S RADIOTIETOLIIKENNEJÄRJESTELMÄT Tentti Osa A. Ilman lähteitä suoritettavat tehtävät (2)

Samankaltaiset tiedostot
S RADIOTIETOLIIKENNEJÄRJESTELMÄT Tentti Osa A. Ilman lähteitä suoritettavat tehtävät (2)

S RADIOTIETOLIIKENNEJÄRJESTELMÄT Tentti xx Osa A. Ilman lähteitä suoritettavat tehtävät (2)

Capacity Utilization

Efficiency change over time

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

TM ETRS-TM35FIN-ETRS89 WTG

The CCR Model and Production Correspondence

TM ETRS-TM35FIN-ETRS89 WTG

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

( ,5 1 1,5 2 km

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

TM ETRS-TM35FIN-ETRS89 WTG

16. Allocation Models

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

,0 Yes ,0 120, ,8

Exercise 1. (session: )

TM ETRS-TM35FIN-ETRS89 WTG

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)


On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Rakennukset Varjostus "real case" h/a 0,5 1,5

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa?

Curriculum. Gym card

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

TV white spaces taajuuksien käytön tehostamiseen

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

TM ETRS-TM35FIN-ETRS89 WTG

Ensimmäinen välikoe. Kurssin voi suorittaa tentillä tai kahdella välikokeella

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet

Capacity utilization

Alternative DEA Models

Kvanttilaskenta - 1. tehtävät

812336A C++ -kielen perusteet,

make and make and make ThinkMath 2017

Results on the new polydrug use questions in the Finnish TDI data

Keskittämisrenkaat. Meiltä löytyy ratkaisu jokaiseen putkikokoon, 25 mm ja siitä ylöspäin.

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

S Mobile Communication Systems and Services (2 credits) Exam

I. Principles of Pointer Year Analysis

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

The Viking Battle - Part Version: Finnish

Gap-filling methods for CH 4 data

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

1 db Compression point

anna minun kertoa let me tell you

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

DNA antenniverkon tekniikka ja laajentuminen. Asiantuntija, Olli Knuuttila DNA

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

S Mobile Communication Systems and Services (2 credits) Exam

LYTH-CONS CONSISTENCY TRANSMITTER

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

7.4 Variability management

C++11 seminaari, kevät Johannes Koskinen

KMTK lentoestetyöpaja - Osa 2

Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut

Telecommunication Software

Salasanan vaihto uuteen / How to change password

Other approaches to restrict multipliers

toukokuu 2011: Lukion kokeiden kehittämistyöryhmien suunnittelukokous

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.

GNSS-vastaanottimet. Havaintosuureet

Information on preparing Presentation

Sähköjärjestelmän käyttövarmuus & teknologia Käyttövarmuuspäivä

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

SIMULINK S-funktiot. SIMULINK S-funktiot

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

HARJOITUS- PAKETTI A

2017/S Contract notice. Supplies

AYYE 9/ HOUSING POLICY

Aatofunktiot ja epätarkkuus

Travel Getting Around

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

Operatioanalyysi 2011, Harjoitus 2, viikko 38

MEETING PEOPLE COMMUNICATIVE QUESTIONS

RINNAKKAINEN OHJELMOINTI A,

Suihkukoneet 1:73 ja pienemmät. Potkurikoneet 1:72-1:49. Suihkukoneet 1:72-1:49. Potkurikoneet 1:35 ja suuremmat. Suihkukoneet 1:35 ja suuremmat

Miksi Suomi on Suomi (Finnish Edition)

Käyttöliittymät II. Käyttöliittymät I Kertaus peruskurssilta. Keskeisin kälikurssilla opittu asia?

BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT

Transkriptio:

S-72.3220 RADIOTIETOLIIKENNEJÄRJESTELMÄT Tentti 5.9.2007 Osa A. Ilman lähteitä suoritettavat tehtävät (2) Tentti koostuu kahdesta osasta. Kun olet suorittanut osan A, jätä vastaukset tentin valvojalle, jolloin saat 3 tehtävää käsittävän B-osan tehtäväpaperin. Nämä tehtävät saat suorittaa vapaavalintaisten lähteiden kanssa. Ajankäytöstä päätät itse 3 h kokonaisajan puitteissa. oistua saat kuitenkin vasta tunnin kuluttua tentin alkamisesta. 1. Vastaa lyhyesti muutamalla lauseella seuraaviin osatehtäviin. Käytä tarvittaessa kuvia: a) Ketä katsotaan ensimmäisenä lähettäneen radiosignaaleja Atlantin yli? b) Mitkä taajuudet muodostavat VHF-kaistan? c) Millä taajuuksilla vaikuttaa ilmakehän kohina eniten? d) Mitä kuvaa AM/M-konversio? e) Miten määrittelee ITU radiotietoliikennejärjestelmän epäkäytettävyys? f) Radiovastaanottimen herkkyys on 90 dbm, lähettimen lähtötehotaso on 40 dbm, ja vastaanotettu mediaanitaso on 60 dbm. Kuinka suuri on tasahäipymisvara? g) Mitä kertoo radiovastaanottimen signature? h) Miksi monitiehäipyminen on pienempi ongelma kiinteissä point to area radioverkoissa kuin matkapuhelinverkoissa? i) Miten määrittelee ITU lähetinantennin korkeus, kun kantama > 15 km? j) Montako GEO-satelliittia tarvitaan päiväntasaajan täydelliseksi peittämiseksi? 2. Kiinteillä radioyhteyksillä käytetään käytetään yhä enemmän mmaaltoja. a) Minkälaisia etenemishäviöitä on otettava huomioon sadevaimennuksen lisäksi yli 30 GHz taajuudella toimivan radiolinkkihypyn suunnittelussa? b) Hahmottele sateen aiheuttaman katkoajan ennustaminen esim. proseduurin vuokaavion avulla. Vain periaatteet tarvitsee selostaa, tarkkoja algoritmeja ei vaadita, saa toki esittää.

S-72.3220 RADIOTIETOLIIKENNEJÄRJESTELMÄT Tentti 5.9.2007 Osa B. Lähteiden kanssa suoritettavat tehtävät (4, joista 3 parhaiten suoritettua otetaan huomioon tenttiarvosanassa) 3. 1 MHz (kohina)kaistanleveydellä toimivan spektrianalysaattorin tuloon redusoitu kohinataso on 85 dbm, kun lähteen kohinalämpötila on 290 K. a) Laske tämän spektrianalysaattorin kohinaluku. b) Käyetään esivahvistinta, jonka kohinaluku on 2 db. Kuinka suuri pitää tämän esivahvistimen vahvistuksen olla, jotta sen tuloon redusoitu kohinataso olisi 100 dbm? kt o 21 4 10 W/Hz 4. Lyhyen kantaman radiotietoliikennejärjestelmä Bluetooth toimii ISMkaistalla, ja suurin kantoaaltotaajuus on 2.484 GHz. Luokka II-lähetimen maksimitehotaso on 4 dbm, ja vastaanottimen herkkyysvaatimus on 70 dbm. Kuinka suuri on maksimikantama, jos yhteydellä on vapaan tilan eteneminen, ja lähetys- ja vastaanottoantennijärjestelmien nettovahvistus on 0 db? 5. ahimpana kuukautena antaa radiojänteeltä mitattu kanavamalli seuraavat ennustekaavat tasahäipymän ja selektiivisen häipymän aiheuttamille katkostodennäköisyyksille ilman diverstiyä ja diversityn kanssa: B 4,5 FFM 10 o, SF SF, o, FF 10 B 2,8 5 o, SF, div SF o, FF, div q 10 FFM W e r e W, kanavamallin parametriarvot ovat: SF = 0,02 r = 0,15 q = 7,5 = 6,3 ns vastaanottimen häipymäsietoparametrit ovat:: FFM = 35 db B on M-signaturen korkeus = 5/25 db W on signaturen leveys = 32/12 MHz Signature on sama sekä minimi- että ei-minimivaiheisessa kanavassa. Arvot pätevät ilman korjainta ja korjaimella varustetulle vastaanottimelle Laske katkoparannus a) korjaimella, b) diversityllä, c) korjaimella ja diversityllä.

6. Hyvänlaatuisen FM-ääniohjelman vastaanotto vaatii 54 db V/m sähkökentän tason ja suojaussuhteeksi interferenssisignaalin normaalietenemisen aikana 51 db (50 % ajasta) ja poikkeuksellisen troposfäärietenemisen aikana 37 db (1 % ajasta). Oletetaan kaikkien lähettimien lähetystasoksi 10 kw EIR ja lähetystaajuudeksi 100 MHz ja teholliseksi lähetysantennin korkeudeksi 300 m. Vastaanotinantenn korkeus oletetaan vastaavan sitä arvoa, jolla suosituksessa ITU-R Rec. 1546 olevat sähkökentän tasokäyrät ovat voimassa. a) Millä etäisyydellä lähettimestä peittotodennäköisyys annetuilla vaatimuksilla on 50 % suosituksen ITU-R Rec. 1546 mukaan? b) Kuinka suuri tulee samantaajuisen kanavan lähettimen olla, jotta suojaussuhdevaatimus interferenssin normaalietenemisellä täyttyy 50 % todennäköisyydellä peittoalueen rajalla lähettimillä yhdistävällä suoralla suosituksen ITU-R Rec. 1546 mukaan? c) Kuinka suuri tulee samantaajuisen kanavan lähettimen olla, jotta suojaussuhdevaatimus interferenssin poikkeuksellisella troposfäärietenemisellä täyttyy 50 % todennäköisyydellä peittoalueen rajalla lähettimillä yhdistävällä suoralla suosituksen ITU-R Rec. 1546 mukaan?

