Teoria 3 Ari Viinikainen Jyväskylän yliopisto 5.6.2014 Teoria 3 osuuden tärkeimmät asiat kuljetuskerroksella TCP yhteyden muodostus ja lopetus ymmärtää tilakaavion suhde protokollan

Lisätiedot

6. Erilaisia verkkoja. LAN, MAN ja WAN

6. Erilaisia verkkoja. LAN, MAN ja WAN 6. Erilaisia verkkoja LAN, MAN ja WAN 10/9/2003 SOVELLUKSIA SOVELLUSPROTOKOLLIA: HTTP, SMTP, SNMP, FTP, TELNET,.. TCP (UDP) IP Erilaisia verkkoja: kuulosteluverkko ( Ethernet ), vuororengas, vuoroväylä,

Lisätiedot

6. Erilaisia verkkoja

6. Erilaisia verkkoja 6. Erilaisia verkkoja LAN, MAN ja WAN 10/9/2003 1 SOVELLUKSIA SOVELLUSPROTOKOLLIA: HTTP, SMTP, SNMP, FTP, TELNET,.. TCP (UDP) IP Erilaisia verkkoja: kuulosteluverkko ( Ethernet ), vuororengas, vuoroväylä,

Lisätiedot

ELEC-C7241 Tietokoneverkot Linkkikerros

ELEC-C7241 Tietokoneverkot Linkkikerros ELEC-C7241 Tietokoneverkot Linkkikerros Pasi Sarolahti (monet kalvot: Sanna Suoranta) 20.2.2018 Seuraavat askeleet kurssilla 5-kierroksen määräaika vasta viikon kuluttua (ke 28.2.) Tällä viikolla ei siis

Lisätiedot

SOLUKKORADIOJÄRJESTELMÄT A Tietoliikennetekniikka II Osa 17 Kari Kärkkäinen Syksy 2015

SOLUKKORADIOJÄRJESTELMÄT A Tietoliikennetekniikka II Osa 17 Kari Kärkkäinen Syksy 2015 1 SOLUKKORADIOJÄRJESTELMÄT MATKAPUHELINVERKON PELKISTETTY IDEA 2 SOLUKON IDEA: TAAJUUKSIEN UUDELLEENKÄYTTÖ 3 1/r 2...6 -vaimenemislain vuoksi D CP :n välein voidaan sama taajuus ottaa uudelleen käyttöön.

Lisätiedot

Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla

Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla Liikkuvuudenhallinta Mobile IP versio 6 - protokollalla Mikko Merger Valvoja: Professori Jorma Jormakka Ohjaaja: TkL Markus Peuhkuri TKK/Tietoverkkolaboratorio 1 Sisällysluettelo Tavoitteet IEEE 802.11

Lisätiedot

Tehtävä 2: Tietoliikenneprotokolla

Tehtävä 2: Tietoliikenneprotokolla Tehtävä 2: Tietoliikenneprotokolla Johdanto Tarkastellaan tilannetta, jossa tietokone A lähettää datapaketteja tietokoneelle tiedonsiirtovirheille alttiin kanavan kautta. Datapaketit ovat biteistä eli

Lisätiedot

OSI ja Protokollapino

OSI ja Protokollapino TCP/IP OSI ja Protokollapino OSI: Open Systems Interconnection OSI Malli TCP/IP hierarkia Protokollat 7 Sovelluskerros 6 Esitystapakerros Sovellus 5 Istuntokerros 4 Kuljetuskerros 3 Verkkokerros Linkkikerros

Lisätiedot

Älypuhelinverkkojen 5G. Otto Reinikainen & Hermanni Rautiainen

Älypuhelinverkkojen 5G. Otto Reinikainen & Hermanni Rautiainen Älypuhelinverkkojen 5G Otto Reinikainen & Hermanni Rautiainen Johdanto [1][2] Viimeisen 30 vuoden aikana mobiiliverkkojen markkinaosuus on kasvanut merkittävästi Langattomia laitteita on joillain alueilla

Lisätiedot

Langattomat verkot. CSE-C2400 Tietokoneverkot Matti Siekkinen

Langattomat verkot. CSE-C2400 Tietokoneverkot Matti Siekkinen Langattomat verkot CSE-C2400 Tietokoneverkot 18.03.2014 Matti Siekkinen Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed. -kirjan

