Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä 25.11.2014 Jarmo Partanen, professori, Lappeenrannan yliopisto jarmo.partanen@lut.fi +358 40 5066 564
Electricity Market, targets Competitive ness Sustaina bility Technical requirement; keep power balance in every second Production = consumption
Renewables, security of supply and efficiency Electricity Market + CO2-price Efficient operation of system Sustainability Security?? Renewable based production and subsidies?
Solar power in Germany Installed capacity 36 760 MW (30.6.2014) http://www.sma.de/en/news-information/pv-electricity-produced-in-germany.html Power to the people Feed-in tariff (nowadays reduced) Price of PV-cells, more than 60 % reduction per 5 years Wind power in Germany; 33 GW, 47 TWh/a (2013)
Impact of subsidied renewables on market price of electricity demand Money This price will be paid by?? Real cost price supply RES is always first in the market Lower market price, problematic for many producers quantity 5
Power Production in Germany, January 2014
Power Production in Germany, May 2014
Renewables, security of supply and efficiency Electricity Market + CO2-price Efficient operation of system Sustainability Security?? Renewable based production and subsidies?
Renewables, security of supply and efficiency Electricity Market + CO2-price Efficient operation of system Sustainability Security Shorter operation times, different running ranking, worse economics More renewable based production, excellent sustainability Renewable based production and subsidies More uncontrollable renewable based production having high output variation, new challenges in intermittency, lack of controllable production, lack of inertia
Renewables, security of supply and efficiency Electricity Market + CO2-price Efficient operation of system Sustainability Security of supply Shorter operation times, different running ranking, worse economics How to solve the problem? More renewable based production, excellent sustainability X Renewable based production and subsidies More uncontrollable renewable based production having high output variation, new challenges in intermittency, lack of controllable production, lack of inertia When? How? Profitability? Acceptability? Low price of electricity incentives for investments? Storages Demand response Capacity Market? Controllable production New transmission lines Payments of readiness to produce electricity or reduce consumption
Smart Grid & Customer Gateway; Demand response Market players; TSO, DSO, supplier, aggregator Information systems Grid Active monitoring, optimisation and control of energy use and power flows Action signals based on optimization against different targets of system players Energy storage Actions at the customer gateway, flexible demand Loads; controllable, non-controllable Generation Solar, wind, fuel cell, biogas
Smart Grid & Customer Gateway; Demand response Market players; TSO, DSO, supplier, aggregator Information systems Grid Active monitoring, optimisation and control of energy use and power flows Action signals based on optimization against different targets of system players Energy storage In Finland every customer has an AMR-meter and communication chanel Loads; controllable, non-controllable Generation Solar, wind, fuel cell, biogas
Kysyntäjoustomarkkinat Lähde: Kysynnän jouston käytännön toteutus, ST-poolin tutkimushanke, TTY, LUT, TAMK
Kysyntäjoustomarkkinat, kuorman käyttö taajuusohjattuna käyttöreservinä P 10 MW Control function P(f) 5 MW Under frequency Over frequency f 0 MW f = Dead band Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
Kysyntäjoustomarkkinat, kuorman käyttö taajuusohjattuna käyttöreservinä Example 50.2 50.15 Frequency ( Hz ) 50.1 50.05 50 49.95 49.9 Lower dead band limit Upped dead band limit Response can be instant or delayed. Based on Fingrid recommendation delay is set to 2 s. 49.85 49.8 01.10 21:50 01.10 21:55 01.10 22:00 01.10 22:05 01.10 22:10 Power ( MW ) 12 10 8 6 4 As frequency exceeds upper dead band plant increases power based on droop function As frequency exceeds lower dead band plant decreases power based on droop function 2 0 21:50:00 21:55:00 22:00:00 22:05:00 22:10:00 Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
Kysyntäjoustomarkkinat, kuorman käyttö taajuusohjattuna käyttöreservinä Example time series, hour means Regutating power 0.01 dead band, droop 5/0.09 MW/Hz, Hour mean values 5 Power [ MW ] 0 5 0 1000 2000 3000 4000 5000 6000 7000 8000 Time [ h ] Regutating power 0.05 dead band, droop 5/0.09 MW/Hz, Hour mean values 5 Power [ MW ] 0 5 0 1000 2000 3000 4000 5000 6000 7000 8000 Time [ h ] Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
Kysyntäjoustomarkkinat, kuorman käyttö taajuusohjattuna käyttöreservinä Example time series, 1 hour, 100 ms sampling 5 Regutating power 0.01 dead band, droop 5/0.09 MW/Hz Power [ MW ] 0 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time [ h ] Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
Kysyntäjoustomarkkinat, kuorman käyttö taajuusohjattuna käyttöreservinä Example time series, 1 hour, 100 ms sampling Regutating power 0.05 dead band, droop 5/0.09 MW/Hz 5 Power [ MW ] 0 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time [ h ] Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
Sustainable gas? O 2 Heat Electricity Electrolysi s H 2 Methanation CH 4, LNG Water CO 2 Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
E to gas, seasonal storage & clean fuel System level view Lähde: Neo-Carbon, Tutkimushanke, VTT, LUT, Turun yliopisto
Smart Grid & Customer Gateway at Lappeenranta University of Technology
Winner of the International Sustainable Campus Network (ISCN) Excellence Award, 2013 Creating the future with green technology and business Lappeenranta University of Technology (LUT)