Field strength in db V/m for 1 kw e.r.p. Received field strength at 600 MHz over land paths as function of distance for different transmitter antenna heights exceeded 50% of time. Receiver antenna height 10 m (equal to representative height of ground cover) 100 free space propagation 80 60 40 20 0 h tx = 10 m 20 m 37.5 m 75 m 150 m 300 m 600 m 1200 m 20 40 60 80 1 ITU_prop_models.dsf 10 distance/km 100 1000

S-72.3220 RADIO COMMUNICATION SYSTEMS Examination 5.9.2007 art A. Two tasks to be done without literature The exam consists of two parts. When you have done the tasks in art A (closed books) you give the answers to the exam supervisor, and then you will get art B (open books) including 4 problems (the 3 best performed are considerd for the exam grade). You decide yourself the time you spend on each part, but the total exam duration is 3 h. You can leave the exam room at earliest 1 hour after the start of the exam. 1. Answer the following questions with one or a few sentences. Use figures when needed. a) Who has been considered to be the first to transmit radio signals across the Atlantic ocean? b) Which frequencies comprise the VHF-band? c) On which frequencies has atmospheric noise its largest impact? d) What does AM to M conversion describe? e) How does ITU define non-availability of a radio communication system? f) The sensitivity level of a radio receiver is 90 dbm, the transmitter output power level is 40 dbm, and the median received level 60 dbm. How large is the flat fade margin? g) What does the radio receiver signature tell? h) Why is multipath fading a smaller problem in fixed point to area radio networks than in mobile radio networks? i) How does ITU define transmitter antenna height for ranges > 15 km? j) How many GEO-satellites are needed for full coverage of the Equator? 2. Fixed radio links are more and more using mm-waves. a) What kind of propagation losses must be taken into account in the planning of a mm-wave radio link hop above 30 GHz in addition to rain attenuation? Give an outline to the estimation of outage caused by rain e.g. as a flow diagram of the procedure. Only the principles are required not the exact algorithms, thus not forbidden in your answer.

S-72.3220 RADIO COMMUNICATION SYSTEMS Examination 5.9.2007 art B. 4 tasks to be done with arbitrary literature. The three best performed are considered for the exam grade. 3. The noise level reduced to the input of a spectrum analyzer with 1 MHz (noise) bandwidth is 85 dbm, when the source has a noise temperature of 290 K. a) Calculate the noise figure of this spectrum analyzer. b) A pre-amplifier with 2 db noise figure is used. How large should the gain of this pre-amplifier be to give a noise level reduced to the preamplifier input of 100 dbm? kt o 21 4 10 W/Hz 4. The short range radio communication system Bluetooth is working in the ISM-band and the maximum carrier frequency is 2.484 GHz. A class II transmitter has a maximum power level of 4 dbm, and the receiver sensitivity requirement is 70 dbm. How large is maximum range if free space propagation occurs, and the net gain of both transmitter and receiver antenna systems is 0 db. 5. During the worst month the measured channel model of a radio hop gives the following prediction formulas for the outage probability caused by frequency selective fading and flat fading respectively without and with diversity: B 4.5 FFM 10 o, SF SF, o, FF 10 B 2.8 o, SF, div SF o, FF, div q 10 FFM W e r e W, 5 the parameter values of the channel models are: SF = 0.02 r = 0.15 q = 7.5 = 6.3 ns Calculate the outage improvement: a) using equalizer only, b) using diversity only, c) using both equalizer and diversity. the fade tolerance parameters of the receiver are: FFM = 35 db B is the M-signature height = 5/25 db W is the signature width = 32/12 MHz The signature is the same in both minimum phase and non minimum phase channel. The two signature values are without and with equalizer