Lisätiedot

TVP 2003 - Kevätkurssi

TVP 2003 - Kevätkurssi TVP 2003 - Kevätkurssi Wireless networks Otto Alhava otto.alhava@ericsson.fi Luento 7: osat! Soveltava osa:! ADSL, ATM ja IP: pääsyverkko! VPN-ratkaisut: ATM, FR, Ethernet, IP (MPLS)! Opimme uutta:! Mobiiliverkot

Lisätiedot

DownLink Shared Channel in the 3 rd Generation Base Station

DownLink Shared Channel in the 3 rd Generation Base Station S-38.110 Diplomityöseminaari DownLink Shared hannel in the 3 rd Diplomityön tekijä: Valvoja: rofessori Samuli Aalto Ohjaaja: Insinööri Jari Laasonen Suorituspaikka: Nokia Networks 1 Seminaarityön sisällysluettelo

Lisätiedot

Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/2003 79. Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja

Siltojen haitat. Yleisesti edut selvästi suuremmat kuin haitat 2/19/2003 79. Kytkin (switch) Erittäin suorituskykyisiä, moniporttisia siltoja Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat

Lisätiedot

Mobiiliverkot. Kirja sivut 533-572

Mobiiliverkot. Kirja sivut 533-572 Mobiiliverkot Kirja sivut 533-572 Historia Ensimmäisen sukupolven analogisten matkapuhelimien menestys osoitti tarpeen mobiilille viestinnälle ARP (AutoRadioPuhelin) Suomessa NMT (Nordic Mobile Telephone)

Lisätiedot

OSI malli. S 38.188 Tietoliikenneverkot S 2000. Luento 2: L1, L2 ja L3 toiminteet

OSI malli. S 38.188 Tietoliikenneverkot S 2000. Luento 2: L1, L2 ja L3 toiminteet M.Sc.(Tech.) Marko Luoma (1/38) S 38.188 Tietoliikenneverkot S 2000 Luento 2: L1, L2 ja L3 toiminteet OSI malli M.Sc.(Tech.) Marko Luoma (2/38) OSI malli kuvaa kommunikaatiota erilaisten protokollien mukaisissa

Lisätiedot

1. Tietokoneverkot ja Internet. 1. 1.Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet

1. Tietokoneverkot ja Internet. 1. 1.Tietokoneesta tietoverkkoon. Keskuskone ja päätteet (=>-80-luvun alku) Keskuskone ja oheislaitteet 1. Tietokoneverkot ja Internet 1.1. Tietokoneesta tietoverkkoon 1.2. Tietoliikenneverkon rakenne 1.3. Siirtomedia 1.4. Tietoliikenneohjelmisto eli protokolla 1.5. Viitemallit: OSI-malli, TCP/IP-malli 1.6.

Lisätiedot

Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat

Siltojen haitat Yleisesti edut selvästi suuremmat kuin haitat Siltojen haitat sillat puskuroivat ja aiheuttavat viivettä ei vuonsäätelyä => sillan kapasiteetti voi ylittyä kehysrakenteen muuttaminen => virheitä jää havaitsematta Yleisesti edut selvästi suuremmat

Lisätiedot

Luento 10: Kaikki yhteen ja langaton linkki

Luento 10: Kaikki yhteen ja langaton linkki Luento 10: Kaikki yhteen ja langaton linkki 29.11.2012 Tiina Niklander Kurose&Ross Ch5.7 ja 6.1-6.3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen perusteet 2012,

Lisätiedot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen

Lisätiedot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer)

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen

Lisätiedot

TW- EAV510 ketjutustoiminto (WDS): Kaksi TW- EAV510 laitetta

TW- EAV510 ketjutustoiminto (WDS): Kaksi TW- EAV510 laitetta TW- EAV510 ketjutustoiminto (WDS): Kaksi TW- EAV510 laitetta WDS- VERKON RAKENTAMINEN OSA 1: JOHDANTO WDS- tekniikalla voidaan jatkaa langatonta verkkoa käyttämällä tukiasemia siltana, jolloin verkkoa

