Anturi- ja mittalaitteiden kehitystyö VTT:llä Ympäristömonitoroinnin kuudes kansallinen seminaari Heureka, 5.5.2011 Olli Antson / VTT
2 Anturi- ja mittalaitteiden kehitystyö VTT:llä VTT yhteistyökumppanina mittalaitekehityksessä VTT:n mittalaiteteknologioita ja kehityshankkeita MEMS Molecular sensors Printed functionality
3 Mittalaitteiden kehitystyö VTT:n kanssa: Valtatie ideasta tuotteeseen Asiakkaan VTT: T&K Prototyypin tuotanto tuoteideat Ideointi, ratkaisujen haku Spesifikaatiot IPR Standardit Lainsäädäntö Prosessien ja mittalaitteen mallinnus ja simulointi Prototyypin suunnittelu ja valmistus Mekaniikka-, elektroniikka ja ohjelmistosuunnittelu Testaus ja vertailumittaukset Sopimusvalmistus Tuotannon kasvatus Teknologian siirto Lisensiointi
4 Anturi- ja mittalaitehankkeet VTT:n kanssa Testaus- ja sertifiointipalvelut VTT Expert Services Oy : IECEx-sertifiointijärjestelmän mukaisesti ATEX-hyväksyntä, Ex-asiantuntijapalvelut Elektroniikkatuotteen fyysinen laatu (EMC), elektroniikan ympäristöolosuhdetestaukset Mikroelektroniikan sopimusvalmistaja VTT Memsfab Oy : MEMS ja muiden mikro- ja nanoelektroniikkalaitteiden tuotanto VTT Memsfab Oy palvelee kotimaisia ja ulkomaisia asiakkaita Tuotantomäärät alkaen < 100 000 useisiin 1 000 000 kpl/vuosi, pilottuotanto, teknologian siirto suurien tuotantomäärien yhtiöihin
5 Anturi- ja mittalaitteiden kehitystyö VTT:llä : VTT:n teknologiat 1. MEMS-technology 2. Molecular sensors 3. Printed functionality
6 1. MEMS Technology The Next Generation of MEMS Fabry-Perot Interferometers (FPI) 3 new MEMS FPI technologies have been invented (patents pending) 3 additional system-level patents Chip price can be very low, ~1 for 1 000 000 or more pcs/year Ideal for high-volume applications Distributed sensor systems 3 mm MEMS = Micro Electro Mechanical System
7 Fabry-Perot Interferometer and Spectroscopy Interference created by two reflective surfaces Usage: Tunable band-pass filter Fingerprint of Ethanol
Transmission % 6.5.2011 8 Tunability of Pass-Band Transmission peak can be tuned by voltage within ~ ±10 % of the selectable center wavelength Voltages typically 0-30V Maximum transmission typically > 80 % (Finesse > 200) Example measurement 100 90 80 70 60 50 0V 14V Typical width of the transmission peak 3-7 nm for visible, 10-25 nm for near-infrared (Resolving power 50-200) 40 30 20 10 0 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 Wavelength (nm)
9 Technology Overview vs. Wavelength Range Assumed possible for technology First round developed 0.8 Under work Technology 1 0.6 ALD MEMS FPI 0.4 SiN MEMS FPI 0.2 Thermal IR MEMS FPI 0 0.1 1 10 100.2.3.4.6.8 1 2 3 4 6 8 10 11 12 14 x Wavelength (µm) ALD = Atomic Layer Deposited SiN = Silicon Nitride
10 Application Fields: Process control Gas detection QA/QC, hygiene Wastes Fertilizers/Pesticides Soil/Water Analysis Food QA/QC Food and agriculture Bioprocess monitoring Protein/DNA Single cell LIF Chemical industry Polymer industry Industrial Research processes Miniature Spectrometers sensors for analysis, UV-VISdetection IR and control. Raman Motivation: To develop next-generation miniaturized spectral Food industry Pulp and Paper Security Fluorescence Environmental Explosives detection Biochemical weapons Pharmaceutics Drug QA/QC Medical diagnostics Clinical analysis Soil/Water analysis Contaminants (traffic, industrial) Wastes
11 Three built devices Light Weight UAV hyperspectral imager (500 900 nm) Hyperspectral microscope (400 700 nm) Chemical imager (1 2.5 µm) Caffeine Aspirin Acetaminophen CAFFEINE predictions, 2nd Repeat 1680-2170 nm, NoRanges=1, NoPixels=50, Centered at (0,0), INDIV. PIXEL SCALED to sum=85.8% ASPIRIN predictions, 2nd Repeat 1680-2170 nm, NoRanges=1, NoPixels=50, Centered After at (0,0), first INDIV. scaling, PIXEL avg=9.8% SCALED to sum=85.8% 6000 10000 5000 ACETAMINOPHEN predictions, 2nd Repeat 1680-2170 nm, NoRanges=1, NoPixels=50, Centered at After (0,0), first INDIV. scaling, PIXEL avg=38% SCALED to sum=85.8% 8000 After first scaling, avg=38% 50 100 150 200 20 15 10 8000 50 6000 100 4000 2000 150 0-50 0 50 100 150 200 After INDIV. PIX. scaling, avg=9.4662% 50 45 40 50 4000 3000 100 2000 1000 150 0-50 0 50 100 150 200 After INDIV. PIX. scaling, avg=38.199% 50 45 40 6000 4000 2000 0-50 0 50 100 After INDIV. PIX. scaling, avg=38.1348% 250 5 4000 250 3000 35 8000250 6000 35 10000 8000 300 0 300 2000 30 300 4000 30 6000 4000 350 1000 350 2000350 2000 50 100 150 200 250 0-50 500 100 150 200 100 250 50 150 0-50 500 100 150 200 100 250 50 150 0-50 0 50 100