6. High-quality FM-audio reception requires an electrical field strength level of 54 db V/m and a cochannel protection ratio of 51 db during standard interference propagation (50 % of time) and 37 db during aexceptional tropospheric propagation (1 % of time). It is assumed that all transmitter transmit 10 kw EIR at 100 MHz and the effective transmitter antenna height is 300 m. The receiver antenna height corresponds to the assumptions for the field strength level curves in ITU-R Rec. 1546. a) At which distance from the transmitter the coverage probability under the above requirement is 50 % according to ITU-R Rec. 1546? b) How large should the cochannel transmitter distance be that the protection ratio requirement is fulfilled with 50 % probability during standard interference propagation on the line connecting the transmitters at the coverage border according to ITU-R Rec. 1546? c) How large should the cochannel transmitter distance be that the protection ratio requirement is fulfilled with 50 % probability during exceptional tropospheric interference propagation on the line connecting the transmitters at the coverage border according to ITU-R Rec. 1546?

Field strength in db V/m for 1 kw e.r.p. Received field strength at 600 MHz over land paths as function of distance for different transmitter antenna heights exceeded 50% of time. Receiver antenna height 10 m (equal to representative height of ground cover) 100 free space propagation 80 60 40 20 0 h tx = 10 m 20 m 37.5 m 75 m 150 m 300 m 600 m 1200 m 20 40 60 80 1 ITU_prop_models.dsf 10 distance/km 100 1000

1. Answer the following questions with one or a few sentences. Use figures when needed. a) Who has been considered to be the first to transmit radio signals across the Atlantic ocean? Marconi b) Which frequencies comprise the VHF-band? 30 300 MHz c) On which frequencies has atmospheric noise its largest impact? Below 1 MHz d) What does AM to M conversion describe? The output phase shift for a given imput amplitude in a non-linear RF power amplifier e) How does ITU define non-availability of a radio communication system? When the bit error rate (of a 64 kbit/s channel) exceeds 0.001 for more than 10 consecutive seconds f) The sensitivity level of a radio receiver is 90 dbm, the transmitter output power level is 40 dbm, and the median received level 60 dbm. How large is the flat fade margin? 30 db g) What does the radio receiver signature tell? How deep 2-path channel notch the receiver tolerates as function of the notch frequency. h) Why is multipath fading a smaller problem in fixed point to area radio networks than in mobile radio networks? Due to use of directive antennas the delay spread is lower than in mobile networks with omnidirectional antennas.. i) How does ITU define transmitter antenna height for ranges > 15 km? It is the antenna height above the median terrain height on the distance interval 3... 15 km from the transmitter site. j) How many GEO-satellites are needed for full coverage of the Equator? 3

2. Fixed radio links are more and more using mm-waves. a) What kind of propagation losses must be taken into account in the planning of a mm-wave radio link hop above 30 GHz in addition to rain attenuation? b) Give an outline to the estimation of outage caused by rain e.g. as a flow diagram of the procedure. Only the principles are required not the exact algorithms, thus not forbidden in your answer. SOLUTION a) Free space loss Atmospheric gas losses recipitation losses other than rain losses (snow, fog) (Radome losses) (ossible antenna feeder losses) (Connector losses) b) Determination of rain rate exceeded 0.01 % of time on the actual geographic location of the hop Calculation of the rain attenuation exceeded 0.01 % of time on the used frequency Calculation of the effective hop length reduction factor Calculation of the reference hop length for the actual rain rate Calculation of the rain attenuation exceeded 0.01 % of time rediction of rain outage based on the previous rain attenuation value and the receiver flat fade margin

3. The noise level reduced to the input of a spectrum analyzer with 1 MHz (noise) bandwidth is 85 dbm, when the source has a noise temperature of 290 K. a) Calculate the noise figure of this spectrum analyzer. b) A pre-amplifier with 2 db noise figure is used. How large should the gain of this pre-amplifier be to give a noise level reduced to the preamplifier input of 100 dbm? kt o 21 4 10 W/Hz SOLUTION a) n n FkToB F kt o B 11.5 3.5 10 10.21 6 4 10 10 4 790.6 29.0 db b) F kt B n, sys sys o F sys n, sys kt B o 13.0 2.0 10 10.21 6 4 10 10 4 25 13.98 db F sys G pa F pa F sys F 1 G F pa 2.9 1 10 1 F 10 10 pa 1.398 0.2 33.88 15.3 db

4 The short range radio communication system Bluetooth is working in the ISM-band and the maximum carrier frequency is 2.484 GHz. A class II transmitter has a maximum power level of 4 dbm, and the receiver sensitivity requirement is -70 dbm. How large is maximum range if free space propagation occurs, and the net gain of both transmitter and receiver antenna systems is 0 db SOLUTION d. S L G G 92.45 20lg d 20lg f tx fs tx rx 92.45 20lg 2.484 20lg d 4 ( 70) 74 km 7.90 0.1(74 92.45 7.90) 1.3175 10 10 0.0481 km