Lisätiedot

Luento 10: Kaikki yhteen ja langaton linkki. Syksy 2014, Tiina Niklander

Luento 10: Kaikki yhteen ja langaton linkki. Syksy 2014, Tiina Niklander Tietoliikenteen perusteet Luento 10: Kaikki yhteen ja langaton linkki Syksy 2014, Tiina Niklander Kurose&Ross: Ch5.7 ja 6.1-6.3 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved Tietoliikenteen

Lisätiedot

Linkkikerros: Ethernet ja WLAN

Linkkikerros: Ethernet ja WLAN Linkkikerros: Ethernet ja WLAN Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2011 Viime luennolla Verkkokerros on Internetissä käytännössä IP Tällä hetkellä versio 4, versio 6 tulossa IP

Lisätiedot

Linkkikerros: Ethernet ja WLAN

Linkkikerros: Ethernet ja WLAN Linkkikerros: Ethernet ja WLAN Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2012 Viime luennolla Verkkokerros on Internetissä käytännössä IP Tällä hetkellä versio 4, versio 6 tulossa IP

Lisätiedot

ELEC-C7241 Tietokoneverkot Linkkikerros

ELEC-C7241 Tietokoneverkot Linkkikerros ELEC-C7241 Tietokoneverkot Linkkikerros Pasi Sarolahti (useimmat kalvot: Sanna Suoranta) 7.3.2017 Linkkikerros -- Agenda Perusteita Monipääsyprotokollat (Multi Access Protocols) Osoitteet linkkikerroksella

Lisätiedot

Mikä on internet, miten se toimii? Mauri Heinonen

Mikä on internet, miten se toimii? Mauri Heinonen Mikä on internet, miten se toimii? Mauri Heinonen Mikä on Internet? Verkkojen verkko Muodostettu liittämällä lukuisia aliverkkoja suuremmaksi verkoksi Sivustojen tekemiseen käytetään kuvauskielta HTML

Lisätiedot

Kotitalouksien kiinteät internet - liittymät. Tero Karttunen Oy Mikrolog Ltd

Kotitalouksien kiinteät internet - liittymät. Tero Karttunen Oy Mikrolog Ltd Kotitalouksien kiinteät internet - liittymät Tero Karttunen Oy Mikrolog Ltd Kotitalouden internet - toivelista! Edulliset käyttökustannukset! Helppo, edullinen käyttöönotto! Kiinteä internet-yhteys! Toimiva!

Lisätiedot

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY T297/A01/2016 Liite 1 / Appendix 1 Sivu / Page 1(7) AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY NOKIA SOLUTIONS AND NETWORKS OY, TYPE APPROVAL Tunnus Code Laboratorio Laboratory Osoite

Lisätiedot

TW- EAV510 JA TW- LTE REITITIN: WDS- VERKKO

TW- EAV510 JA TW- LTE REITITIN: WDS- VERKKO TW- EAV510 JA TW- LTE REITITIN: WDS- VERKKO Oletus konfiguroinnissa on, että laitteet ovat tehdasasetuksilla WDS- verkko luodaan 2.4G tukiasemien välillä Laite 1 (TW- EAV510 tai TW- EAV510 AC): - Tähän

Lisätiedot

ELEC-C7241 Tietokoneverkot Kuljetuskerros

ELEC-C7241 Tietokoneverkot Kuljetuskerros ELEC-C7241 Tietokoneverkot Kuljetuskerros Pasi Sarolahti (kalvoja Matti Siekkiseltä) 23.1.2018 Laskareista Lisävuoro ke 16-18 U8 Edelleen myös ke 14-16 ja pe 12-14 Ke 14 16 tällä viikolla poikkeuksellisesti

Lisätiedot

Linkkikerros: Ethernet ja WLAN

Linkkikerros: Ethernet ja WLAN Linkkikerros: Ethernet ja WLAN Matti Siekkinen T-110.2100 Johdatus tietoliikenteeseen kevät 2013 Viime luennolla Verkkokerros on Internetissä käytännössä IP Tällä hetkellä v4 vielä dominoi, v6 käyttöönotto