12 2. Molecular sensors Molecular Recognition Molecule specific sensing surfaces Self-assembled monolayers (SAMs), non-fouling monolayers Immobilisation of receptor molecules human IgG helicobacter pylori single-stranded DNA for e.g. breast cancer - PCR amplified samples Molecule specific sensing elements Synthesis of molecules with various functional groups and/or repellent properties Synthesis of nanoparticles * High antigen binding capacity Low non-specific binding of interfering molecules 10-fold amplification by use of nanoparticles Standard curve for binding of higg to antibody monolayers. A typical result in the literature: Bonroy et al.**
13 MEMS Mass Sensors Benefits: compared to the competing technologies the measured values are an order or orders of magnitude higher than the corresponding values reported for FBAR or cantilever resonators. the lowest detectable mass of the sensor can be tuned according to the requirements of the application. Mass resolution of 3.7 pg or better have been demonstrated for sensors of 0.01 mm3 in volume with an unoptimised system. different miniaturised sensor arrays can be constructed for multi-analyte or multi-sample detection low power consumption high potential for integration and system minimisation (silicon based) high potential for low cost in mass production (feasible for applications where disposable sensor chips are needed) provides generic sensor devices for different application areas
14 3. Printed functionality Roll-to-roll painotekniikalla tuotetetut komponentit : - elektroniset ja optiset komponentit - OLED, aurinkokennot, paristot - indikaattorit, sensorit
15 Bioaktiivinen paperi
16 Gravure-printed NO X sensors using WO 3 nanoparticles Objectives WO 3 nanoparticles developed into printable form Optimized ink composition and manufacturing cycle Obtain semiconductive printed layers with good coverage Manufacture resistive gas sensors by gravure printing the WO 3 ink onto flexible plastic substrates Printing offers a low cost, high throughput, and additive manufacturing method onto flexible substrates Printed NO X sensor Resistive gas sensor Operation based on the conductance change of the ink layer upon gas exposure WO 3 inks printed with gravure onto gold finger electrodes (lithography) on a plastic substrate Two layers overprinted Drying in an oven at 250 C NO X sensitivity measured in a closed chamber Different temperatures and gas concentrations Measurements done also at an industrial site Process gas led into the measurement chamber NO X response monitored Closed measurement chamber
17 NO X response of the printed NO X sensor Reducing response obtained when pure NO gas introduced into the chamber Conductance increases upon gas exposure Highly sensitive sensor Response obtained at 5 ppm Fast response and recovery times: 20-40 s Response improves with increasing chamber temperature, gas concentration, and ink layer thickness and coverage Significantly smaller response to O 2 and CO gases somewhat selective Oxidizing response obtained when process gas (contains NO, NO 2, and other gases) in the industrial measurements introduced into the chamber Conductance drops significantly upon gas introduction (High NO X concentration of 200-400 ppm) NO X concentration decreased to 20-50 ppm for a short period of time every 20 min clear peaks in the response curve Slight attenuation of the signal Might not recover fast enough Operation time expected to be several hours No response to changes in the other gas concentrations Selective sensor
18 Anturi- ja mittalaitteiden kehitystyö VTT:llä Kiitokset seuraaville kontaktihenkilöille : Anu Kärkkäinen, Jarkko Antila : MEMS sensors Kirsi Tappura : Molecular sensors Elina Jansson : New selective gas sensors based on printed semiconductor nanoparticles
19 VTT luo teknologiasta liiketoimintaa