5. During the worst month the measured channel model of a radio hop gives the following prediction formulas for the outage probability caused by frequency selective fading and flat fading respectively without and with diversity: B 4.5 FFM 10 o, SF SF, o, FF 10 B 2.8 o, SF, div SF o, FF, div q 10 FFM W e r e W, 5 the parameter values of the channel models are: SF = 0.02 r = 0.15 q = 7.5 = 6.3 ns Calculate the outage improvement: a) using equalizer only, b) using diversity only, c) using both equalizer and diversity. the fade tolerance parameters of the receiver are: FFM = 35 db B is the M-signature height = 5/25 db W is the signature width = 32/12 MHz The signature is the same in both minimum phase and non minimum phase channel. The two signature values are without and with equalizer SOLUTION a) o,0 0.1 35 0.75 5 4.5 0.75 0.15 10 0.02 32 0.0063 e 43 0.75 0.75 43 5 5 3 4.74 10 132.7 10 1.474 10 o, eq 0.1 35 0.75 25 4.5 0.75 0.15 10 0.02 12 0.0063 0.75 0.75 43 5 5 5 4.74 10 0.585 10 6.100 10 e 43

b) I eq o, div o,0 o, eq 1.474 10 6.100 10 3 5 24.2 0.2 35 0.75 5 2.8 0.75 7.5 10 0.02 32 0.0063 0.75 0.75 1.33 5 5 4 0.075 10 67.61 10 6.82 10 e 43 I o,0 o, div 1.474 10 6.82 10 3 4 2.16 c) o, div 0.2 35 0.75 25 2.8 0.75 7.5 10 0.02 12 0.0063 e 43 0.75 0.75 43 7 7 6 7.5 10 2.00 10 1.142 10 I o,0 o, div eq 1.474 10 1.142 10 3 6 1291

6. High-quality FM-audio reception requires an electrical field strength level of 54 db V/m and a cochannel protection ratio of 51 db during standard interference propagation (50 % of time) and 37 db during exceptional tropospheric propagation (1 % of time). It is assumed that all transmitter transmit 10 kw EIR at 100 MHz and the effective transmitter antenna height is 300 m. The receiver antenna height corresponds to the assumptions for the field strength level curves in ITU-R Rec. 1546. a) At which distance from the transmitter the coverage probability under the above requirement is 50 % according to ITU-R Rec. 1546? b) How large should the cochannel transmitter distance be that the protection ratio requirement is fulfilled with 50 % probability during standard interference propagation on the line connecting the transmitters at the coverage border according to ITU-R Rec. 1546? c) How large should the cochannel transmitter distance be that the protection ratio requirement is fulfilled with 50 % probability during exceptional tropospheric interference propagation on the line connecting the transmitters at the coverage border according to ITU-R Rec. 1546? SOLUTION a) As the graph gives the field strength level with 1 kw EIR a transmitted EIR of 10 kw means that the maximum range is form th graph at 10 db lower field strength level than the required or for 44 db V/m. From the curve for 50 % coverage probability a maximum range of about 63 km is obtained. b) The CIR requirement during standard propagation means that the allowed interference field at the coverage border must be at maximum 44 51 = 7 db V/m. From the same curve a minimum range of about 338 km is determined. Thus the minimum distance between two co-channel transmitters is 63 + 338 = 401 km. c) The CIR requirement during adverse tropospheric propagation means that the allowed interference field at the coverage border must be at maximum 44 37 = + d V/m. From the curve for 1 % coverage probability a minimum range of about 385 km is determined. Thus the

Field strength in db V/m for 1 kw e.r.p. minimum distance between two co-channel transmitters is 63 + 385 = 448 km. Received field strength at 100 MHz over land paths as function of distance for different transmitter antenna heights exceeded 50% and 1% of time. Receiver antenna height 10 m (equal to representative height of ground cover) 100 free space propagation 80 60 40 20 0 h tx = 10 m 20 m 37.5 m 75 m 150 m 300 m 600 m 1200 m 20 40 60 80 1 10 distance/km 100 1000

Field strength in db V/m for 1 kw e.r.p. Received field strength at 100 MHz over land paths as function of distance for different transmitter antenna heights exceeded 50% and 1% of time. Receiver antenna height 10 m (equal to representative height of ground cover) 100 free space propagation 80 60 40 20 0 h tx = 10 m 20 m 37.5 m 75 m 150 m 300 m 600 m 1200 m 20 40 60 80 1 10 distance/km 100 1000