Lisätiedot

S-38.118 Teletekniikan perusteet

S-38.118 Teletekniikan perusteet S-38.118 Teletekniikan perusteet Laskuharjoitus 3 Paketoinnin hyötysuhde 1 Harjoitus 3 koostuu: Demoluento (45 min) Datan siirtäminen Internetissä yleensä Laskuesimerkki datan siirtämisestä Äänen siirtäminen

Lisätiedot

Soluverkot. Jukka K. Nurminen T-110.2100 Johdatus tietoliikenteeseen kevät 2010

Soluverkot. Jukka K. Nurminen T-110.2100 Johdatus tietoliikenteeseen kevät 2010 Soluverkot Jukka K. Nurminen T10.2100 Johdatus tietoliikenteeseen kevät 2010 Viime luennolla Tiedonsiirron perusteet ja fyysinen kerros, haetaan vastausta kysymykseen: Miten bitteinä oleva tieto siirtyy

Lisätiedot

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet.

5. Siirtoyhteyskerros linkkikerros (Data Link Layer) 5.1. Kaksipisteyhteydet. Kehysten kuljetus. Missä virhe hoidetaan? Virheet. 5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen

Lisätiedot

Lisää reititystä. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Lisää reititystä. Jaakko Kangasharju

Lisää reititystä. Tietokoneverkot 2009 (4 op) Syksy Futurice Oy. Lisää reititystä. Jaakko Kangasharju Tietokoneverkot 2009 (4 op) jaakko.kangasharju@futurice.com Futurice Oy Syksy 2009 (Futurice Oy) Syksy 2009 1 / 39 Sisältö 1 2 (Futurice Oy) Syksy 2009 2 / 39 Sisältö 1 2 (Futurice Oy) Syksy 2009 3 / 39

Lisätiedot

Lisää reititystä. Tietokoneverkot 2008 (4 op) Syksy Teknillinen korkeakoulu. Lisää reititystä. Jaakko Kangasharju

Lisää reititystä. Tietokoneverkot 2008 (4 op) Syksy Teknillinen korkeakoulu. Lisää reititystä. Jaakko Kangasharju Tietokoneverkot 2008 (4 op) jkangash@cc.hut.fi Teknillinen korkeakoulu Syksy 2008 (TKK) Syksy 2008 1 / 39 Sisältö 1 2 (TKK) Syksy 2008 2 / 39 Sisältö 1 2 (TKK) Syksy 2008 3 / 39 iksi monilähetys? : saman

Lisätiedot

TW- EAV510 v2: WDS- TOIMINTO KAHDEN TW- EAV510 V2 LAITTEEN VÄLILLÄ

TW- EAV510 v2: WDS- TOIMINTO KAHDEN TW- EAV510 V2 LAITTEEN VÄLILLÄ TWEAV510 v2: WDSTOIMINTO KAHDEN TWEAV510 V2 LAITTEEN VÄLILLÄ Alla kaksi vaihtoehtoista ohjetta WDSverkon luomiseksi Ohje 1: WDSyhteys käyttää WPAsalausta. Tässä ohjeessa WDSyhteys toimii vain, kun tukiasema

Lisätiedot

Internet ja tietoverkot 2015 Harjoitus 7: Kertaus

Internet ja tietoverkot 2015 Harjoitus 7: Kertaus Internet ja tietoverkot 2015 Harjoitus 7: Kertaus Tämän harjoituksen tarkoituksena on hieman kerrata TCP/IP-kerrosmallin sovelluskerroksen, kuljetuskerroksen, internet-kerroksen ja siirtoyhteyskerroksen

Lisätiedot

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

Lisätiedot

Internet ja tietoverkot 2015 Harjoitus 5: (ISO/OSI-malli: Verkkokerros, TCP/IP-malli: internet-kerros)

Internet ja tietoverkot 2015 Harjoitus 5: (ISO/OSI-malli: Verkkokerros, TCP/IP-malli: internet-kerros) Internet ja tietoverkot 2015 Harjoitus 5: (ISO/OSI-malli: Verkkokerros, TCP/IP-malli: internet-kerros) Tämän harjoituksen tarkoituksena on tutustua IP-protokollaan. Kertausta - Harjoitus 4: Erään sovelluksen

Lisätiedot

Monimutkaisempi stop and wait -protokolla

Monimutkaisempi stop and wait -protokolla Monimutkaisempi stop and wait -protokolla Lähettäjä: 0:A vastaanottaja: ajastin lähettäjälle jos kuittausta ei kuulu, sanoma lähetetään automaattisesti uudelleen kuittaus: = ok, lähetä seuraava uudelleenlähetys

Lisätiedot

Tulevaisuuden Internet. Sasu Tarkoma

Tulevaisuuden Internet. Sasu Tarkoma Tulevaisuuden Internet Sasu Tarkoma Johdanto Tietoliikennettä voidaan pitää viime vuosisadan läpimurtoteknologiana Internet-teknologiat tarjoavat yhteisen protokollan ja toimintatavan kommunikointiin Internet

Lisätiedot

Televerkko, GSM-verkko. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2012

Televerkko, GSM-verkko. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2012 Televerkko, GSM-verkko Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2012 Luennon sisältö 1. Televerkko (PSTN) 2. Matkapuhelinverkko GSM, EDGE, UMTS Kalvot perustuvat

Lisätiedot

TW- EAV510 v2: WDS- TOIMINTO TW- EAV510 V2 LAITTEEN ja TW- LTE REITITTIMEN VÄLILLÄ. Oletus konfiguroinnissa on, että laitteet ovat tehdasasetuksilla

TW- EAV510 v2: WDS- TOIMINTO TW- EAV510 V2 LAITTEEN ja TW- LTE REITITTIMEN VÄLILLÄ. Oletus konfiguroinnissa on, että laitteet ovat tehdasasetuksilla TW- EAV510 v2: WDS- TOIMINTO TW- EAV510 V2 LAITTEEN ja TW- LTE REITITTIMEN VÄLILLÄ Oletus konfiguroinnissa on, että laitteet ovat tehdasasetuksilla Laite 1 TW- EAV510 v2: - Tähän laitteeseen tulee ulkoverkon

Lisätiedot

Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone

Tietokone. Tietokone ja ylläpito. Tietokone. Tietokone. Tietokone. Tietokone ja ylläpito computer = laskija koostuu osista tulostuslaite näyttö, tulostin syöttölaite hiiri, näppäimistö tallennuslaite levy (keskusyksikössä) Keskusyksikkö suoritin prosessori emolevy muisti levy Suoritin

Lisätiedot

Kanavan kuuntelu. Yleislähetysprotokollia ALOHA. CSMA (Carrier Sense Multiple Access) Viipaloitu ALOHA. Lähetyskanavan kuuntelu (carrier sense)

Kanavan kuuntelu. Yleislähetysprotokollia ALOHA. CSMA (Carrier Sense Multiple Access) Viipaloitu ALOHA. Lähetyskanavan kuuntelu (carrier sense) Lähetyskanavan kuuntelu (carrier sense) käynnissä olevan lähetyksen havaitseminen asema tutkii, onko kanava jo käytössä ennen lähetystä tutkitaan, onko joku muu lähettämässä jos on, ei lähetetä yleensä

Lisätiedot

TW-LTE REITITIN: INTERNET-YHTEYKSIEN KAISTANJAKO

TW-LTE REITITIN: INTERNET-YHTEYKSIEN KAISTANJAKO TW-LTE REITITIN: INTERNET-YHTEYKSIEN KAISTANJAKO Käyttötarkoitus: Toiminne jakaa useamman liittymän kaistaa usealle käyttäjälle samanaikaisesti. Näin ollen, kun käytössä on useampi kaista, voidaan käyttää

Lisätiedot

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

Lisätiedot

TeleWell TW-EA711 ADSL modeemi & reititin ja palomuuri. Pikaohje

TeleWell TW-EA711 ADSL modeemi & reititin ja palomuuri. Pikaohje TeleWell TW-EA711 ADSL modeemi & reititin ja palomuuri Pikaohje Pikaohje Myyntipaketin sisältö 1. TeleWell TW-EA711 ADSL modeemi & palomuuri 2. AC-DC sähköverkkomuuntaja 3. RJ-11 puhelinjohto ja suomalainen

Lisätiedot

Salausmenetelmät (ei käsitellä tällä kurssilla)

Salausmenetelmät (ei käsitellä tällä kurssilla) 6. Internetin turvattomuus ja palomuuri Internetin turvaongelmia Tietojen keruu turva-aukkojen löytämiseksi ja koneen valtaaminen Internetissä kulkevan tiedon tutkiminen IP-osoitteen väärentäminen Palvelunestohyökkäykset

Lisätiedot

Kytkentäopas. Tuetut käyttöjärjestelmät. Tulostimen asentaminen. Kytkentäopas

Kytkentäopas. Tuetut käyttöjärjestelmät. Tulostimen asentaminen. Kytkentäopas Sivu 1/5 Kytkentäopas Tuetut käyttöjärjestelmät Software and Documentation -CD-levyltä voi asentaa tulostinohjelmiston seuraaviin käyttöjärjestelmiin: Windows 8 Windows 7 SP1 Windows 7 Windows Server 2008

Lisätiedot

LYHYEN KANTAMAN LANGATTOMAT SIIRTOTAVAT

LYHYEN KANTAMAN LANGATTOMAT SIIRTOTAVAT Last update : 05.09.2012 LYHYEN KANTAMAN LANGATTOMAT SIIRTOTAVAT H. Honkanen Lyhyen matkan langattoman siirron tarkoitus on siirtää tietoa ( = dataa ) lähietäisyydellä ( alle 1m 50m ) Siirtotekniikoita

Lisätiedot

MOBIILIVERKKOJEN KEHITYS

MOBIILIVERKKOJEN KEHITYS MOBIILIVERKKOJEN KEHITYS Mika Järvinen Opinnäytetyö Joulukuu 2013 Tietotekniikka Tietoliikennetekniikka ja tietoverkot TIIVISTELMÄ Tampereen ammattikorkeakoulu Tietotekniikka Tietoliikennetekniikka ja

Lisätiedot

Tulevaisuuden langattomat järjestelmät. Jukka K. Nurminen

Tulevaisuuden langattomat järjestelmät. Jukka K. Nurminen Tulevaisuuden langattomat järjestelmät Jukka K. Nurminen Edellisellä kerralla Televerkon toiminta Puhelinverkon periaate Puhelinkeskuksen toiminta Siirtojärjestelmät Puhelun kytkeminen, Signalointiverkko

Lisätiedot

WLAN langaton lähiverkko (Wireless LAN)

WLAN langaton lähiverkko (Wireless LAN) WLAN langaton lähiverkko (Wireless LAN) IEEE 802.11-standardi IEEE 802.11: : 1 ja 2 Mbps IEEE 802.11a: 6, 12, 24, 54 Mbps IEEE 802.11b: 5.5, 11 Mbps ETSI: HiperLAN HiperLAN1: 20 Mbbps HiperLAN2: 25-54

Lisätiedot

WLAN langaton lähiverkko (Wireless LAN)

WLAN langaton lähiverkko (Wireless LAN) WLAN langaton lähiverkko (Wireless LAN) IEEE 802.11-standardi IEEE 802.11: 1 ja 2 Mbps IEEE 802.11a: 6, 12, 24, 54 Mbps IEEE 802.11b: 5.5, 11 Mbps ETSI: HiperLAN HiperLAN1: 20 Mbbps HiperLAN2: 25-54 Mbps

Lisätiedot

Internet ja tietoverkot

Internet ja tietoverkot 811338A 0. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2014 / 2015 Luennoija 811338A 5 op 9. 1. 6. 3. 2015 nimi: Juha Kortelainen e-mail: juha.kortelainen@oulu.fi vastaanotto: torstai klo 10 12,

Lisätiedot

Tikon ostolaskujen käsittely

Tikon ostolaskujen käsittely Toukokuu 2013 1 (7) 6.3.0 Copyright Aditro 2013 Toukokuu 2013 2 (7) Sisällysluettelo 1. Käyttäjäasetukset... 3 2. Yleiset parametrit... 3 3. Kierrätysasetukset... 3 4. palvelimen tiedot... 4 5. lähetyksen

Lisätiedot

AirPrint-opas. Tämä käyttöopas koskee seuraavia malleja:

AirPrint-opas. Tämä käyttöopas koskee seuraavia malleja: AirPrint-opas Tämä käyttöopas koskee seuraavia malleja: HL-340CW/350CDN/350CDW/370CDW/380CDW DCP-905CDW/900CDN/900CDW MFC-930CW/940CDN/9330CDW/9340CDW Versio A FIN Kuvakkeiden selitykset Tässä käyttöoppaassa

Lisätiedot

Kuljetuskerros. Tietokoneverkot. Matti Siekkinen Pasi Sarolahti

Kuljetuskerros. Tietokoneverkot. Matti Siekkinen Pasi Sarolahti Kuljetuskerros Tietokoneverkot Matti Siekkinen Pasi Sarolahti Osa sisällöstä adaptoitu seuraavista lähteistä: J.F. Kurose and K.W. Ross: Computer Networking: A Top-Down Approach 6th ed. -kirjan lisämateriaali

Lisätiedot

Gree Smart -sovelluksen (WiFi) asennus- ja käyttöohje: Hansol-sarjan ilmalämpöpumput WiFi-ominaisuuksilla

Gree Smart -sovelluksen (WiFi) asennus- ja käyttöohje: Hansol-sarjan ilmalämpöpumput WiFi-ominaisuuksilla 02/2016, ed. 5 KÄYTTÖOHJE Gree Smart -sovelluksen (WiFi) asennus- ja käyttöohje: Hansol-sarjan ilmalämpöpumput WiFi-ominaisuuksilla Maahantuoja: Tiilenlyöjänkuja 9 A 01720 Vantaa www.scanvarm.fi Kiitos

Lisätiedot

Tikon ostolaskujen käsittely

Tikon ostolaskujen käsittely Toukokuu 2014 1 (8) Toukokuu 2014 2 (8) Sisällysluettelo 1. Käyttäjäasetukset... 3 2. Yleiset parametrit... 3 3. Kierrätysasetukset... 3 4. palvelimen tiedot... 4 5. lähetyksen aktivointi... 5 6. Eräajot

Lisätiedot

INTERNET-yhteydet E L E C T R O N I C C O N T R O L S & S E N S O R S

INTERNET-yhteydet E L E C T R O N I C C O N T R O L S & S E N S O R S INTERNET-yhteydet IP-osoite IP-osoitteen tarkoituksena on yksilöidä laite verkossa. Ip-osoite atk-verkoissa on sama kuin puhelinverkossa puhelinnumero Osoite on muotoa xxx.xxx.xxx.xxx(esim. 192.168.0.1)

Lisätiedot

mikä sen merkitys on liikkuvalle ammattilaiselle?

mikä sen merkitys on liikkuvalle ammattilaiselle? artikkeli WWAN-verkko WWAN-verkko: mikä sen merkitys on liikkuvalle ammattilaiselle? Nopeiden, saumattomien yhteyksien merkitys minkä tahansa yrityksen menestykseen sekä liikkuvan ammattilaisen tehokkuuteen

Lisätiedot

Laitteessa tulee olla ohjelmisto tai uudempi, tarvittaessa päivitä laite

Laitteessa tulee olla ohjelmisto tai uudempi, tarvittaessa päivitä laite TW-EAV510: PORTTIOHJAUS (VIRTUAL SERVER) ESIMERKISSÄ VALVONTAKAMERAN KYTKEMINEN VERKKOON Laitteessa tulee olla ohjelmisto 5.00.49 tai uudempi, tarvittaessa päivitä laite OPERAATTORIN IP---OSOITE - Jotta

Lisätiedot

Projektina gradu. Miten? Missä? Milloin? Miksi?

Projektina gradu. Miten? Missä? Milloin? Miksi? Projektina gradu Miten? Missä? Milloin? Miksi? Sisältö Johdanto Storage Area Networks SCSI ja Fibre Channel Multiprotokollareititys Esimerkkitoteutus Yhteenveto Storage Domain Tietokanta (dbms) Sovellukset

Lisätiedot

Protokollien yleiset toiminnot

Protokollien yleiset toiminnot CT30A2003 Tietoliikennetekniikan perusteet Protokollien yleiset toiminnot 1 Järjestelmä ja olio Eri järjestelmissä sijaitsevat oliot kommunikoivat keskenään - Jotta se olisi mahdollista, täytyy niiden

Lisätiedot

Finnish. B525 LTE CPE Pikaopas

Finnish. B525 LTE CPE Pikaopas Finnish B525 LTE CPE Pikaopas 1 Tuotteen yleiskuvaus Virran merkkivalo Wi-Fi /WPS-merkkivalo Signaalinvoimakkuuden merkkivalo LAN1-3, LAN4/WAN-portti USB-portti Palauta-painike WPS-painike Verkon tilan

Lisätiedot

S 38.1105 Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory

S 38.1105 Tietoliikennetekniikan perusteet. Pakettikytkentäiset verkot. Helsinki University of Technology Networking Laboratory S 38.1105 Tietoliikennetekniikan perusteet Pakettikytkentäiset verkot Kertausta: Verkkojen OSI kerrosmalli Sovelluskerros Esitystapakerros Istuntokerros Kuljetuskerros Verkkokerros Linkkikerros Fyysinen

Lisätiedot

Satelliittipaikannus

Satelliittipaikannus Kolme maailmalaajuista järjestelmää 1. GPS (USAn puolustusministeriö) Täydessä laajuudessaan toiminnassa v. 1994. http://www.navcen.uscg.gov/gps/default.htm 2. GLONASS (Venäjän hallitus) Ilmeisesti 11

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

Internet Protocol version 6. IPv6

Internet Protocol version 6. IPv6 Internet Protocol version 6 IPv6 IPv6 Osoiteavaruus 32-bittisestä 128-bittiseksi Otsikkokentässä vähemmän kenttiä Lisäominaisuuksien määritteleminen mahdollista Pakettien salaus ja autentikointi mahdollista

Lisätiedot

WLAN langaton lähiverkko (Wireless LAN)

WLAN langaton lähiverkko (Wireless LAN) WLAN langaton lähiverkko (Wireless LAN) IEEE 802.11-standardi IEEE 802.11: 1 ja 2 Mbps IEEE 802.11a: 6, 12, 24, 54 Mbps IEEE 802.11b: 5.5, 11 Mbps ETSI: HiperLAN HiperLAN1: 20 Mbbps HiperLAN2: 25-54 Mbps

Lisätiedot

WLAN langaton lähiverkko (Wireless LAN)

WLAN langaton lähiverkko (Wireless LAN) WLAN langaton lähiverkko (Wireless LAN) IEEE 802.11-standardi IEEE 802.11: 1 ja 2 Mbps IEEE 802.11a: 6, 12, 24, 54 Mbps IEEE 802.11b: 5.5, 11 Mbps ETSI: HiperLAN HiperLAN1: 20 Mbbps HiperLAN2: 25-54 Mbps

Lisätiedot

Sisäilmaston mittaus hyödyntää langatonta anturiteknologiaa:

Sisäilmaston mittaus hyödyntää langatonta anturiteknologiaa: Ismo Grönvall/Timo/TUTA 0353064 Tehtävä 5: Sisäilmaston mittaus hyödyntää langatonta anturiteknologiaa: Ihmiset viettävät huomattavan osan (>90 %) ajasta sisätiloissa. Sisäilmaston laatu on tästä syystä

Lisätiedot

Foscam kameran asennus ilman kytkintä/reititintä

Foscam kameran asennus ilman kytkintä/reititintä Foscam kameran asennus ilman kytkintä/reititintä IP laitteiden asennus tapahtuu oletusarvoisesti käyttäen verkkokaapelointia. Kaapeli kytketään kytkimeen tai suoraan reittimeen, josta laite saa IP -osoitetiedot,

Lisätiedot

WL54AP2. Langattoman verkon laajennusohje WDS

WL54AP2. Langattoman verkon laajennusohje WDS WL54AP2 Langattoman verkon laajennusohje WDS Näitä ohjeita seuraamalla saadaan langaton lähiverkko laajennettua yksinkertaisesti kahden tai useamman tukiaseman verkoksi. Tukiasemien välinen liikenne(wds)

Lisätiedot